|
|
|
@@ -178,7 +178,7 @@ $h_\theta(x)=\theta_0+\theta_1x$,为解决房价问题的一种可行表达式 |
|
|
|
> |
|
|
|
> $\left(x, y\right)$: 训练集中的实例 |
|
|
|
> |
|
|
|
> $\left(x^\left(i\right),y^\left(i\right)\right)$: 训练集中的第 $i$ 个样本实例 |
|
|
|
> $\left(x^{\left(i\right)},y^{\left(i\right)}\right)$: 训练集中的第 $i$ 个样本实例 |
|
|
|
|
|
|
|
 |
|
|
|
|
|
|
|
@@ -200,7 +200,7 @@ $$J(\theta_0,\theta_1)=\dfrac{1}{2m}\displaystyle\sum_{i=1}^m\left(\hat{y}_{i}-y |
|
|
|
|
|
|
|
- 假设函数(Hypothesis): $h_\theta(x)=\theta_0+\theta_1x$ |
|
|
|
- 参数(Parameters): $\theta_0, \theta_1$ |
|
|
|
- 代价函数(Cost Function): $ J\left( \theta_0, \theta_1 \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}} $ |
|
|
|
- 代价函数(Cost Function): $J\left( \theta_0, \theta_1 \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}}$ |
|
|
|
- 目标(Goal): $\underset{\theta_0, \theta_1}{\text{minimize}} J \left(\theta_0, \theta_1 \right)$ |
|
|
|
|
|
|
|
为了直观理解代价函数到底是在做什么,先假设 $\theta_1 = 0$,并假设训练集有三个数据,分别为$\left(1, 1\right), \left(2, 2\right), \left(3, 3\right)$,这样在平面坐标系中绘制出 $h_\theta\left(x\right)$ ,并分析 $J\left(\theta_0, \theta_1\right)$ 的变化。 |
|
|
|
@@ -304,7 +304,7 @@ $\begin{align*} & \text{repeat until convergence:} \; \lbrace \newline \; &{{\th |
|
|
|
线性回归模型 |
|
|
|
|
|
|
|
- $h_\theta(x)=\theta_0+\theta_1x$ |
|
|
|
- $ J\left( \theta_0, \theta_1 \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}} $ |
|
|
|
- $J\left( \theta_0, \theta_1 \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}}$ |
|
|
|
|
|
|
|
梯度下降算法 |
|
|
|
- $\begin{align*} & \text{repeat until convergence:} \; \lbrace \newline \; &{{\theta }_{j}}:={{\theta }_{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( {\theta_{0}},{\theta_{1}} \right) \newline \rbrace \end{align*}$ |
|
|
|
|