|
12345678910111213141516171819202122232425262728293031 |
- function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
- %GRADIENTDESCENT Performs gradient descent to learn theta
- % theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
- % taking num_iters gradient steps with learning rate alpha
-
- % Initialize some useful values
- m = length(y); % number of training examples
- J_history = zeros(num_iters, 1);
-
- for iter = 1:num_iters
-
- % ====================== YOUR CODE HERE ======================
- % Instructions: Perform a single gradient step on the parameter vector
- % theta.
- %
- % Hint: While debugging, it can be useful to print out the values
- % of the cost function (computeCost) and gradient here.
- %
- theta = theta - alpha / m * (X' * (X * theta - y));
- %X * theta 代表了hθ
- %X' (hθ-y)表示将每一个X中的元素(n * m)与(hθ-y)(m * 1)相乘,从而得到新的theta矩阵(n * 1)
-
-
- % ============================================================
-
- % Save the cost J in every iteration
- J_history(iter) = computeCost(X, y, theta);
-
- end
-
- end
|