|
- #include "src/aarch64/matrix_mul/algos.h"
- #include "src/aarch64/matrix_mul/fp16/strategy.h"
- #include "src/aarch64/matrix_mul/fp32/strategy.h"
- #include "src/aarch64/matrix_mul/int16/strategy.h"
- #include "src/aarch64/matrix_mul/int4x4x16/strategy.h"
- #include "src/aarch64/matrix_mul/int8/strategy.h"
- #include "src/aarch64/matrix_mul/int8_dot/strategy.h"
- #include "src/aarch64/matrix_mul/int8x8x16/strategy.h"
- #include "src/aarch64/matrix_mul/quint8/strategy.h"
- #include "src/aarch64/matrix_mul/quint8_dot/gemv.h"
- #include "src/aarch64/matrix_mul/quint8_dot/strategy.h"
- #include "src/common/utils.h"
- #include "src/fallback/matrix_mul/gemm_impl.h"
-
- #include "midout.h"
-
- MIDOUT_DECL(megdnn_aarch64_matmul_kern)
-
- using namespace megdnn;
- using namespace aarch64;
-
- /* ===================== F32K8X12X1 algo ===================== */
- bool MatrixMulImpl::AlgoF32K8x12x1::usable(const KernSizeParam& kern_size_param) const {
- return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.B_type == kern_size_param.A_type &&
- kern_size_param.C_type == kern_size_param.A_type &&
- kern_size_param.A_type == dtype::Float32() &&
- kern_size_param.format == param::MatrixMul::Format::DEFAULT;
- }
-
- size_t MatrixMulImpl::AlgoF32K8x12x1::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoF32K8x12x1::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::sgemm_8x12 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<aarch64::matmul::sgemm_8x12>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32K8x12x1::get_kern(
- const KernSizeParam&) const {
- auto f32_kern_8x12 = [](const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoF32K8x12x1::get_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<float>(), Bptr = kern_param.B<float>();
- auto Cptr = kern_param.C<float>();
- aarch64::matmul::sgemm_8x12 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::sgemm_8x12>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- };
-
- return f32_kern_8x12;
- }
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoF32K8x12x1, megdnn_aarch64_matmul_kern, "AlgoF32K8x12x1Impl"_hash,
- aarch64::matmul::sgemm_8x12, float, float, AlgoDataType::FLOAT32, DEFAULT);
-
- /* ===================== F32_MK4_8X12X1 algo ===================== */
- bool MatrixMulImpl::AlgoF32MK4_8x12x1::usable(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.B_type == kern_size_param.A_type &&
- kern_size_param.C_type == kern_size_param.A_type &&
- kern_size_param.A_type == dtype::Float32() &&
- kern_size_param.format == param::MatrixMul::Format::MK4 &&
- !kern_size_param.trA && !kern_size_param.trB && kern_size_param.M % 4 == 0 &&
- kern_size_param.K % 4 == 0;
- }
-
- size_t MatrixMulImpl::AlgoF32MK4_8x12x1::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoF32MK4_8x12x1::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::sgemm_mk4_8x12 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<aarch64::matmul::sgemm_mk4_8x12>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MK4_8x12x1::get_kern(
- const KernSizeParam&) const {
- auto f32_kern_mk4_8x12 = [](const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoF32MK4_8x12x1::get_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<float>(), Bptr = kern_param.B<float>();
- auto Cptr = kern_param.C<float>();
- aarch64::matmul::sgemm_mk4_8x12 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::sgemm_mk4_8x12>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- };
- return f32_kern_mk4_8x12;
- }
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoF32MK4_8x12x1, megdnn_aarch64_matmul_kern, "AlgoF32MK4_8x12x1Impl"_hash,
- aarch64::matmul::sgemm_mk4_8x12, float, float, AlgoDataType::FLOAT32, MK4);
-
- /* ===================== F32K4X16X1 algo ===================== */
-
- bool MatrixMulImpl::AlgoF32K4x16x1::usable(const KernSizeParam& kern_size_param) const {
- return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.B_type == kern_size_param.A_type &&
- kern_size_param.C_type == kern_size_param.A_type &&
- kern_size_param.A_type == dtype::Float32() &&
- kern_size_param.format == param::MatrixMul::Format::DEFAULT;
- }
-
- size_t MatrixMulImpl::AlgoF32K4x16x1::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoF32K4x16x1::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::sgemm_4x16 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<aarch64::matmul::sgemm_4x16>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32K4x16x1::get_kern(
- const KernSizeParam&) const {
- auto f32_kern_4x16 = [](const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoF32K4x16x1::get_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<float>(), Bptr = kern_param.B<float>();
- auto Cptr = kern_param.C<float>();
-
- aarch64::matmul::sgemm_4x16 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::sgemm_4x16>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- };
- return f32_kern_4x16;
- }
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoF32K4x16x1, megdnn_aarch64_matmul_kern, "AlgoF32K4x16x1Impl"_hash,
- aarch64::matmul::sgemm_4x16, float, float, AlgoDataType::FLOAT32, MK4);
-
- /* ===================== F32MK4_4x16 algo ===================== */
-
- bool MatrixMulImpl::AlgoF32MK4_4x16::usable(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.C_type == dtype::Float32() &&
- kern_size_param.B_type == dtype::Float32() &&
- kern_size_param.A_type == dtype::Float32() &&
- kern_size_param.format == param::MatrixMul::Format::MK4 &&
- !kern_size_param.trA && !kern_size_param.trB;
- }
-
- size_t MatrixMulImpl::AlgoF32MK4_4x16::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoF32MK4_4x16::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::sgemm_nopack_4x16 strategy(A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<
- aarch64::matmul::sgemm_nopack_4x16, false>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MK4_4x16::get_kern(
- const KernSizeParam&) const {
- auto f32_kern_mk4_4x16 = [](const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoF32MK4_4x16::get_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<float>(), Bptr = kern_param.B<float>();
- auto Cptr = kern_param.C<float>();
-
- aarch64::matmul::sgemm_nopack_4x16 strategy(A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::sgemm_nopack_4x16, false>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- };
- return f32_kern_mk4_4x16;
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- /* ===================== F16 K8x24x1 algo ===================== */
- namespace {
- void f16_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(megdnn_aarch64_matmul_kern, midout_iv("f16_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_float16>(), Bptr = kern_param.B<dt_float16>();
- auto Cptr = kern_param.C<dt_float16>();
-
- aarch64::matmul::hgemm_8x24 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::hgemm_8x24>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoF16K8x24x1::usable(const KernSizeParam& kern_size_param) const {
- return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
- kern_size_param.C_type == kern_size_param.A_type &&
- kern_size_param.B_type == kern_size_param.A_type &&
- kern_size_param.A_type == dtype::Float16();
- }
-
- size_t MatrixMulImpl::AlgoF16K8x24x1::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoF16K8x24x1::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::hgemm_8x24 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<aarch64::matmul::hgemm_8x24>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoF16K8x24x1::get_kern(
- const KernSizeParam&) const {
- return f16_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoF16K8x24x1, megdnn_aarch64_matmul_kern, "AlogF16K8x24x1Impl"_hash,
- aarch64::matmul::hgemm_8x24, dt_float16, dt_float16, AlgoDataType::FLOAT16,
- DEFAULT);
- /* ===================== F16_MK8_8x8 algo ===================== */
-
- bool MatrixMulImpl::AlgoF16MK8_8x8::usable(const KernSizeParam& kern_size_param) const {
- return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.C_type == kern_size_param.A_type &&
- kern_size_param.B_type == kern_size_param.A_type &&
- kern_size_param.A_type == dtype::Float16() &&
- kern_size_param.format == param::MatrixMul::Format::MK8 &&
- !kern_size_param.trA && !kern_size_param.trB;
- }
-
- size_t MatrixMulImpl::AlgoF16MK8_8x8::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoF16MK8_8x8::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::gemm_nopack_f16_8x8 strategy(A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<
- aarch64::matmul::gemm_nopack_f16_8x8, false>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoF16MK8_8x8::get_kern(
- const KernSizeParam&) const {
- auto kern_mk8_8x8 = [](const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoF16MK8_8x8::get_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_float16>(),
- Bptr = kern_param.B<dt_float16>();
- auto Cptr = kern_param.C<dt_float16>();
-
- aarch64::matmul::gemm_nopack_f16_8x8 strategy(A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<
- aarch64::matmul::gemm_nopack_f16_8x8, false>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- };
- return kern_mk8_8x8;
- }
-
- /* ==================== F16_MK8_16x12x1 algo ====================*/
-
- bool MatrixMulImpl::AlgoF16MK8_16x12x1::usable(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.C_type == kern_size_param.A_type &&
- kern_size_param.B_type == kern_size_param.A_type &&
- kern_size_param.A_type == dtype::Float16() &&
- kern_size_param.format == param::MatrixMul::Format::MK8 &&
- !kern_size_param.trA && !kern_size_param.trB;
- }
-
- size_t MatrixMulImpl::AlgoF16MK8_16x12x1::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoF16MK8_16x12x1::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::hgemm_mk8_16x12 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<aarch64::matmul::hgemm_mk8_16x12>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoF16MK8_16x12x1::get_kern(
- const KernSizeParam&) const {
- auto kern_mk8_16x12x1 = [](const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoF16MK8_16x12x1::get_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_float16>(),
- Bptr = kern_param.B<dt_float16>();
- auto Cptr = kern_param.C<dt_float16>();
-
- aarch64::matmul::hgemm_mk8_16x12 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::hgemm_mk8_16x12>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- };
- return kern_mk8_16x12x1;
- }
-
- #endif
-
- #if MGB_ENABLE_DOT
- /* ==================== Int8x8x32 K8x12x4 Dotprod algo ==================== */
- namespace {
- void int8x8x32_k8x12x4_dotprod_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("int8x8x32_k8x12x4_dotprod_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
- auto Cptr = kern_param.C<dt_int32>();
-
- aarch64::matmul::gemm_s8_8x12 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_s8_8x12>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoInt8x8x32K8x12x4DotProd::usable(
- const KernSizeParam& kern_size_param) const {
- if (!cpuinfo_has_arm_neon_dot()) {
- return false;
- }
- return can_be_treated_as_int8x8x32(kern_size_param);
- }
-
- size_t MatrixMulImpl::AlgoInt8x8x32K8x12x4DotProd::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt8x8x32K8x12x4DotProd::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
-
- aarch64::matmul::gemm_s8_8x12 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_s8_8x12>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32K8x12x4DotProd::get_kern(
- const KernSizeParam&) const {
- return int8x8x32_k8x12x4_dotprod_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoInt8x8x32K8x12x4DotProd, megdnn_aarch64_matmul_kern,
- "AlgoInt8x8x32K8x12x4DotProdImpl"_hash, aarch64::matmul::gemm_s8_8x12, int8_t,
- int32_t, AlgoDataType::QINT8X8X32, DEFAULT);
-
- /* =================== Int8x8x32 MK4 8X12X4 Dotprod algo =================== */
- namespace {
- void int8x8x32_mk4_8x12x4_dotprod_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("int8x8x32_mk4_8x12x4_dotprod_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
- auto Cptr = kern_param.C<dt_int32>();
-
- aarch64::matmul::gemm_mk4_s8_8x12 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_mk4_s8_8x12>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoInt8x8x32MK4_8x12x4DotProd::usable(
- const KernSizeParam& kern_size_param) const {
- if (!cpuinfo_has_arm_neon_dot()) {
- return false;
- }
-
- return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
- (kern_size_param.A_type.enumv() == DTypeEnum::Int8 ||
- kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8) &&
- (kern_size_param.C_type.enumv() == DTypeEnum::Int32 ||
- kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32) &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.format == param::MatrixMul::Format::MK4_DOT &&
- !kern_size_param.trA && !kern_size_param.trB;
- }
-
- size_t MatrixMulImpl::AlgoInt8x8x32MK4_8x12x4DotProd::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt8x8x32MK4_8x12x4DotProd::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
-
- aarch64::matmul::gemm_mk4_s8_8x12 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_mk4_s8_8x12>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32MK4_8x12x4DotProd::get_kern(
- const KernSizeParam&) const {
- return int8x8x32_mk4_8x12x4_dotprod_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoInt8x8x32MK4_8x12x4DotProd, megdnn_aarch64_matmul_kern,
- "AlgoInt8x8x32MK4_8x12x4DotProdImpl"_hash, aarch64::matmul::gemm_mk4_s8_8x12,
- int8_t, int32_t, AlgoDataType::QINT8X8X32, MK4_DOT);
- #endif
-
- /* ===================== Int8x8x32 MK4 4x4x16 algo ===================== */
- namespace {
- void int8x8x32_mk4_4x4x16_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern, midout_iv("int8x8x32_mk4_4x4x16_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
- auto Cptr = kern_param.C<dt_int32>();
- aarch64::matmul::gemm_mk4_s8_4x4 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_mk4_s8_4x4>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoInt8x8x32MK4_4x4x16::usable(const KernSizeParam& param) const {
- return param.A_type.enumv() == param.B_type.enumv() &&
- (param.A_type.enumv() == DTypeEnum::Int8 ||
- param.A_type.enumv() == DTypeEnum::QuantizedS8) &&
- (param.C_type.enumv() == DTypeEnum::Int32 ||
- param.C_type.enumv() == DTypeEnum::QuantizedS32) &&
- param.compute_mode == Param::ComputeMode::DEFAULT &&
- param.format == param::MatrixMul::Format::MK4 && !param.trA && !param.trB &&
- param.M % 4 == 0 && param.K % 4 == 0;
- }
-
- bool MatrixMulImpl::AlgoInt8x8x32MK4_4x4x16::preferred(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.K > 16;
- }
-
- size_t MatrixMulImpl::AlgoInt8x8x32MK4_4x4x16::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt8x8x32MK4_4x4x16::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::gemm_mk4_s8_4x4 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_mk4_s8_4x4>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32MK4_4x4x16::get_kern(
- const KernSizeParam&) const {
- return int8x8x32_mk4_4x4x16_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoInt8x8x32MK4_4x4x16, megdnn_aarch64_matmul_kern,
- "AlgoInt8x8x32MK4_4x4x16Impl"_hash, aarch64::matmul::gemm_mk4_s8_4x4, int8_t,
- int32_t, AlgoDataType::QINT8X8X32, MK4);
-
- /* ===================== Int8x8x32 K4x4x16 algo ===================== */
- namespace {
- void int8x8x32_k4x4x16_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(megdnn_aarch64_matmul_kern, midout_iv("int8x8x32_k4x4x16_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
- auto Cptr = kern_param.C<dt_int32>();
-
- aarch64::matmul::gemm_s8_4x4 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_s8_4x4>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoInt8x8x32K4x4x16::usable(
- const KernSizeParam& kern_size_param) const {
- return can_be_treated_as_int8x8x32(kern_size_param);
- }
-
- bool MatrixMulImpl::AlgoInt8x8x32K4x4x16::preferred(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.K > 16;
- }
-
- size_t MatrixMulImpl::AlgoInt8x8x32K4x4x16::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt8x8x32K4x4x16::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::gemm_s8_4x4 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_s8_4x4>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32K4x4x16::get_kern(
- const KernSizeParam&) const {
- return int8x8x32_k4x4x16_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoInt8x8x32K4x4x16, megdnn_aarch64_matmul_kern,
- "AlgoInt8x8x32K4x4x16Impl"_hash, aarch64::matmul::gemm_s8_4x4, int8_t, int32_t,
- AlgoDataType::QINT8X8X32, DEFAULT);
- /* ===================== Int8x8x32 K8x8x8 algo ===================== */
- namespace {
- void int8x8x32_k8x8x8_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(megdnn_aarch64_matmul_kern, midout_iv("int8x8x32_k8x8x8_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
- auto Cptr = kern_param.C<dt_int32>();
-
- aarch64::matmul::gemm_s8_8x8 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_s8_8x8>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoInt8x8x32K8x8x8::usable(
- const KernSizeParam& kern_size_param) const {
- return can_be_treated_as_int8x8x32(kern_size_param);
- }
-
- bool MatrixMulImpl::AlgoInt8x8x32K8x8x8::preferred(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.K <= 16;
- }
-
- size_t MatrixMulImpl::AlgoInt8x8x32K8x8x8::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt8x8x32K8x8x8::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::gemm_s8_8x8 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<matmul::gemm_s8_8x8>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32K8x8x8::get_kern(
- const KernSizeParam&) const {
- return int8x8x32_k8x8x8_kern;
- }
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoInt8x8x32K8x8x8, megdnn_aarch64_matmul_kern, "AlgoInt8x8x32K8x8x8Impl"_hash,
- aarch64::matmul::gemm_s8_8x8, int8_t, int32_t, AlgoDataType::QINT8X8X32,
- DEFAULT);
-
- /* ===================== Int8x8x16 K8x8x8 algo ===================== */
- namespace {
- void int8x8x16_k8x8x8_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(megdnn_aarch64_matmul_kern, midout_iv("int8x8x16_k8x8x8_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
- auto Cptr = kern_param.C<dt_int16>();
-
- aarch64::matmul::gemm_s8x8x16_8x8 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_s8x8x16_8x8>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoInt8x8x16K8x8x8::usable(
- const KernSizeParam& kern_size_param) const {
- return can_be_treated_as_int8x8x16(kern_size_param) &&
- kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT;
- }
-
- bool MatrixMulImpl::AlgoInt8x8x16K8x8x8::preferred(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.K <= 16;
- }
-
- size_t MatrixMulImpl::AlgoInt8x8x16K8x8x8::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt8x8x16K8x8x8::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::gemm_s8x8x16_8x8 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<matmul::gemm_s8x8x16_8x8>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16K8x8x8::get_kern(
- const KernSizeParam&) const {
- return int8x8x16_k8x8x8_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoInt8x8x16K8x8x8, megdnn_aarch64_matmul_kern, "AlgoInt8x8x16K8x8x8Impl"_hash,
- aarch64::matmul::gemm_s8x8x16_8x8, int8_t, int16_t, AlgoDataType::INT8X8X16,
- DEFAULT);
- /* ===================== Int8x8x16 K4x4x16 algo ===================== */
- namespace {
- void int8x8x16_k4x4x16_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(megdnn_aarch64_matmul_kern, midout_iv("int8x8x16_k4x4x16_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
- auto Cptr = kern_param.C<dt_int16>();
-
- aarch64::matmul::gemm_s8x8x16_4x4 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_s8x8x16_4x4>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoInt8x8x16K4x4x16::usable(
- const KernSizeParam& kern_size_param) const {
- return can_be_treated_as_int8x8x16(kern_size_param) &&
- kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT;
- }
-
- bool MatrixMulImpl::AlgoInt8x8x16K4x4x16::preferred(
- const KernSizeParam& kern_size_param) const {
- MEGDNN_MARK_USED_VAR(kern_size_param);
- return true;
- }
-
- size_t MatrixMulImpl::AlgoInt8x8x16K4x4x16::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt8x8x16K4x4x16::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::gemm_s8x8x16_4x4 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<matmul::gemm_s8x8x16_4x4>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16K4x4x16::get_kern(
- const KernSizeParam&) const {
- return int8x8x16_k4x4x16_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoInt8x8x16K4x4x16, megdnn_aarch64_matmul_kern,
- "AlgoInt8x8x16K4x4x16Impl"_hash, aarch64::matmul::gemm_s8x8x16_4x4, int8_t,
- int16_t, AlgoDataType::INT8X8X16, DEFAULT);
-
- /* ===================== Int8x8x16 K16x12x4 algo ===================== */
- namespace {
- void int8x8x16_mk4_16x12x4_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern, midout_iv("int8x8x16_mk4_16x12x4_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
- auto Cptr = kern_param.C<dt_int16>();
-
- aarch64::matmul::gemm_s8x8x16_mk4_16x12_a53 strategy(
- M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_s8x8x16_mk4_16x12_a53>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoInt8x8x16MK4_16x12x4::usable(
- const KernSizeParam& kern_size_param) const {
- return can_be_treated_as_int8x8x16(kern_size_param) &&
- kern_size_param.format == param::MatrixMul::Format::MK4 &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- !kern_size_param.trA && !kern_size_param.trB && kern_size_param.M % 4 == 0 &&
- kern_size_param.K % 4 == 0;
- }
-
- bool MatrixMulImpl::AlgoInt8x8x16MK4_16x12x4::preferred(const KernSizeParam&) const {
- #if !MGB_ENABLE_CPUINFO
- return false;
- #else
- auto arch = cpuinfo_get_current_core()->uarch;
- #ifdef __IN_TEE_ENV__
- arch = cpuinfo_uarch_unknown;
- #endif
- bool little_core =
- arch == cpuinfo_uarch_cortex_a53 || arch == cpuinfo_uarch_cortex_a55;
- return little_core;
- #endif
- }
-
- size_t MatrixMulImpl::AlgoInt8x8x16MK4_16x12x4::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt8x8x16MK4_16x12x4::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::gemm_s8x8x16_mk4_16x12_a53 strategy(
- M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<matmul::gemm_s8x8x16_mk4_16x12_a53>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16MK4_16x12x4::get_kern(
- const KernSizeParam&) const {
- return int8x8x16_mk4_16x12x4_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(
- AlgoInt8x8x16MK4_16x12x4, megdnn_aarch64_matmul_kern,
- "AlgoInt8x8x16MK4_16x12x4Impl"_hash,
- aarch64::matmul::gemm_s8x8x16_mk4_16x12_a53, int8_t, int16_t, int16_t,
- AlgoDataType::INT8X8X16, MK4);
-
- /* ===================== Int8x8x16 MK4 4x4x8 algo ===================== */
- namespace {
- void int8x8x16_mk4_4x4x8_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern, midout_iv("int8x8x16_mk4_4x4x8_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
- auto Cptr = kern_param.C<dt_int16>();
-
- aarch64::matmul::gemm_s8x8x16_mk4_4x4_a72 strategy(
- M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_s8x8x16_mk4_4x4_a72>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoInt8x8x16MK4_4x4x8::usable(
- const KernSizeParam& kern_size_param) const {
- return can_be_treated_as_int8x8x16(kern_size_param) &&
- kern_size_param.format == param::MatrixMul::Format::MK4 &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- !kern_size_param.trA && !kern_size_param.trB && kern_size_param.M % 4 == 0 &&
- kern_size_param.K % 4 == 0;
- }
-
- bool MatrixMulImpl::AlgoInt8x8x16MK4_4x4x8::preferred(const KernSizeParam&) const {
- #if !MGB_ENABLE_CPUINFO
- return false;
- #else
- auto arch = cpuinfo_get_current_core()->uarch;
- #ifdef __IN_TEE_ENV__
- arch = cpuinfo_uarch_unknown;
- #endif
- bool little_core =
- arch == cpuinfo_uarch_cortex_a53 || arch == cpuinfo_uarch_cortex_a55;
- return !little_core;
- #endif
- }
-
- size_t MatrixMulImpl::AlgoInt8x8x16MK4_4x4x8::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt8x8x16MK4_4x4x8::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::gemm_s8x8x16_mk4_4x4_a72 strategy(
- M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<matmul::gemm_s8x8x16_mk4_4x4_a72>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16MK4_4x4x8::get_kern(
- const KernSizeParam&) const {
- return int8x8x16_mk4_4x4x8_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoInt8x8x16MK4_4x4x8, megdnn_aarch64_matmul_kern,
- "AlgoInt8x8x16MK4_4x4x8_Impl"_hash, aarch64::matmul::gemm_s8x8x16_mk4_4x4_a72,
- int8_t, int16_t, AlgoDataType::INT8X8X16, MK4);
-
- /* ===================== Int16x16x32 K12x8x1 algo ===================== */
- namespace {
- void int16x16x32_k12x8x1_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern, midout_iv("int16x16x32_k12x8x1_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int16>(), Bptr = kern_param.B<dt_int16>();
- auto Cptr = kern_param.C<dt_int32>();
-
- aarch64::matmul::gemm_s16_12x8x1 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_s16_12x8x1>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoInt16x16x32K12x8x1::usable(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
- kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
- kern_size_param.compute_mode == param::MatrixMul::ComputeMode::DEFAULT &&
- kern_size_param.A_type.enumv() == DTypeEnum::Int16 &&
- kern_size_param.C_type.enumv() == DTypeEnum::Int32;
- }
-
- bool MatrixMulImpl::AlgoInt16x16x32K12x8x1::preferred(
- const KernSizeParam& kern_size_param) const {
- MEGDNN_MARK_USED_VAR(kern_size_param);
- return true;
- }
-
- size_t MatrixMulImpl::AlgoInt16x16x32K12x8x1::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt16x16x32K12x8x1::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::gemm_s16_12x8x1 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<matmul::gemm_s16_12x8x1>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt16x16x32K12x8x1::get_kern(
- const KernSizeParam&) const {
- return int16x16x32_k12x8x1_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoInt16x16x32K12x8x1, megdnn_aarch64_matmul_kern,
- "AlgoInt16x16x32K12x8x1Impl"_hash, aarch64::matmul::gemm_s16_12x8x1, int16_t,
- int32_t, AlgoDataType::INT16X16X32, DEFAULT);
-
- /* ===================== Int16x16x32MK8_8x8 algo ===================== */
-
- bool MatrixMulImpl::AlgoInt16x16x32MK8_8x8::usable(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.C_type == dtype::Int32() &&
- kern_size_param.B_type == dtype::Int16() &&
- kern_size_param.A_type == dtype::Int16() &&
- kern_size_param.format == param::MatrixMul::Format::MK8 &&
- !kern_size_param.trA && !kern_size_param.trB;
- }
-
- size_t MatrixMulImpl::AlgoInt16x16x32MK8_8x8::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt16x16x32MK8_8x8::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::gemm_nopack_s16_8x8 strategy(A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<
- aarch64::matmul::gemm_nopack_s16_8x8, false>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt16x16x32MK8_8x8::get_kern(
- const KernSizeParam&) const {
- auto kern_mk8_8x8 = [](const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt16x16x32MK8_8x8::get_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int16>(), Bptr = kern_param.B<dt_int16>();
- auto Cptr = kern_param.C<dt_int32>();
-
- aarch64::matmul::gemm_nopack_s16_8x8 strategy(A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<
- aarch64::matmul::gemm_nopack_s16_8x8, false>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- };
- return kern_mk8_8x8;
- }
-
- #if MGB_ENABLE_DOT
- /* ==================== Quint8 K8x8x4 Dotprod algo ==================== */
- namespace {
- void quint8_k8x8x4_dotprod_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern, midout_iv("quint8_k8x8x4_dotprod_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_uint8>(), Bptr = kern_param.B<dt_uint8>();
- auto Cptr = kern_param.C<dt_int32>();
-
- aarch64::matmul::gemm_u8_8x8_dot strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_u8_8x8_dot>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoQuint8K8x8x4DotProd::usable(
- const KernSizeParam& kern_size_param) const {
- if (!cpuinfo_has_arm_neon_dot()) {
- return false;
- }
- return kern_size_param.A_type.enumv() == DTypeEnum::Quantized8Asymm &&
- kern_size_param.B_type.enumv() == DTypeEnum::Quantized8Asymm &&
- kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32 &&
- kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT;
- }
-
- size_t MatrixMulImpl::AlgoQuint8K8x8x4DotProd::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoQuint8K8x8x4DotProd::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
-
- aarch64::matmul::gemm_u8_8x8_dot strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_u8_8x8_dot>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoQuint8K8x8x4DotProd::get_kern(
- const KernSizeParam&) const {
- return quint8_k8x8x4_dotprod_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoQuint8K8x8x4DotProd, megdnn_aarch64_matmul_kern,
- "AlgoQuint8K8x8x4DotProdImpl"_hash, aarch64::matmul::gemm_u8_8x8_dot, uint8_t,
- int32_t, AlgoDataType::QUINT8X8X32, DEFAULT);
- /* ===================== Quint8 Gemv DotProd algo ===================== */
- namespace {
- void quint8_gemv_dotprod_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern, midout_iv("quint8_gemv_dotprod_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- const auto Aptr = kern_param.A<dt_uint8>(), Bptr = kern_param.B<dt_uint8>();
- auto Cptr = kern_param.C<dt_int32>();
- auto A_type = kern_param.A_type, B_type = kern_param.B_type;
-
- aarch64::matmul::gemv_like_quint8(
- Aptr, Bptr, Cptr, M, N, K, LDA, LDB, LDC,
- A_type.param<dtype::Quantized8Asymm>().zero_point,
- B_type.param<dtype::Quantized8Asymm>().zero_point);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoQuint8GemvDotProd::usable(
- const KernSizeParam& kern_size_param) const {
- if (!cpuinfo_has_arm_neon_dot()) {
- return false;
- }
- return kern_size_param.A_type.enumv() == DTypeEnum::Quantized8Asymm &&
- kern_size_param.B_type.enumv() == DTypeEnum::Quantized8Asymm &&
- kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32 &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
- !kern_size_param.trA && !kern_size_param.trB && kern_size_param.N == 1 &&
- kern_size_param.LDB == 1;
- }
-
- bool MatrixMulImpl::AlgoQuint8GemvDotProd::preferred(
- const KernSizeParam& kern_size_param) const {
- auto N = kern_size_param.N, LDB = kern_size_param.LDB;
- return (N == 1 && LDB == 1);
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoQuint8GemvDotProd::get_kern(
- const KernSizeParam&) const {
- return quint8_gemv_dotprod_kern;
- }
- #endif
-
- /* ===================== Quint8 K8x8x8 algo ===================== */
- namespace {
- void quint8_k8x8x8_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern, midout_iv("quint8_gemv_dotprod_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_uint8>(), Bptr = kern_param.B<dt_uint8>();
- auto Cptr = kern_param.C<dt_int32>();
-
- aarch64::matmul::gemm_u8_8x8 strategy(M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_u8_8x8>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoQuint8K8x8x8::usable(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.A_type.enumv() == DTypeEnum::Quantized8Asymm &&
- kern_size_param.B_type.enumv() == DTypeEnum::Quantized8Asymm &&
- kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32 &&
- kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT;
- }
-
- size_t MatrixMulImpl::AlgoQuint8K8x8x8::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoQuint8K8x8x8::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
-
- aarch64::matmul::gemm_u8_8x8 strategy(M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_u8_8x8>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoQuint8K8x8x8::get_kern(
- const KernSizeParam&) const {
- return quint8_k8x8x8_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoQuint8K8x8x8, megdnn_aarch64_matmul_kern, "AlgoQuint8K8x8x8Impl"_hash,
- aarch64::matmul::gemm_u8_8x8, uint8_t, int32_t, AlgoDataType::QUINT8X8X32,
- DEFAULT);
-
- /* ===================== Int8x8x16 K8x8x8 algo ===================== */
- namespace {
- void int8x8x16_mk4_8x8x8_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern, midout_iv("int8x8x16_mk4_8x8x8_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
- auto Cptr = kern_param.C<dt_int16>();
-
- aarch64::matmul::gemm_s8x8x16_mk4_8x8x8 strategy(
- M, N, K, A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_s8x8x16_mk4_8x8x8>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoInt8x8x16MK4_K8x8x8::usable(
- const KernSizeParam& kern_size_param) const {
- return can_be_treated_as_int8x8x16(kern_size_param) &&
- kern_size_param.format == param::MatrixMul::Format::MK4 &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- !kern_size_param.trA && !kern_size_param.trB && kern_size_param.M % 4 == 0 &&
- kern_size_param.K % 4 == 0;
- }
-
- bool MatrixMulImpl::AlgoInt8x8x16MK4_K8x8x8::preferred(const KernSizeParam&) const {
- return true;
- }
-
- size_t MatrixMulImpl::AlgoInt8x8x16MK4_K8x8x8::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt8x8x16_MK4_8x8x8::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::gemm_s8x8x16_mk4_8x8x8 strategy(
- M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<matmul::gemm_s8x8x16_mk4_8x8x8>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- return 0;
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16MK4_K8x8x8::get_kern(
- const KernSizeParam&) const {
- return int8x8x16_mk4_8x8x8_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoInt8x8x16MK4_K8x8x8, megdnn_aarch64_matmul_kern,
- "AlgoInt8x8x16MK4_K8x8x8Impl"_hash, aarch64::matmul::gemm_s8x8x16_mk4_8x8x8,
- int8_t, int16_t, AlgoDataType::INT8X8X16, MK4);
- /* ===================== Int4x4x16 K8x8x8 algo ===================== */
- namespace {
- void int4x4x16_k8x8x16_kern(const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(megdnn_aarch64_matmul_kern, midout_iv("int4x4x16_k8x8x8_kern"_hash)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int8>(), Bptr = kern_param.B<dt_int8>();
- auto Cptr = kern_param.C<dt_int16>();
-
- aarch64::matmul::gemm_s4x4x16_s4_8x8x8 strategy(
- M, N, K, A_type, B_type, C_type);
-
- megdnn::matmul::GemmInterleaved<aarch64::matmul::gemm_s4x4x16_s4_8x8x8>(
- M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoInt4x4x16K8x8x8::usable(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
- kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS4 &&
- kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS16 &&
- kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- (kern_size_param.K & 1) == 0 && (kern_size_param.N & 1) == 0;
- }
-
- bool MatrixMulImpl::AlgoInt4x4x16K8x8x8::preferred(
- const KernSizeParam& kern_size_param) const {
- MEGDNN_MARK_USED_VAR(kern_size_param);
- return true;
- }
-
- size_t MatrixMulImpl::AlgoInt4x4x16K8x8x8::get_workspace(
- const KernSizeParam& kern_size_param) const {
- MIDOUT_BEGIN(
- megdnn_aarch64_matmul_kern,
- midout_iv("AlgoInt4x4x16K8x8x8::get_workspace"_hash)) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- aarch64::matmul::gemm_s4x4x16_s4_8x8x8 strategy(
- M, N, K, A_type, B_type, C_type);
- return megdnn::matmul::GemmInterleaved<matmul::gemm_s4x4x16_s4_8x8x8>(
- M, N, K, trA, trB, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt4x4x16K8x8x8::get_kern(
- const KernSizeParam&) const {
- return int4x4x16_k8x8x16_kern;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(
- AlgoInt4x4x16K8x8x8, megdnn_aarch64_matmul_kern, "AlgoInt4x4x16K8x8x8Impl"_hash,
- aarch64::matmul::gemm_s4x4x16_s4_8x8x8, int8_t, int16_t,
- AlgoDataType::INT4X4X16, DEFAULT);
- // vim: syntax=cpp.doxygen
|