|
- function [mu sigma2] = estimateGaussian(X)
- %ESTIMATEGAUSSIAN This function estimates the parameters of a
- %Gaussian distribution using the data in X
- % [mu sigma2] = estimateGaussian(X),
- % The input X is the dataset with each n-dimensional data point in one row
- % The output is an n-dimensional vector mu, the mean of the data set
- % and the variances sigma^2, an n x 1 vector
- %
-
- % Useful variables
- [m, n] = size(X);
-
- % You should return these values correctly
- mu = zeros(n, 1);
- sigma2 = zeros(n, 1);
-
- % ====================== YOUR CODE HERE ======================
- % Instructions: Compute the mean of the data and the variances
- % In particular, mu(i) should contain the mean of
- % the data for the i-th feature and sigma2(i)
- % should contain variance of the i-th feature.
- %
-
- mu = mean(X)';
- for i = 1 : n
- sigma2(i) = sum((X(:, i) - mu(i)) .^2) /m;
- end
-
-
-
- % =============================================================
-
-
- end
|