| @@ -203,7 +203,7 @@ $$J(\theta_0,\theta_1)=\dfrac{1}{2m}\displaystyle\sum_{i=1}^m\left(\hat{y}_{i}-y | |||||
| - 代价函数(Cost Function): $J\left( \theta_0, \theta_1 \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}}$ | - 代价函数(Cost Function): $J\left( \theta_0, \theta_1 \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}}$ | ||||
| - 目标(Goal): $\underset{\theta_0, \theta_1}{\text{minimize}} J \left(\theta_0, \theta_1 \right)$ | - 目标(Goal): $\underset{\theta_0, \theta_1}{\text{minimize}} J \left(\theta_0, \theta_1 \right)$ | ||||
| 为了直观理解代价函数到底是在做什么,先假设 $\theta_1 = 0$,并假设训练集有三个数据,分别为$\left(1, 1\right), \left(2, 2\right), \left(3, 3\right)$,这样在平面坐标系中绘制出 $h_\theta\left(x\right)$ ,并分析 $J\left(\theta_0, \theta_1\right)$ 的变化。 | |||||
| 为了直观理解代价函数到底是在做什么,先假设 $\theta_1 = 0$,并假设训练集有三个数据,分别为$\left(1, 1\right), \left(2, 2\right), \left(3, 3\right)$,这样在平面坐标系中绘制出 $h_\theta\left(x\right)$ ,并分析 $J\left(\theta_0, \theta_1\right)$ 的变化。 | |||||
|  |  | ||||
| @@ -247,7 +247,14 @@ $\theta_0 = 360, \theta_1 =0$ 时: | |||||
| 梯度下降公式: | 梯度下降公式: | ||||
| $\begin{align*} & \text{repeat until convergence:} \; \lbrace \newline \; &{{\theta }_{j}}:={{\theta }_{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( {\theta_{0}},{\theta_{1}} \right) \newline \rbrace \end{align*}$ | |||||
| $$ | |||||
| \begin{align*} | |||||
| & \text{Repeat until convergence:} \; \lbrace \\ | |||||
| &{{\theta }_{j}}:={{\theta }_{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( {\theta_{0}},{\theta_{1}} \right) \\ | |||||
| \rbrace | |||||
| \end{align*} | |||||
| $$ | |||||
| > ${\theta }_{j}$: 第 $j$ 个特征参数 | > ${\theta }_{j}$: 第 $j$ 个特征参数 | ||||
| > | > | ||||
| @@ -304,32 +311,46 @@ $\begin{align*} & \text{repeat until convergence:} \; \lbrace \newline \; &{{\th | |||||
| 线性回归模型 | 线性回归模型 | ||||
| - $h_\theta(x)=\theta_0+\theta_1x$ | - $h_\theta(x)=\theta_0+\theta_1x$ | ||||
| - $J\left( \theta_0, \theta_1 \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}}$ | |||||
| - $J\left( \theta_0, \theta_1 \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}}$ | |||||
| 梯度下降算法 | 梯度下降算法 | ||||
| - $\begin{align*} & \text{repeat until convergence:} \; \lbrace \newline \; &{{\theta }_{j}}:={{\theta }_{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( {\theta_{0}},{\theta_{1}} \right) \newline \rbrace \end{align*}$ | |||||
| 直接将线性回归模型公式代入梯度下降公式可得出公式 | |||||
| $$ | |||||
| \begin{align*} | |||||
| & \text{Repeat until convergence:} \; \lbrace \\ | |||||
| &{{\theta }_{j}}:={{\theta }_{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( {\theta_{0}},{\theta_{1}} \right) \\ | |||||
| \rbrace | |||||
| \end{align*} | |||||
| $$ | |||||
| 当 $j = 0, j = 1$ 时,**线性回归中代价函数求导的推导过程:** | |||||
| $\frac{\partial}{\partial\theta_j} J(\theta_1, \theta_2)=\frac{\partial}{\partial\theta_j} \left(\frac{1}{2m}\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}} \right)=$ | |||||
| $\left(\frac{1}{2m}*2\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} \right)*\frac{\partial}{\partial\theta_j}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} =$ | |||||
| 直接将线性回归模型公式代入梯度下降公式可得出公式 | |||||
| $\left(\frac{1}{m}\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} \right)*\frac{\partial}{\partial\theta_j}{{\left(\theta_0{x_0^{(i)}} + \theta_1{x_1^{(i)}}-{{y}^{(i)}} \right)}}$ | |||||
|  | |||||
| 所以当 $j = 0$ 时: | |||||
| 当 $j = 0, j = 1$ 时,**线性回归中代价函数求导的推导过程:** | |||||
| $$ | |||||
| \begin{align*} | |||||
| \frac{\partial}{\partial\theta_j} J(\theta_1, \theta_2)&=\frac{\partial}{\partial\theta_j} \left(\frac{1}{2m}\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}} \right)\\ | |||||
| &=\left(\frac{1}{2m}*2\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} \right)*\frac{\partial}{\partial\theta_j}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}}\\ | |||||
| &=\left(\frac{1}{m}\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} \right)*\frac{\partial}{\partial\theta_j}{{\left(\theta_0{x_0^{(i)}} + \theta_1{x_1^{(i)}}-{{y}^{(i)}} \right)}} | |||||
| \end{align*} | |||||
| $$ | |||||
| $\frac{\partial}{\partial\theta_0} J(\theta)=\frac{1}{m}\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} *x_0^{(i)}$ | |||||
| 所以当 $j = 1$ 时: | |||||
| 所以当 $j = 0$ 时: | |||||
| $\frac{\partial}{\partial\theta_1} J(\theta)=\frac{1}{m}\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} *x_1^{(i)}$ | |||||
| $$ | |||||
| \frac{\partial}{\partial\theta_0} J(\theta)=\frac{1}{m}\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} *x_0^{(i)} | |||||
| $$ | |||||
| 所以当 $j = 1$ 时: | |||||
| 上文中所提到的梯度下降,都为批量梯度下降(Batch Gradient Descent),即每次计算都使用**所有**的数据集 $\left(\sum\limits_{i=1}^{m}\right)$ 更新。 | |||||
| $$ | |||||
| \frac{\partial}{\partial\theta_1} J(\theta)=\frac{1}{m}\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} *x_1^{(i)} | |||||
| $$ | |||||
| 上文中所提到的梯度下降,都为批量梯度下降(Batch Gradient Descent),即每次计算都使用**所有**的数据集 $\left(\sum\limits_{i=1}^{m}\right)$ 更新。 | |||||
| 由于线性回归函数呈现**碗状**,且**只有一个**全局的最优值,所以函数**一定总会**收敛到全局最小值(学习速率不可过大)。同时,函数 $J$ 被称为**凸二次函数**,而线性回归函数求解最小值问题属于**凸函数优化问题**。 | 由于线性回归函数呈现**碗状**,且**只有一个**全局的最优值,所以函数**一定总会**收敛到全局最小值(学习速率不可过大)。同时,函数 $J$ 被称为**凸二次函数**,而线性回归函数求解最小值问题属于**凸函数优化问题**。 | ||||
| @@ -24,7 +24,9 @@ | |||||
| 参数向量的维度为 $n+1$,在特征向量中添加 $x_{0}$ 后,其维度也变为 $n+1$, 则运用线性代数,可简化 $h$: | 参数向量的维度为 $n+1$,在特征向量中添加 $x_{0}$ 后,其维度也变为 $n+1$, 则运用线性代数,可简化 $h$: | ||||
| $h_\theta\left(x\right)=\begin{bmatrix}\theta_0\; \theta_1\; ... \;\theta_n \end{bmatrix}\begin{bmatrix}x_0 \newline x_1 \newline \vdots \newline x_n\end{bmatrix}= \theta^T x$ | |||||
| $$ | |||||
| h_\theta\left(x\right)=\begin{bmatrix}\theta_0\; \theta_1\; ... \;\theta_n \end{bmatrix}\begin{bmatrix}x_0 \newline x_1 \newline \vdots \newline x_n\end{bmatrix}= \theta^T x | |||||
| $$ | |||||
| > $\theta^T$: $\theta$ 矩阵的转置 | > $\theta^T$: $\theta$ 矩阵的转置 | ||||
| > | > | ||||
| @@ -44,15 +46,40 @@ $h_\theta\left(x\right)=\begin{bmatrix}\theta_0\; \theta_1\; ... \;\theta_n \end | |||||
| 前文提到梯度下降对于最小化代价函数的通用性,则多变量梯度下降公式即 | 前文提到梯度下降对于最小化代价函数的通用性,则多变量梯度下降公式即 | ||||
| $\begin{align*} & \text{repeat until convergence:} \; \lbrace \newline \; &{{\theta }_{j}}:={{\theta }_{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( {\theta_{0}},{\theta_{1}}...{\theta_{n}} \right) \newline \rbrace \end{align*}$ | |||||
| $$ | |||||
| \begin{align*} | |||||
| & \text{Repeat until convergence:} \; \lbrace \\ | |||||
| &{{\theta }_{j}}:={{\theta }_{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( {\theta_{0}},{\theta_{1}}...{\theta_{n}} \right) \\ | |||||
| \rbrace | |||||
| \end{align*} | |||||
| $$ | |||||
| 解出偏导得: | 解出偏导得: | ||||
| $\begin{align*}& \text{repeat until convergence:} \; \lbrace \newline \; & \theta_j := \theta_j - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} \; & \text{for j := 0,1...n}\newline \rbrace\end{align*}$ | |||||
| $$ | |||||
| \begin{align*} | |||||
| & \text{repeat until convergence:} \; \lbrace \\ | |||||
| & \theta_j := \theta_j - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} \; & \text{for j := 0,1...n}\\ | |||||
| \rbrace | |||||
| \end{align*} | |||||
| $$ | |||||
| 可展开为: | 可展开为: | ||||
| $\begin{aligned} & \text{repeat until convergence:} \; \lbrace \newline \; & \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}\newline \; & \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)} \newline \; & \theta_2 := \theta_2 - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \newline & \vdots \newline \; & \theta_n := \theta_n - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} &\newline \rbrace \end{aligned}$ | |||||
| $$ | |||||
| \begin{aligned} | |||||
| & \text{repeat until convergence:} \; \lbrace \\ | |||||
| & \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}\\ | |||||
| & \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)} \\ | |||||
| & \theta_2 := \theta_2 - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \\ | |||||
| & \vdots \\ | |||||
| & \theta_n := \theta_n - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} &\\ | |||||
| \rbrace | |||||
| \end{aligned} | |||||
| $$ | |||||
| 当然,同单变量梯度下降一样,计算时需要**同时更新**所有参数。 | 当然,同单变量梯度下降一样,计算时需要**同时更新**所有参数。 | ||||
| @@ -79,7 +106,7 @@ $$ | |||||
| 除了以上图人工选择并除以一个参数的方式,**均值归一化(Mean normalization)**方法更为便捷,可采用它来对所有特征值统一缩放: | 除了以上图人工选择并除以一个参数的方式,**均值归一化(Mean normalization)**方法更为便捷,可采用它来对所有特征值统一缩放: | ||||
| $x_i:=\frac{x_i-average(x)}{maximum(x)-minimum(x)}, 使得 $ $x_i \in (-1,1)$ | |||||
| $x_i:=\frac{x_i-average(x)}{maximum(x)-minimum(x)}$, 使得 $x_i \in (-1,1)$ | |||||
| 对于特征的范围,并不一定需要使得 $-1 \leqslant x \leqslant 1$,类似于 $1\leqslant x \leqslant 3$ 等也是可取的,而诸如 $-100 \leqslant x \leqslant 100 $,$-0.00001 \leqslant x \leqslant 0.00001$,就显得过大/过小了。 | 对于特征的范围,并不一定需要使得 $-1 \leqslant x \leqslant 1$,类似于 $1\leqslant x \leqslant 3$ 等也是可取的,而诸如 $-100 \leqslant x \leqslant 100 $,$-0.00001 \leqslant x \leqslant 0.00001$,就显得过大/过小了。 | ||||
| @@ -148,14 +175,19 @@ $$ | |||||
| [^2]: 梯度下降算法的普适性好,而对于特定的线性回归模型,正规方程是很好的替代品。 | [^2]: 梯度下降算法的普适性好,而对于特定的线性回归模型,正规方程是很好的替代品。 | ||||
| **正规方程法的推导过程**: | **正规方程法的推导过程**: | ||||
| $\begin{aligned} & J\left( \theta \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {h_{\theta}}\left( {x^{(i)}} \right)-{y^{(i)}} \right)}^{2}}}\newline \; & =\frac{1}{2m}||X\theta-y||^2 \newline \; & =\frac{1}{2m}(X\theta-y)^T(X\theta-y) &\newline \end{aligned}$ | |||||
| $$ | |||||
| \begin{aligned} | |||||
| J\left( \theta \right)& =\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {h_{\theta}}\left( {x^{(i)}} \right)-{y^{(i)}} \right)}^{2}}}\\ | |||||
| & =\frac{1}{2m}||X\theta-y||^2 \\ | |||||
| & =\frac{1}{2m}(X\theta-y)^T(X\theta-y) \hspace{15cm} | |||||
| \end{aligned} | |||||
| $$ | |||||
| 展开上式可得 | 展开上式可得 | ||||
| $J(\theta )= \frac{1}{2m}\left( {{\theta }^{T}}{{X}^{T}}X\theta -{{\theta}^{T}}{{X}^{T}}y-{{y}^{T}}X\theta + {{y}^{T}}y \right)$ | $J(\theta )= \frac{1}{2m}\left( {{\theta }^{T}}{{X}^{T}}X\theta -{{\theta}^{T}}{{X}^{T}}y-{{y}^{T}}X\theta + {{y}^{T}}y \right)$ | ||||
| 注意到 ${{\theta}^{T}}{{X}^{T}}y$ 与 ${{y}^{T}}X\theta$ 都为标量,实际上是等价的,则 | |||||
| 注意到 ${{\theta}^{T}}{{X}^{T}}y$ 与 ${{y}^{T}}X\theta$ 都为标量,实际上是等价的,则: | |||||
| $J(\theta) = \frac{1}{2m}[X^TX\theta-2\theta^TX^Ty+y^Ty]$ | $J(\theta) = \frac{1}{2m}[X^TX\theta-2\theta^TX^Ty+y^Ty]$ | ||||
| @@ -216,6 +248,8 @@ $$ | |||||
| ## 5.6 向量化(Vectorization) | ## 5.6 向量化(Vectorization) | ||||
| $\sum\limits_{j=0}^n\theta_jx_j=\theta^Tx$ | |||||
| $$ | |||||
| \sum\limits_{j=0}^n\theta_jx_j=\theta^Tx | |||||
| $$ | |||||
| ## 5.x 常用函数整理 | ## 5.x 常用函数整理 | ||||
| @@ -52,10 +52,12 @@ $$ | |||||
| 逻辑回归模型中,$h_\theta \left( x \right)$ 的作用是,根据输入 $x$ 以及参数 $\theta$,计算得出”输出 $y=1$“的可能性(estimated probability),概率学中表示为: | 逻辑回归模型中,$h_\theta \left( x \right)$ 的作用是,根据输入 $x$ 以及参数 $\theta$,计算得出”输出 $y=1$“的可能性(estimated probability),概率学中表示为: | ||||
| $\begin{align*}& h_\theta(x) = P(y=1 | x ; \theta) = 1 - P(y=0 | x ; \theta) \newline & P(y = 0 | x;\theta) + P(y = 1 | x ; \theta) = 1\end{align*}$ | |||||
| $$ | |||||
| \begin{align*} | |||||
| & h_\theta(x) = P(y=1 | x ; \theta) = 1 - P(y=0 | x ; \theta) \\ | |||||
| & P(y = 0 | x;\theta) + P(y = 1 | x ; \theta) = 1 | |||||
| \end{align*} | |||||
| $$ | |||||
| 以肿瘤诊断为例,$h_\theta \left( x \right)=0.7$ 表示病人有 $70\%$ 的概率得了恶性肿瘤。 | 以肿瘤诊断为例,$h_\theta \left( x \right)=0.7$ 表示病人有 $70\%$ 的概率得了恶性肿瘤。 | ||||
| [1]: https://en.wikipedia.org/wiki/Logistic_function | [1]: https://en.wikipedia.org/wiki/Logistic_function | ||||
| @@ -69,17 +71,25 @@ $\begin{align*}& h_\theta(x) = P(y=1 | x ; \theta) = 1 - P(y=0 | x ; \theta) \ne | |||||
| 为了得出分类的结果,这里和前面一样,规定以 $0.5$ 为阈值: | 为了得出分类的结果,这里和前面一样,规定以 $0.5$ 为阈值: | ||||
| $\begin{align*}& h_\theta(x) \geq 0.5 \rightarrow y = 1 \newline& h_\theta(x) < 0.5 \rightarrow y = 0 \newline\end{align*}$ | |||||
| $$ | |||||
| \begin{align*} | |||||
| & h_\theta(x) \geq 0.5 \rightarrow y = 1 \\ | |||||
| & h_\theta(x) < 0.5 \rightarrow y = 0 \\ | |||||
| \end{align*} | |||||
| $$ | |||||
| 回忆一下 sigmoid 函数的图像: | 回忆一下 sigmoid 函数的图像: | ||||
|  |  | ||||
| 观察可得当 $g(z) \geq 0.5$ 时,有 $z \geq 0$,即 $\theta^Tx \geq 0$。 | 观察可得当 $g(z) \geq 0.5$ 时,有 $z \geq 0$,即 $\theta^Tx \geq 0$。 | ||||
| 同线性回归模型的不同点在于: $\begin{align*}z \to +\infty, e^{-\infty} \to 0 \Rightarrow g(z)=1 \newline z \to -\infty, e^{\infty}\to \infty \Rightarrow g(z)=0 \end{align*}$ | |||||
| 同线性回归模型的不同点在于: | |||||
| $$ | |||||
| \begin{align*} | |||||
| z \to +\infty, e^{-\infty} \to 0 \Rightarrow g(z)=1 \\ | |||||
| z \to -\infty, e^{\infty}\to \infty \Rightarrow g(z)=0 | |||||
| \end{align*} | |||||
| $$ | |||||
| 直观一点来个例子,${h_\theta}\left( x \right)=g\left( {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2}}\right)$ 是下图模型的假设函数: | 直观一点来个例子,${h_\theta}\left( x \right)=g\left( {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2}}\right)$ 是下图模型的假设函数: | ||||
|  |  | ||||
| @@ -94,8 +104,9 @@ $\begin{align*}& h_\theta(x) \geq 0.5 \rightarrow y = 1 \newline& h_\theta(x) < | |||||
| 为了拟合下图数据,建模多项式假设函数: | 为了拟合下图数据,建模多项式假设函数: | ||||
| ${h_\theta}\left( x \right)=g\left( {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2}}+{\theta_{3}}x_{1}^{2}+{\theta_{4}}x_{2}^{2} \right)$ | |||||
| $$ | |||||
| {h_\theta}\left( x \right)=g\left( {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2}}+{\theta_{3}}x_{1}^{2}+{\theta_{4}}x_{2}^{2} \right) | |||||
| $$ | |||||
| 这里取 $\theta = \begin{bmatrix} -1\\0\\0\\1\\1\end{bmatrix}$,决策边界对应了一个在原点处的单位圆(${x_1}^2+{x_2}^2 = 1$),如此便可给出分类结果,如图中品红色曲线: | 这里取 $\theta = \begin{bmatrix} -1\\0\\0\\1\\1\end{bmatrix}$,决策边界对应了一个在原点处的单位圆(${x_1}^2+{x_2}^2 = 1$),如此便可给出分类结果,如图中品红色曲线: | ||||
| @@ -128,8 +139,13 @@ ${h_\theta}\left( x \right)=g\left( {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2 | |||||
| 对于逻辑回归,更换平方损失函数为**对数损失函数**,可由统计学中的最大似然估计方法推出代价函数 $J(\theta)$: | 对于逻辑回归,更换平方损失函数为**对数损失函数**,可由统计学中的最大似然估计方法推出代价函数 $J(\theta)$: | ||||
| $\begin{align*}& J(\theta) = \dfrac{1}{m} \sum_{i=1}^m \mathrm{Cost}(h_\theta(x^{(i)}),y^{(i)}) \newline & \mathrm{Cost}(h_\theta(x),y) = -\log(h_\theta(x)) \; & \text{if y = 1} \newline & \mathrm{Cost}(h_\theta(x),y) = -\log(1-h_\theta(x)) \; & \text{if y = 0}\end{align*}$ | |||||
| $$ | |||||
| \begin{align*} | |||||
| & J(\theta) = \dfrac{1}{m} \sum_{i=1}^m \mathrm{Cost}(h_\theta(x^{(i)}),y^{(i)}) \\ | |||||
| & \mathrm{Cost}(h_\theta(x),y) = -\log(h_\theta(x)) \; & \text{if y = 1} \\ | |||||
| & \mathrm{Cost}(h_\theta(x),y) = -\log(1-h_\theta(x)) \; & \text{if y = 0} | |||||
| \end{align*} | |||||
| $$ | |||||
| 则有关于 $J(\theta)$ 的图像如下: | 则有关于 $J(\theta)$ 的图像如下: | ||||
|  |  | ||||
| @@ -155,11 +171,25 @@ $h = g(X\theta)$,$J(\theta) = \frac{1}{m} \cdot \left(-y^{T}\log(h)-(1-y)^{T}\ | |||||
| 为了最优化 $\theta$,仍使用梯度下降法,算法同线性回归中一致: | 为了最优化 $\theta$,仍使用梯度下降法,算法同线性回归中一致: | ||||
| $\begin{align*} & \text{repeat until convergence:} \; \lbrace \newline \; &{{\theta }_{j}}:={{\theta }_{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( {\theta} \right) \newline \rbrace \end{align*}$ | |||||
| $$ | |||||
| \begin{align*} | |||||
| & \text{Repeat until convergence:} \; \lbrace \\ | |||||
| &{{\theta }_{j}}:={{\theta }_{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( {\theta} \right) \\ | |||||
| \rbrace | |||||
| \end{align*} | |||||
| $$ | |||||
| 解出偏导得: | 解出偏导得: | ||||
| $\begin{align*}& \text{repeat until convergence:} \; \lbrace \newline \; & \theta_j := \theta_j - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} \; & \text{for j := 0,1...n}\newline \rbrace\end{align*}$ | |||||
| $$ | |||||
| \begin{align*} | |||||
| & \text{Repeat until convergence:} \; \lbrace \\ | |||||
| & \theta_j := \theta_j - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} \; & \text{for j := 0,1...n}\\ | |||||
| \rbrace | |||||
| \end{align*} | |||||
| $$ | |||||
| 注意,虽然形式上梯度下降算法同线性回归一样,但其中的假设函不同,即$h_\theta(x) = g\left(\theta^{T}x \right)$,不过求导后的结果也相同。 | 注意,虽然形式上梯度下降算法同线性回归一样,但其中的假设函不同,即$h_\theta(x) = g\left(\theta^{T}x \right)$,不过求导后的结果也相同。 | ||||
| @@ -167,38 +197,49 @@ $\begin{align*}& \text{repeat until convergence:} \; \lbrace \newline \; & \thet | |||||
| **逻辑回归中代价函数求导的推导过程:** | |||||
| $J(\theta) = - \frac{1}{m} \displaystyle \sum_{i=1}^m [y^{(i)}\log (h_\theta (x^{(i)})) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)}))]$ | |||||
| **逻辑回归中代价函数求导的推导过程:**[]() | |||||
| $$ | |||||
| J(\theta) = - \frac{1}{m} \displaystyle \sum_{i=1}^m [y^{(i)}\log (h_\theta (x^{(i)})) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)}))] | |||||
| $$ | |||||
| 令 $f(\theta) = {{y}^{(i)}}\log \left( {h_\theta}\left( {{x}^{(i)}} \right) \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h_\theta}\left( {{x}^{(i)}} \right) \right)$ | 令 $f(\theta) = {{y}^{(i)}}\log \left( {h_\theta}\left( {{x}^{(i)}} \right) \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h_\theta}\left( {{x}^{(i)}} \right) \right)$ | ||||
| 忆及 $h_\theta(x) = g(z)$,$g(z) = \frac{1}{1+e^{(-z)}}$,则 | 忆及 $h_\theta(x) = g(z)$,$g(z) = \frac{1}{1+e^{(-z)}}$,则 | ||||
| $f(\theta)={{y}^{(i)}}\log \left( \frac{1}{1+{{e}^{-z}}} \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-\frac{1}{1+{{e}^{-z}}} \right)$ | |||||
| $=-{{y}^{(i)}}\log \left( 1+{{e}^{-z}} \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1+{{e}^{z}} \right)$ | |||||
| 忆及 $z=\theta^Tx^{(i)}$,对 $\theta_j$ 求偏导则没有 $\theta_j$ 的项求偏导即为 $0$,都消去,则得: | |||||
| $$ | |||||
| \begin{align*} | |||||
| f(\theta) &= {{y}^{(i)}}\log \left( \frac{1}{1+{{e}^{-z}}} \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-\frac{1}{1+{{e}^{-z}}} \right) \\ | |||||
| &= -{{y}^{(i)}}\log \left( 1+{{e}^{-z}} \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1+{{e}^{z}} \right) | |||||
| \end{align*} | |||||
| $$ | |||||
| $\frac{\partial z}{\partial {\theta_{j}}}=\frac{\partial }{\partial {\theta_{j}}}\left( \theta^Tx^{(i)} \right)=x^{(i)}_j$ | |||||
| 忆及 $z=\theta^Tx^{(i)}$,对 $\theta_j$ 求偏导,则没有 $\theta_j$ 的项求偏导即为 $0$,都消去,则得: | |||||
| $$ | |||||
| \frac{\partial z}{\partial {\theta_{j}}}=\frac{\partial }{\partial {\theta_{j}}}\left( \theta^Tx^{(i)} \right)=x^{(i)}_j | |||||
| $$ | |||||
| 所以有: | 所以有: | ||||
| $\frac{\partial }{\partial {\theta_{j}}}f\left( \theta \right)=\frac{\partial }{\partial {\theta_{j}}}[-{{y}^{(i)}}\log \left( 1+{{e}^{-z}} \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1+{{e}^{z}} \right)]$ | |||||
| $=-{{y}^{(i)}}\frac{\frac{\partial }{\partial {\theta_{j}}}\left(-z \right) e^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{\frac{\partial }{\partial {\theta_{j}}}\left(z \right){e^{z}}}{1+e^{z}}$ | |||||
| $=-{{y}^{(i)}}\frac{-x^{(i)}_je^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{x^{(i)}_j}{1+e^{-z}}$ | |||||
| $=\left({{y}^{(i)}}\frac{e^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{1}{1+e^{-z}}\right)x^{(i)}_j$ | |||||
| $=\left({{y}^{(i)}}\frac{e^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{1}{1+e^{-z}}\right)x^{(i)}_j$ | |||||
| $=\left(\frac{{{y}^{(i)}}(e^{-z}+1)-1}{1+e^{-z}}\right)x^{(i)}_j$ | |||||
| $={({{y}^{(i)}}-\frac{1}{1+{{e}^{-z}}})x_j^{(i)}}$ | |||||
| $={\left({{y}^{(i)}}-{h_\theta}\left( {{x}^{(i)}} \right)\right)x_j^{(i)}}$ | |||||
| $=-{\left({h_\theta}\left( {{x}^{(i)}} \right)-{{y}^{(i)}}\right)x_j^{(i)}}$ | |||||
| $$ | |||||
| \begin{align*} | |||||
| \frac{\partial }{\partial {\theta_{j}}}f\left( \theta \right)&=\frac{\partial }{\partial {\theta_{j}}}[-{{y}^{(i)}}\log \left( 1+{{e}^{-z}} \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1+{{e}^{z}} \right)] \\ | |||||
| &=-{{y}^{(i)}}\frac{\frac{\partial }{\partial {\theta_{j}}}\left(-z \right) e^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{\frac{\partial }{\partial {\theta_{j}}}\left(z \right){e^{z}}}{1+e^{z}} \\ | |||||
| &=-{{y}^{(i)}}\frac{-x^{(i)}_je^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{x^{(i)}_j}{1+e^{-z}} \\ | |||||
| &=\left({{y}^{(i)}}\frac{e^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{1}{1+e^{-z}}\right)x^{(i)}_j \\ | |||||
| &=\left({{y}^{(i)}}\frac{e^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{1}{1+e^{-z}}\right)x^{(i)}_j \\ | |||||
| &=\left(\frac{{{y}^{(i)}}(e^{-z}+1)-1}{1+e^{-z}}\right)x^{(i)}_j \\ | |||||
| &={({{y}^{(i)}}-\frac{1}{1+{{e}^{-z}}})x_j^{(i)}} \\ | |||||
| &={\left({{y}^{(i)}}-{h_\theta}\left( {{x}^{(i)}} \right)\right)x_j^{(i)}} \\ | |||||
| &=-{\left({h_\theta}\left( {{x}^{(i)}} \right)-{{y}^{(i)}}\right)x_j^{(i)}} | |||||
| \end{align*} | |||||
| $$ | |||||
| 则可得代价函数的导数: | 则可得代价函数的导数: | ||||
| $\frac{\partial }{\partial {\theta_{j}}}J(\theta) = -\frac{1}{m}\sum\limits_{i=1}^{m}{\frac{\partial }{\partial {\theta_{j}}}f(\theta)}=\frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} $ | |||||
| $$ | |||||
| \frac{\partial }{\partial {\theta_{j}}}J(\theta) = -\frac{1}{m}\sum\limits_{i=1}^{m}{\frac{\partial }{\partial {\theta_{j}}}f(\theta)}=\frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} | |||||
| $$ | |||||
| ## 6.6 进阶优化(Advanced Optimization) | ## 6.6 进阶优化(Advanced Optimization) | ||||
| @@ -354,7 +395,10 @@ exitFlag = 1 | |||||
| 为了保留各个参数的信息,不修改假设函数,改而修改代价函数: | 为了保留各个参数的信息,不修改假设函数,改而修改代价函数: | ||||
| $min_\theta\ \dfrac{1}{2m}\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 + 1000\cdot\theta_3^2 + 1000\cdot\theta_4^2$ | |||||
| $$ | |||||
| min_\theta\ \dfrac{1}{2m}\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 + 1000\cdot\theta_3^2 + 1000\cdot\theta_4^2 | |||||
| $$ | |||||
| 上式中,我们在代价函数中增加了 $\theta_3$、$\theta_4$ 的惩罚项(penalty term) $1000\cdot\theta_3^2 + 1000\cdot\theta_4^2$,如果要最小化代价函数,那么势必需要极大地**减小 $\theta_3$、$\theta_4$**,从而使得假设函数中的 $\theta_3x^3$、$\theta_4x^4$ 这两项的参数非常小,就相当于没有了,假设函数也就**“变得”简单**了,从而在保留各参数的情况下避免了过拟合问题。 | 上式中,我们在代价函数中增加了 $\theta_3$、$\theta_4$ 的惩罚项(penalty term) $1000\cdot\theta_3^2 + 1000\cdot\theta_4^2$,如果要最小化代价函数,那么势必需要极大地**减小 $\theta_3$、$\theta_4$**,从而使得假设函数中的 $\theta_3x^3$、$\theta_4x^4$ 这两项的参数非常小,就相当于没有了,假设函数也就**“变得”简单**了,从而在保留各参数的情况下避免了过拟合问题。 | ||||
| @@ -366,7 +410,10 @@ $min_\theta\ \dfrac{1}{2m}\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 + 1000\cd | |||||
| 代价函数: | 代价函数: | ||||
| $J\left( \theta \right)=\frac{1}{2m}[\sum\limits_{i=1}^{m}{{{({h_\theta}({{x}^{(i)}})-{{y}^{(i)}})}^{2}}+\lambda \sum\limits_{j=1}^{n}{\theta_{j}^{2}}]}$ | |||||
| $$ | |||||
| J\left( \theta \right)=\frac{1}{2m}[\sum\limits_{i=1}^{m}{{{({h_\theta}({{x}^{(i)}})-{{y}^{(i)}})}^{2}}+\lambda \sum\limits_{j=1}^{n}{\theta_{j}^{2}}]} | |||||
| $$ | |||||
| > $\lambda$: 正则化参数(Regularization Parameter),$\lambda > 0$ | > $\lambda$: 正则化参数(Regularization Parameter),$\lambda > 0$ | ||||
| > | > | ||||
| @@ -392,11 +439,20 @@ $\lambda$ 正则化参数类似于学习速率,也需要我们自行对其选 | |||||
| 应用正则化的线性回归梯度下降算法: | 应用正则化的线性回归梯度下降算法: | ||||
| $\begin{align*} & \text{Repeat}\ \lbrace \newline & \ \ \ \ \theta_0 := \theta_0 - \alpha\ \frac{1}{m}\ \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})x_0^{(i)} \newline & \ \ \ \ \theta_j := \theta_j - \alpha\ \left[ \left( \frac{1}{m}\ \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})x_j^{(i)} \right) + \frac{\lambda}{m}\theta_j \right], \ \ \ j \in \lbrace 1,2...n\rbrace\newline & \rbrace \end{align*}$ | |||||
| $$ | |||||
| \begin{align*} | |||||
| & \text{Repeat}\ \lbrace \\ | |||||
| & \ \ \ \ \theta_0 := \theta_0 - \alpha\ \frac{1}{m}\ \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})x_0^{(i)} \\ | |||||
| & \ \ \ \ \theta_j := \theta_j - \alpha\ \left[ \left( \frac{1}{m}\ \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})x_j^{(i)} \right) + \frac{\lambda}{m}\theta_j \right], \ \ \ j \in \lbrace 1,2...n\rbrace\\ | |||||
| & \rbrace | |||||
| \end{align*} | |||||
| $$ | |||||
| 也可以移项得到更新表达式的另一种表示形式 | 也可以移项得到更新表达式的另一种表示形式 | ||||
| $\theta_j := \theta_j(1 - \alpha\frac{\lambda}{m}) - \alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x_j^{(i)}$ | |||||
| $$ | |||||
| \theta_j := \theta_j(1 - \alpha\frac{\lambda}{m}) - \alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x_j^{(i)} | |||||
| $$ | |||||
| > $\frac{\lambda}{m}\theta_j$: 正则化项 | > $\frac{\lambda}{m}\theta_j$: 正则化项 | ||||
| @@ -404,7 +460,17 @@ $\theta_j := \theta_j(1 - \alpha\frac{\lambda}{m}) - \alpha\frac{1}{m}\sum_{i=1} | |||||
| 应用正则化的正规方程法[^2]: | 应用正则化的正规方程法[^2]: | ||||
| $\begin{align*}& \theta = \left( X^TX + \lambda \cdot L \right)^{-1} X^Ty \newline& \text{where}\ \ L = \begin{bmatrix} 0 & & & & \newline & 1 & & & \newline & & 1 & & \newline & & & \ddots & \newline & & & & 1 \newline\end{bmatrix}\end{align*}$ | |||||
| $$ | |||||
| \begin{align*} | |||||
| & \theta = \left( X^TX + \lambda \cdot L \right)^{-1} X^Ty \\ | |||||
| & \text{where}\ \ L = \begin{bmatrix} 0 & & & & \\ | |||||
| & 1 & & & \\ | |||||
| & & 1 & & \\ | |||||
| & & & \ddots & \\ | |||||
| & & & & 1 \\ \end{bmatrix} | |||||
| \end{align*} | |||||
| $$ | |||||
| > $\lambda\cdot L$: 正则化项 | > $\lambda\cdot L$: 正则化项 | ||||
| > | > | ||||
| @@ -432,14 +498,20 @@ L = | |||||
| 为逻辑回归的代价函数添加正则化项: | 为逻辑回归的代价函数添加正则化项: | ||||
| $J(\theta) = - \frac{1}{m} \sum_{i=1}^m \large[ y^{(i)}\ \log (h_\theta (x^{(i)})) + (1 - y^{(i)})\ \log (1 - h_\theta(x^{(i)}))\large] + \frac{\lambda}{2m}\sum_{j=1}^n \theta_j^2$ | |||||
| $$ | |||||
| J(\theta) = - \frac{1}{m} \sum_{i=1}^m \large[ y^{(i)}\ \log (h_\theta (x^{(i)})) + (1 - y^{(i)})\ \log (1 - h_\theta(x^{(i)}))\large] + \frac{\lambda}{2m}\sum_{j=1}^n \theta_j^2 | |||||
| $$ | |||||
| 前文已经证明过逻辑回归和线性回归的代价函数的求导结果是一样的,此处通过给正则化项添加常数 $\frac{1}{2}$,则其求导结果也就一样了。 | 前文已经证明过逻辑回归和线性回归的代价函数的求导结果是一样的,此处通过给正则化项添加常数 $\frac{1}{2}$,则其求导结果也就一样了。 | ||||
| 从而有应用正则化的逻辑回归梯度下降算法: | 从而有应用正则化的逻辑回归梯度下降算法: | ||||
| $\begin{align*} & \text{Repeat}\ \lbrace \newline & \ \ \ \ \theta_0 := \theta_0 - \alpha\ \frac{1}{m}\ \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})x_0^{(i)} \newline & \ \ \ \ \theta_j := \theta_j - \alpha\ \left[ \left( \frac{1}{m}\ \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})x_j^{(i)} \right) + \frac{\lambda}{m}\theta_j \right], \ \ \ j \in \lbrace 1,2...n\rbrace\newline & \rbrace \end{align*}$ | |||||
| $$ | |||||
| \begin{align*} | |||||
| & \text{Repeat}\ \lbrace \\ | |||||
| & \ \ \ \ \theta_0 := \theta_0 - \alpha\ \frac{1}{m}\ \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})x_0^{(i)} \\ | |||||
| & \ \ \ \ \theta_j := \theta_j - \alpha\ \left[ \left( \frac{1}{m}\ \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})x_j^{(i)} \right) + \frac{\lambda}{m}\theta_j \right], \ \ \ j \in \lbrace 1,2...n\rbrace\\ | |||||
| & \rbrace \end{align*} | |||||
| $$ | |||||
| [^1]: https://en.wikipedia.org/wiki/List_of_algorithms#Optimization_algorithms | [^1]: https://en.wikipedia.org/wiki/List_of_algorithms#Optimization_algorithms | ||||
| @@ -50,9 +50,9 @@ BrainPort 系统:帮助失明人士通过摄像头以及舌尖感官“看” | |||||
| 下面列出一些已有概念在神经网络中的别称: | 下面列出一些已有概念在神经网络中的别称: | ||||
| - $x_0$: 偏置单元(bias unit),$x_0$=1 | |||||
| - $x_0$: 偏置单元(bias unit),$x_0$=1 | |||||
| - $\Theta$: 权重(weight),即参数。 | - $\Theta$: 权重(weight),即参数。 | ||||
| - 激活函数: $g$,即逻辑函数等。 | |||||
| - 激活函数: $g$,即逻辑函数等。 | |||||
| - 输入层: 对应于训练集中的特征 $x$。 | - 输入层: 对应于训练集中的特征 $x$。 | ||||
| - 输出层: 对应于训练集中的结果 $y$。 | - 输出层: 对应于训练集中的结果 $y$。 | ||||
| @@ -86,8 +86,12 @@ $Size(\Theta^{(2)})=s_3 \times (s_2 + 1) = 1 \times 4$ | |||||
| 对输入层(Layer 1)的所有激活单元应用激活函数,从而得到隐藏层(Layer 2)中激活单元的值: | 对输入层(Layer 1)的所有激活单元应用激活函数,从而得到隐藏层(Layer 2)中激活单元的值: | ||||
| $\begin{align*} a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3) \newline a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3) \newline a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3) \newline \end{align*}$ | |||||
| $$ | |||||
| \begin{align*} a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)\\ | |||||
| a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)\\ | |||||
| a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3) | |||||
| \end{align*} | |||||
| $$ | |||||
| 对 Layer 2 中的所有激活单元应用激活函数,从而得到输出: | 对 Layer 2 中的所有激活单元应用激活函数,从而得到输出: | ||||
| $h_\Theta(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})$ | $h_\Theta(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})$ | ||||
| @@ -108,7 +112,7 @@ ${h_\theta}\left( x \right)=g\left( {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2 | |||||
| 定义 $a^{(1)}=x=\left[ \begin{matrix}x_0\\ x_1 \\ x_2 \\ x_3 \end{matrix} \right]$,$\Theta^{(1)}=\left[\begin{matrix}\Theta^{(1)}_{10}& \Theta^{(1)}_{11}& \Theta^{(1)}_{12}& \Theta^{(1)}_{13}\\ \Theta^{(1)}_{20}& \Theta^{(1)}_{21}& \Theta^{(1)}_{22}& \Theta^{(1)}_{23}\\ \Theta^{(1)}_{30}& \Theta^{(1)}_{31}& \Theta^{(1)}_{32} & \Theta^{(1)}_{33}\end{matrix}\right]$, | 定义 $a^{(1)}=x=\left[ \begin{matrix}x_0\\ x_1 \\ x_2 \\ x_3 \end{matrix} \right]$,$\Theta^{(1)}=\left[\begin{matrix}\Theta^{(1)}_{10}& \Theta^{(1)}_{11}& \Theta^{(1)}_{12}& \Theta^{(1)}_{13}\\ \Theta^{(1)}_{20}& \Theta^{(1)}_{21}& \Theta^{(1)}_{22}& \Theta^{(1)}_{23}\\ \Theta^{(1)}_{30}& \Theta^{(1)}_{31}& \Theta^{(1)}_{32} & \Theta^{(1)}_{33}\end{matrix}\right]$, | ||||
| $\begin{align*}a_1^{(2)} = g(z_1^{(2)}) \newline a_2^{(2)} = g(z_2^{(2)}) \newline a_3^{(2)} = g(z_3^{(2)}) \newline \end{align*}$,$z^{(2)}=\left[ \begin{matrix}z_1^{(2)}\\ z_1^{(2)} \\ z_1^{(2)}\end{matrix} \right]$ | |||||
| $\begin{align*}a_1^{(2)} = g(z_1^{(2)}) \\ a_2^{(2)} = g(z_2^{(2)}) \newline a_3^{(2)} = g(z_3^{(2)}) \newline \end{align*}$,$z^{(2)}=\left[ \begin{matrix}z_1^{(2)}\\ z_1^{(2)} \\ z_1^{(2)}\end{matrix} \right]$ | |||||
| 则有 $a^{(2)}= g(\Theta^{(1)}a^{(1)})=g(z^{(2)})$ | 则有 $a^{(2)}= g(\Theta^{(1)}a^{(1)})=g(z^{(2)})$ | ||||
| @@ -87,8 +87,6 @@ $J(\theta) = - \frac{1}{m} \sum_{i=1}^m [ y^{(i)}\ \log (h_\theta (x^{(i)})) + ( | |||||
| > $\delta^{(l)}$ 求导前的公式不同于视频内容,经核实为视频内容错误。推导请阅下节。 | > $\delta^{(l)}$ 求导前的公式不同于视频内容,经核实为视频内容错误。推导请阅下节。 | ||||
| | |||||
| 根据以上公式计算依次每一层的误差 $\delta^{(L)}, \delta^{(L-1)},\dots,\delta^{(2)}$。 | 根据以上公式计算依次每一层的误差 $\delta^{(L)}, \delta^{(L-1)},\dots,\delta^{(2)}$。 | ||||
| 3. 依次求解并累加误差 $\Delta^{(l)}_{i,j} := \Delta^{(l)}_{i,j} + a_j^{(l)} \delta_i^{(l+1)}$,向量化实现即 $\Delta^{(l)} := \Delta^{(l)} + \delta^{(l+1)}(a^{(l)})^T$ | 3. 依次求解并累加误差 $\Delta^{(l)}_{i,j} := \Delta^{(l)}_{i,j} + a_j^{(l)} \delta_i^{(l+1)}$,向量化实现即 $\Delta^{(l)} := \Delta^{(l)} + \delta^{(l+1)}(a^{(l)})^T$ | ||||
| @@ -284,7 +282,7 @@ end | |||||
| Octave/Matlab 代码: | Octave/Matlab 代码: | ||||
| 当然,初始权重的波动也不能太大,一般限定在极小值 $\epsilon$ 范围内,即 $\Theta^{(l)}_{i,j} \in [-\epsilon, \epsilon]$。 | |||||
| 当然,初始权重的波动也不能太大,一般限定在极小值 $\epsilon$ 范围内,即 $\Theta^{(l)}_{i,j} \in [-\epsilon, \epsilon]$。 | |||||
| ```octave | ```octave | ||||
| If the dimensions of Theta1 is 10x11, Theta2 is 10x11 and Theta3 is 1x11. | If the dimensions of Theta1 is 10x11, Theta2 is 10x11 and Theta3 is 1x11. | ||||