# 13 Unsupervised Learning ## 13.1 Unsupervised Learning_ Introduction ## 13.2 K-Means Algorithm ## 13.3 Optimization Objective ## 13.4 Random Initialization ## 13.5 Choosing the Number of Clusters # 14 Dimensionality Reduction ## 14.1 Motivation I_ Data Compression ## 14.2 Motivation II_ Visualization ## 14.3 Principal Component Analysis Problem Formulation ## 14.4 Principal Component Analysis Algorithm ## 14.5 Reconstruction from Compressed Representation ## 14.6 Choosing the Number of Principal Components ## 14.7 Advice for Applying PCA