|
- #include "src/cuda/conv_bias/helper.h"
-
- #include "src/cuda/utils.h"
-
- namespace megdnn {
- namespace cuda {
-
- ConvBiasDesc::ConvBiasDesc() {
- cudnn_check(cudnnCreateActivationDescriptor(&act_desc));
- cudnn_check(cudnnCreateConvolutionDescriptor(&conv_desc));
- #if CUDNN_VERSION >= 7000
- cudnn_check(cudnnSetConvolutionMathType(conv_desc, CUDNN_TENSOR_OP_MATH));
- #endif
- }
-
- ConvBiasDesc::~ConvBiasDesc() {
- cudnn_check(cudnnDestroyConvolutionDescriptor(conv_desc));
- cudnn_check(cudnnDestroyActivationDescriptor(act_desc));
- }
-
- void ConvBiasDesc::set_conv_bias(
- DType data_type, const param::ConvBias& param, size_t nr_group) {
- #if CUDNN_VERSION < 7100
- megdnn_throw("ConvBias(CUDNN_ACTIVATION_IDENTITY) require cudnn 7.1 or higher");
- #else
- cudnnConvolutionMode_t mode;
- using Param = param::ConvBias;
- switch (param.mode) {
- case Param::Mode::CROSS_CORRELATION:
- mode = CUDNN_CROSS_CORRELATION;
- break;
- case Param::Mode::CONVOLUTION:
- mode = CUDNN_CONVOLUTION;
- break;
- default:
- megdnn_throw("conv mode must be conv or xcorr.");
- }
- cudnn_check(cudnnSetConvolutionGroupCount(conv_desc, nr_group));
- cudnnDataType_t compute_type;
- switch (data_type.category()) {
- case DTypeCategory::FLOAT:
- compute_type = CUDNN_DATA_FLOAT;
- break;
- case DTypeCategory::INT:
- case DTypeCategory::QUANTIZED:
- compute_type = CUDNN_DATA_INT32;
- break;
- default:
- megdnn_throw("unspport data type for conv bias");
- }
- if (data_type.enumv() == DTypeEnum::Float16) {
- auto comp_mode = param.compute_mode;
- compute_type = get_compute_type_fp16(comp_mode);
- }
- cudnn_check(cudnnSetConvolution2dDescriptor(
- conv_desc, param.pad_h, param.pad_w, param.stride_h, param.stride_w,
- param.dilate_h, param.dilate_w, mode, compute_type));
-
- switch (param.nonlineMode) {
- case Param::NonlineMode::IDENTITY:
- case Param::NonlineMode::SIGMOID:
- case Param::NonlineMode::H_SWISH:
- cudnn_check(cudnnSetActivationDescriptor(
- act_desc, CUDNN_ACTIVATION_IDENTITY, CUDNN_NOT_PROPAGATE_NAN, 0));
- break;
- case Param::NonlineMode::RELU:
- cudnn_check(cudnnSetActivationDescriptor(
- act_desc, CUDNN_ACTIVATION_RELU, CUDNN_NOT_PROPAGATE_NAN, 0));
- break;
- default:
- megdnn_throw("unsupported non linear mode");
- }
- #endif
- }
-
- void ConvBiasDesc::set_conv(
- DType data_type, const param::ConvBias& param, const size_t nr_group) {
- using Param = param::ConvBias;
- cudnnConvolutionMode_t mode;
- switch (param.mode) {
- case Param::Mode::CROSS_CORRELATION:
- mode = CUDNN_CROSS_CORRELATION;
- break;
- case Param::Mode::CONVOLUTION:
- mode = CUDNN_CONVOLUTION;
- break;
- default:
- megdnn_throw("conv mode must be conv or xcorr.");
- }
- cudnnDataType_t compute_type;
- MEGDNN_MARK_USED_VAR(compute_type);
- if (data_type.enumv() == DTypeEnum::Float32) {
- // FLOAT_CONFIG
- compute_type = CUDNN_DATA_FLOAT;
- } else if (data_type.enumv() == DTypeEnum::Float16) {
- auto comp_mode = param.compute_mode;
- compute_type = get_compute_type_fp16(comp_mode);
- #if CUDNN_MAJOR >= 7
- } else if (
- data_type.category() == DTypeCategory::INT ||
- data_type.category() == DTypeCategory::QUANTIZED) {
- compute_type = CUDNN_DATA_INT32;
- #endif
- } else {
- megdnn_throw("unspport data type for conv bias");
- }
- #if CUDNN_MAJOR >= 7
- cudnn_check(cudnnSetConvolutionGroupCount(conv_desc, nr_group));
- #else
- megdnn_assert(nr_group == 1);
- #endif
-
- #if CUDNN_MAJOR >= 6
- cudnn_check(cudnnSetConvolution2dDescriptor(
- conv_desc, param.pad_h, param.pad_w, param.stride_h, param.stride_w,
- param.dilate_h, param.dilate_w, mode, compute_type));
- #else
- cudnn_check(cudnnSetConvolution2dDescriptor(
- conv_desc, param.pad_h, param.pad_w, param.stride_h, param.stride_w,
- param.dilate_h, param.dilate_w, mode));
- #endif
- }
-
- namespace conv_bias {
-
- bool is_cudnn_supported(const BiasForwardSizeArgs& args) {
- if (args.src_layout->dtype.enumv() == DTypeEnum::QuantizedS1)
- return false;
-
- if ((args.src_layout->dtype.enumv() == DTypeEnum::QuantizedS4 ||
- args.src_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) &&
- args.filter_layout->dtype.enumv() == DTypeEnum::QuantizedS4)
- return false;
-
- if (args.src_layout->dtype == args.filter_layout->dtype &&
- args.src_layout->dtype == dtype::BFloat16()) {
- return false;
- }
-
- // CUDNN_STATUS_EXECUTION_FAILED on Tegra K1, so disable CUDNN
- // on Tegra K1.
- if (args.handle->is_tegra_k1())
- return false;
-
- if (args.filter_meta.format == param::Convolution::Format::NCHW4 ||
- args.filter_meta.format == param::Convolution::Format::NCHW32) {
- if (args.dst_layout->dtype.enumv() != DTypeEnum::Int8 &&
- args.dst_layout->dtype.enumv() != DTypeEnum::QuantizedS8) {
- return false;
- }
- } else if (
- args.filter_meta.format != param::Convolution::Format::NCHW &&
- args.filter_meta.format != param::Convolution::Format::NHWC) {
- return false;
- }
- auto& fm = args.filter_meta;
- bool supported = true;
- supported &= (fm.spatial_ndim == 2);
- #if CUDNN_VERSION < 7000
- supported &= (fm.group == 1);
- #endif
- #if CUDNN_VERSION < 7500
- supported &= (fm.dilation[0] == 1 && fm.dilation[1] == 1);
- #endif
- return supported;
- }
-
- SmallVector<size_t> matmul_get_workspace_bundle(const BiasForwardSizeArgs& args) {
- auto dtype = args.src_layout->dtype;
- auto&& fm = args.filter_meta;
- megdnn_assert(fm.group == 1);
- auto N = args.src_layout->shape[0];
- auto OC = fm.ocpg, IC = fm.icpg, FH = fm.spatial[0], FW = fm.spatial[1];
- auto OH = args.dst_layout->shape[2], OW = args.dst_layout->shape[3];
- SmallVector<size_t> sizes{
- dtype.size() * args.dst_layout->total_nr_elems(),
- dtype.size() * IC * FH * FW * OH * OW * N};
- if (args.filter_meta.should_flip) {
- sizes.push_back(dtype.size() * OC * IC * FH * FW);
- }
- return sizes;
- }
-
- void flip_filter(
- const BiasForwardSizeArgs& args, const Workspace& workspace, RefPtr& ref_ptr) {
- auto&& fm = args.filter_meta;
- megdnn_assert(fm.group == 1 && fm.spatial_ndim == 2);
- auto OC = fm.ocpg, IC = fm.icpg, FH = fm.spatial[0], FW = fm.spatial[1];
- auto dtype = fm.dtype;
- megdnn_assert(workspace.size >= dtype.size() * OC * IC * FH * FW);
-
- TensorND src{{{OC, IC, FH, FW}, dtype}, ref_ptr},
- dst{workspace.raw_ptr + (FH * FW - 1) * dtype.size(), src.layout};
- dst.layout.stride[2] = -dst.layout.stride[2];
- dst.layout.stride[3] = -dst.layout.stride[3];
- args.handle->relayout_opr()->exec(src, dst);
- ref_ptr.reset(workspace.raw_ptr);
- }
-
- std::pair<float, float> cudnn_get_conv_bias_act_scale_param(
- const TensorLayout& x, const TensorLayout& y, const TensorLayout& w,
- const TensorLayout& b, const TensorLayout& z) {
- float alpha = 1.f, beta = 0.f;
- if (z.ndim > 0)
- beta = 1.f;
-
- auto get_scale = [](const DType& dtype) -> float {
- megdnn_assert(dtype.category() == DTypeCategory::QUANTIZED);
- switch (dtype.enumv()) {
- #define cb(_dt) \
- case DTypeTrait<_dt>::enumv: \
- return dtype.param<_dt>().scale;
- MEGDNN_FOREACH_QUANTIZED_DTYPE(cb)
- #undef cb
- default:
- megdnn_assert_internal(0);
- }
- };
-
- auto x_dtype = x.dtype, y_dtype = y.dtype, w_dtype = w.dtype;
- megdnn_assert(
- (x_dtype.category() == y_dtype.category()) ||
- (x_dtype.enumv() == DTypeEnum::QuantizedS8 &&
- y_dtype.enumv() == DTypeEnum::Float32));
- megdnn_assert(x_dtype.category() == w_dtype.category());
-
- if (x_dtype.category() == DTypeCategory::QUANTIZED) {
- auto expected_bias_scale = get_scale(x_dtype) * get_scale(w_dtype);
- alpha = expected_bias_scale;
- if (y_dtype.category() == DTypeCategory::QUANTIZED)
- alpha /= get_scale(y_dtype);
- if (z.ndim > 0 && z.dtype.category() == DTypeCategory::QUANTIZED) {
- beta = get_scale(z.dtype) / get_scale(y_dtype);
- }
- if (b.dtype.category() == DTypeCategory::QUANTIZED) {
- megdnn_assert(fabs(expected_bias_scale - get_scale(b.dtype)) < 1e-4);
- }
- }
- return {alpha, beta};
- }
-
- void cudnn_reorder_filer_and_bias_nchw32(
- const cudnnHandle_t& handle, const void* filter_ptr,
- const CanonizedFilterMeta& fm, const void* bias_ptr, void* reordered_filter_ptr,
- void* reordered_bias_ptr) {
- FilterDesc<param::ConvBias> filter_desc;
- filter_desc.set(fm);
- int reorder_bias = bias_ptr != nullptr;
- cudnn_check(cudnnReorderFilterAndBias(
- handle, filter_desc.desc, CUDNN_DEFAULT_REORDER, filter_ptr,
- reordered_filter_ptr, reorder_bias, bias_ptr, reordered_bias_ptr));
- }
- } // namespace conv_bias
- } // namespace cuda
- } // namespace megdnn
-
- // vim: syntax=cpp.doxygen
|