You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

gradientDescent.m 1.1 kB

8 years ago
12345678910111213141516171819202122232425262728293031
  1. function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
  2. %GRADIENTDESCENT Performs gradient descent to learn theta
  3. % theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
  4. % taking num_iters gradient steps with learning rate alpha
  5. % Initialize some useful values
  6. m = length(y); % number of training examples
  7. J_history = zeros(num_iters, 1);
  8. for iter = 1:num_iters
  9. % ====================== YOUR CODE HERE ======================
  10. % Instructions: Perform a single gradient step on the parameter vector
  11. % theta.
  12. %
  13. % Hint: While debugging, it can be useful to print out the values
  14. % of the cost function (computeCost) and gradient here.
  15. %
  16. theta = theta - alpha / m * (X' * (X * theta - y));
  17. %X * theta 代表了hθ
  18. %X' (hθ-y)表示将每一个X中的元素(n * m)与(hθ-y)(m * 1)相乘,从而得到新的theta矩阵(n * 1)
  19. % ============================================================
  20. % Save the cost J in every iteration
  21. J_history(iter) = computeCost(X, y, theta);
  22. end
  23. end

机器学习

Contributors (1)