|
- #include "./helper.h"
- #include "megbrain/imperative/backward_graph_opt.h"
- #include "megbrain/imperative/ops/autogen.h"
- #include "megbrain/imperative/ops/opr_attr.h"
- #include "megbrain/opr/basic_arith.h"
- #include "megbrain/opr/dnn/batch_norm.h"
-
- using namespace mgb;
- using namespace cg;
- using namespace imperative;
-
- template <typename T>
- T prepare_backward_graph_inputs(
- const EncodedSubgraph& bg, const T& inputs, const T& outputs, const T& grads) {
- T ret;
- size_t i = 0;
- for (auto&& t : inputs) {
- if (bg.input_mask[i++]) {
- ret.push_back(t);
- }
- }
- for (auto&& t : outputs) {
- if (bg.input_mask[i++]) {
- ret.push_back(t);
- }
- }
- for (auto&& t : grads) {
- if (bg.input_mask[i++]) {
- ret.push_back(t);
- }
- }
- return ret;
- }
-
- template <typename T, typename U>
- T expand_grads(const U& mask, const T& outputs) {
- T ret(mask.size());
- for (size_t i = 0, j = 0; i < mask.size(); ++i) {
- if (mask[i]) {
- ret[i] = outputs[j++];
- }
- }
- return ret;
- }
-
- template <typename T>
- T prepare_optimized_backward_inputs(
- const OptimizedBackwardGraphResult& bg, const T& precomp, const T& inputs,
- const T& outputs, const T& grads) {
- T ret = precomp;
- size_t i = 0;
- for (auto&& t : inputs) {
- if (bg.save_for_backward[i++]) {
- ret.push_back(t);
- }
- }
- for (auto&& t : outputs) {
- if (bg.save_for_backward[i++]) {
- ret.push_back(t);
- }
- }
- for (auto&& t : grads) {
- if (bg.save_for_backward[i++]) {
- ret.push_back(t);
- }
- }
- return ret;
- }
-
- SmallVector<TensorPtr> apply_shared_on_physical_tensor(
- std::shared_ptr<OpDef> def, SmallVector<TensorPtr> inputs, size_t nr_outputs) {
- SmallVector<LogicalTensorDesc> input_descs;
- for (auto&& i : inputs) {
- input_descs.push_back({i->layout(), i->comp_node()});
- }
- auto [output_descs, validated] =
- OpDef::infer_output_attrs_fallible(*def, input_descs);
- return OpDef::apply_on_physical_tensor(*def, inputs, output_descs, validated);
- }
-
- TEST(TestImperative, BackwardGraphBasic) {
- HostTensorGenerator<> gen;
- SmallVector<HostTensorND> hvs;
- SmallVector<TensorPtr> inputs;
- for (size_t i = 0; i < 2; ++i) {
- hvs.push_back(*gen({42}));
- inputs.push_back(Tensor::make(hvs.back()));
- }
-
- using Param = opr::Elemwise::Param;
- Param param{Param::Mode::MUL};
- auto attr = OprAttr::make("Elemwise");
- attr->cast_final_safe<OprAttr>().param.write_pod(param);
-
- SmallVector<LogicalTensorDesc> input_descs;
- for (auto&& i : inputs) {
- input_descs.push_back({i->layout(), i->comp_node()});
- }
- auto result = OpDef::make_backward_graph(*attr, input_descs, {true, true}, {true});
- auto&& save_for_backward = result.input_mask;
- auto&& input_has_grad = result.output_mask;
-
- for (size_t i = 0; i < inputs.size(); i++) {
- input_descs[i].value = inputs[i]->dev_tensor();
- }
- auto [output_descs, validated] =
- OpDef::infer_output_attrs_fallible(*attr, input_descs);
- auto outputs =
- OpDef::apply_on_physical_tensor(*attr, inputs, output_descs, validated);
- inputs.push_back(outputs[0]);
- hvs.push_back(*gen({42}));
- inputs.push_back(Tensor::make(hvs.back()));
- mgb_assert(save_for_backward.size() == inputs.size());
- for (size_t i = 0; i < inputs.size(); ++i) {
- if (!save_for_backward[i]) {
- inputs[i].reset(); // drop unused tensor
- }
- }
- SmallVector<TensorPtr> backward_graph_inputs;
- for (auto&& i : inputs) {
- if (i) {
- backward_graph_inputs.push_back(i);
- }
- }
- inputs.clear();
- auto input_grads = result.graph.apply<TensorPtr>(
- backward_graph_inputs, apply_shared_on_physical_tensor,
- [&](auto&& x) { return x; });
- mgb_assert(input_grads.size() == input_has_grad.size());
- for (size_t i = 0; i < input_has_grad.size(); ++i) {
- mgb_assert(input_has_grad[i] == static_cast<bool>(input_grads[i]));
- }
-
- SmallVector<HostTensorND> res;
- for (auto&& i : input_grads) {
- res.emplace_back();
- res.back().copy_from(i->dev_tensor()).sync();
- }
- for (size_t i = 0; i < 42; ++i) {
- for (size_t j = 0; j < 1; ++j) {
- ASSERT_EQ(
- hvs[2].ptr<float>()[i] * hvs[j].ptr<float>()[i],
- res[j ^ 1].ptr<float>()[i]);
- }
- }
- }
-
- TEST(TestImperative, ProfileBackward) {
- auto cn = CompNode::load("xpux");
- using Policy = megdnn::param::ExecutionPolicy;
- using S = Policy::Strategy;
- Policy policy;
- policy.strategy = S::PROFILE;
- {
- megdnn::param::Convolution param;
- auto op = std::shared_ptr<OpDef>(Convolution::make(param, policy));
- LogicalTensorDesc inp_desc = {
- TensorLayout({16, 3, 16, 16}, dtype::Float32()), cn};
- LogicalTensorDesc weight_desc = {
- TensorLayout({16, 3, 5, 5}, dtype::Float32()), cn};
- auto bg = OpDef::make_backward_graph(
- *op, {inp_desc, weight_desc}, {true, false}, {true});
- auto&& bop = (bg.graph.exprs.at(0)).op;
- auto&& attr = bop->cast_final_safe<OprAttr>();
- // attr.type = ConvolutionBackwardDataV2
- mgb_assert(attr.policy.strategy == S::PROFILE);
- }
- {
- megdnn::param::Pooling param;
- auto op = std::shared_ptr<OpDef>(Pooling::make(param, policy));
- LogicalTensorDesc inp_desc = {
- TensorLayout({16, 3, 16, 16}, dtype::Float32()), cn};
- auto bg = OpDef::make_backward_graph(*op, {inp_desc}, {true}, {true});
- auto&& bop = (bg.graph.exprs.at(0)).op;
- auto&& attr = bop->cast_final_safe<OprAttr>();
- // attr.type = PoolingBackwardV1
- mgb_assert(attr.policy.strategy == S::PROFILE);
- }
- {
- megdnn::param::MatrixMul param;
- auto op = std::shared_ptr<OpDef>(MatrixMul::make(param, policy, 2, 2));
- LogicalTensorDesc inp1_desc = {TensorLayout({12, 16}, dtype::Float32()), cn};
- LogicalTensorDesc inp2_desc = {TensorLayout({16, 20}, dtype::Float32()), cn};
- auto bg = OpDef::make_backward_graph(
- *op, {inp1_desc, inp2_desc}, {true, false}, {true});
- auto&& bop = (bg.graph.exprs.at(0)).op;
- auto&& attr = bop->cast_final_safe<OprAttr>();
- // attr.type = MatrixMulV2
- mgb_assert(attr.policy.strategy == S::PROFILE);
- }
- }
-
- TEST(TestImperative, BackwardGraphIdentity) {
- HostTensorGenerator<> gen;
- auto host_a = gen({42}), host_dc = gen({42});
- auto a = Tensor::make(*host_a), dc = Tensor::make(*host_dc);
- SmallVector<TensorPtr> inputs;
- inputs.push_back(a);
-
- auto attr = OprAttr::make("Identity");
- attr->cast_final_safe<OprAttr>().param.write_pod<megdnn::param::Empty>({});
-
- SmallVector<LogicalTensorDesc> input_descs;
- input_descs.push_back({a->layout(), a->comp_node()});
- auto result = OpDef::make_backward_graph(*attr, input_descs, {true}, {true});
- auto&& save_for_backward = result.input_mask;
- auto&& input_has_grad = result.output_mask;
-
- auto [output_descs, validated] =
- OpDef::infer_output_attrs_fallible(*attr, input_descs);
- auto outputs =
- OpDef::apply_on_physical_tensor(*attr, inputs, output_descs, validated);
- inputs.push_back(outputs[0]);
- inputs.push_back(dc);
- mgb_assert(save_for_backward.size() == inputs.size());
- for (size_t i = 0; i < inputs.size(); ++i) {
- if (!save_for_backward[i]) {
- inputs[i].reset(); // drop unused tensor
- }
- }
- SmallVector<TensorPtr> backward_graph_inputs;
- for (auto&& i : inputs) {
- if (i) {
- backward_graph_inputs.push_back(i);
- }
- }
- inputs.clear();
- auto input_grads = result.graph.apply<TensorPtr>(
- backward_graph_inputs, apply_shared_on_physical_tensor,
- [&](auto&& x) { return x; });
- mgb_assert(input_grads.size() == input_has_grad.size());
- for (size_t i = 0; i < input_has_grad.size(); ++i) {
- mgb_assert(input_has_grad[i] == static_cast<bool>(input_grads[i]));
- }
-
- HostTensorND hv;
- hv.copy_from(input_grads[0]->dev_tensor()).sync();
- for (size_t i = 0; i < 42; ++i) {
- ASSERT_EQ(host_dc->ptr<float>()[i], hv.ptr<float>()[i]);
- }
- }
-
- TEST(TestImperative, BatchNormGrad) {
- auto cn = CompNode::load("xpux");
- using Param = opr::BatchNorm::Param;
- size_t N = 2, C = 3, H = 5, W = 5;
- LogicalTensorDesc inp{TensorLayout{{N, C, H, W}, dtype::Float32()}, cn};
- LogicalTensorDesc stat{TensorLayout{{C}, dtype::Float32()}, cn};
- {
- auto op = OprAttr::make("BatchNormV1");
- auto&& attr = op->cast_final_safe<OprAttr>();
- Param param;
- param.fwd_mode = Param::FwdMode::TRAINING;
- attr.param.write_pod(param);
- OpDef::make_backward_graph(
- attr, {inp, stat, stat, stat, stat}, {true, true, true, false, false},
- {false, false, false, false, false, true});
- }
- {
- auto op = OprAttr::make("BatchNormV1");
- auto&& attr = op->cast_final_safe<OprAttr>();
- Param param;
- param.fwd_mode = Param::FwdMode::TRAINING;
- attr.param.write_pod(param);
- OpDef::make_backward_graph(
- attr, {inp, stat, stat}, {true, true, true},
- {false, false, false, true});
- }
- }
-
- TEST(TestImperative, OptimizedBackwardGraphBasic) {
- auto cn = CompNode::load("xpux");
- LogicalTensorDesc desc = {TensorLayout(dtype::Float32()), cn};
- HostTensorGenerator<> gen;
- auto op = std::shared_ptr<OpDef>(Elemwise::make(Elemwise::Mode::ADD));
- auto bg = OpDef::make_backward_graph(*op, {desc, desc}, {true, true}, {true});
- auto obg = OptimizedBackwardGraphResult(bg);
- ASSERT_EQ(obg.save_for_backward.size(), 4);
- ASSERT_FALSE(obg.save_for_backward[0]);
- ASSERT_FALSE(obg.save_for_backward[1]);
- ASSERT_FALSE(obg.save_for_backward[2]);
-
- auto a_hv = gen({42});
- auto b_hv = gen({5, 42});
- auto dc_hv = gen({5, 42});
- auto a_tn = Tensor::make(*a_hv);
- auto b_tn = Tensor::make(*b_hv);
- auto dc_tn = Tensor::make(*dc_hv);
- SmallVector<LogicalTensorDesc> input_descs;
- input_descs.push_back({a_tn->layout(), a_tn->comp_node(), a_tn->dev_tensor()});
- input_descs.push_back({b_tn->layout(), b_tn->comp_node(), b_tn->dev_tensor()});
- auto [output_descs, validated] =
- OpDef::infer_output_attrs_fallible(*op, input_descs);
- auto c_tn = OpDef::apply_on_physical_tensor(
- *op, {a_tn, b_tn}, output_descs, validated)[0];
-
- auto backward_graph_inputs = prepare_backward_graph_inputs<SmallVector<TensorPtr>>(
- bg, {a_tn, b_tn}, {c_tn}, {dc_tn});
- auto grads = expand_grads(
- bg.output_mask,
- bg.graph.apply<TensorPtr>(
- backward_graph_inputs, apply_shared_on_physical_tensor,
- [&](auto&& x) { return x; }));
-
- auto precomp = obg.precomp.apply<TensorPtr>(
- SmallVector<TensorPtr>{a_tn, b_tn, c_tn}, apply_shared_on_physical_tensor,
- [&](auto&& x) { return x; });
- ASSERT_EQ(precomp.size(), 2);
- ASSERT_EQ(precomp[0]->shape().ndim, 1);
- ASSERT_LE(precomp[0]->shape()[0], 2);
- ASSERT_EQ(precomp[1]->shape().ndim, 1);
- ASSERT_LE(precomp[1]->shape()[0], 2);
-
- auto backward_inputs = prepare_optimized_backward_inputs<SmallVector<TensorPtr>>(
- obg, precomp, {a_tn, b_tn}, {c_tn}, {dc_tn});
- auto grads2 = expand_grads(
- obg.input_has_grad,
- obg.backward.apply<TensorPtr>(
- backward_inputs, apply_shared_on_physical_tensor,
- [&](auto&& x) { return x; }));
-
- ASSERT_EQ(grads2.size(), 2);
- MGB_ASSERT_TENSOR_EQ(grads[0]->get_value(), grads2[0]->get_value());
- MGB_ASSERT_TENSOR_EQ(grads[1]->get_value(), grads2[1]->get_value());
- }
|