|
- /**
- * \file imperative/src/impl/ops/reduce.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
-
- #include "megbrain/graph/symbol_var.h"
- #include "megbrain/imperative/ops/autogen.h"
- #include "megbrain/imperative/proxy_graph_detail.h"
- #include "megbrain/opr/basic_arith.h"
- #include "megbrain/opr/internal/megdnn_opr_wrapper.h"
- #include "megbrain/opr/io.h"
- #include "megbrain/opr/tensor_manip.h"
- #include "megdnn/dtype.h"
-
- #include "../blob_manager_impl.h"
- #include "../dnn_op_helper.h"
- #include "../op_trait.h"
-
- namespace mgb {
- namespace imperative {
- namespace {
- namespace reduce {
- auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) {
- auto&& reduce = static_cast<const Reduce&>(def);
- auto comp_node = inputs[0]->comp_node();
- OperatorNodeConfig config{reduce.make_name(), comp_node, inputs[0]->dtype()};
-
- if (inputs.size() > 1) {
- return opr::Reduce::make(inputs[0], reduce.param(), inputs[1], config);
- }
-
- using Param = megdnn::param::Reduce;
- auto param = reduce.param();
- if (param.axis < 0) {
- param.axis = inputs[0]->shape().ndim + param.axis;
- }
-
- SymbolVar target_shape = (cg::VarNode*)nullptr;
- if (param.axis == INT_MAX) {
- DTypeScalar vi{1};
- // auto graph = ComputingGraph::make();
- auto graph = inputs[0]->owner_graph();
- target_shape = opr::ImmutableTensor::make(*graph, vi, config);
- }
- auto res = opr::Reduce::make(inputs[0], param, target_shape, config);
- if (!reduce.keepdim && param.axis != INT_MAX) {
- using Desc = opr::AxisAddRemove::AxisDesc;
- std::vector<Desc> remove_param;
- remove_param.push_back(Desc::make_remove(param.axis));
- OperatorNodeConfig remove_config{
- def.make_name(), comp_node, inputs[0]->dtype()};
- return opr::AxisAddRemove::make(res, remove_param, remove_config);
- }
- return res;
- }
-
- std::shared_ptr<OpDef> make_from_op_node(cg::OperatorNodeBase* node_) {
- auto* node = &node_->cast_final_safe<opr::Reduce>();
- return Reduce::make(node->param(), true);
- }
-
- // TODO: using this for apply_on_physical_tensor
- bool memory_forward_success(const OpDef& def, SmallVector<TensorPtr> inputs) {
- auto&& reduce = static_cast<const Reduce&>(def);
- if (reduce.mode != Reduce::Mode::SUM_SQR && inputs.size() == 2) {
- auto shape_tensor = inputs[1]->get_value();
- TensorShape shape;
- cg::copy_tensor_value_to_shape(shape, shape_tensor.proxy_to_default_cpu());
- if (shape.eq_shape(inputs[0]->shape())) {
- return true;
- }
- }
- return false;
- }
-
- SmallVector<TensorPtr> apply_on_physical_tensor(
- const OpDef& def, const SmallVector<TensorPtr>& inputs,
- SmallVector<LogicalTensorDesc>& output_descs, const bool& validated) {
- if (memory_forward_success(def, inputs)) {
- return {Tensor::make(
- inputs[0]->blob(), inputs[0]->offset(), inputs[0]->layout())};
- }
-
- auto size = inputs.size();
- if (size > 1) {
- return proxy_graph_detail::apply_on_physical_tensor(
- def, inputs, output_descs, validated);
- }
-
- auto comp_node = inputs[0]->comp_node();
- using TensorND = megdnn::TensorND;
- auto&& op_def = def.cast_final_safe<Reduce>();
- SmallVector<TensorND> inp_tensornds;
- inp_tensornds.reserve(inputs.size());
- auto src = inputs[0]->layout();
-
- DnnOprCaller<megdnn::Reduce> dnn_op(comp_node);
- dnn_op.op->param() = op_def.param();
- auto axis = op_def.param().axis;
- auto keepdim = op_def.keepdim;
-
- if (axis < 0) {
- axis = inputs[0]->layout().ndim + axis;
- }
-
- dnn_op.op->param().axis = axis == INT_MAX ? 0 : axis;
-
- if (axis == INT_MAX) {
- src.shape[0] = src.total_nr_elems();
- src.ndim = 1;
- src.init_contiguous_stride();
- }
- TensorLayout layout{src.dtype};
- dnn_op.op->deduce_layout(src, layout);
-
- if (inputs[0]->layout().is_empty()) {
- inputs[0]->dev_tensor().reset(inputs[0]->dev_tensor().storage(), src);
-
- auto mode = op_def.param().mode;
- DnnOprCaller<megdnn::Fill> fill_op(comp_node);
-
- if (!keepdim && src.ndim > 1) {
- layout.remove_axis_inplace(axis);
- layout.init_contiguous_stride();
- }
- DeviceTensorND out =
- BlobManager::inst()->alloc_workspace_with_defrag(comp_node, layout);
- std::string err_msg;
- switch (mode) {
- case Reduce::Mode::SUM:
- if (!out.empty()) {
- fill_op.op->param() = 0;
- fill_op.op->exec(out.as_megdnn(), {});
- }
- break;
- case Reduce::Mode::PRODUCT:
- if (!out.empty()) {
- fill_op.op->param() = 1;
- fill_op.op->exec(out.as_megdnn(), {});
- }
- break;
- case Reduce::Mode::MEAN:
- err_msg = "mean";
- break;
- case Reduce::Mode::MIN:
- err_msg = "min";
- break;
- case Reduce::Mode::MAX:
- err_msg = "max";
- break;
- case Reduce::Mode::SUM_SQR:
- err_msg = "sum_sqr";
- break;
- default:
- mgb_throw(MegBrainError, "bad reduce mode");
- }
- if (!err_msg.empty()) {
- mgb_throw(
- MegBrainError, "empty input is not allowed for reduce mode: %s",
- err_msg.c_str());
- }
- return {Tensor::make(out)};
- }
-
- auto dnn_ten = inputs[0]->dnn_tensor();
- dnn_ten.layout = src;
- inp_tensornds.push_back(dnn_ten);
-
- megdnn::Workspace dnn_wk;
-
- auto wk_size = dnn_op.op->get_workspace_in_bytes(src, layout);
- if (wk_size != 0) {
- auto wk = Blob::make(comp_node, wk_size);
- dnn_wk.raw_ptr = wk->storage().get();
- dnn_wk.size = wk_size;
- }
-
- DeviceTensorND out =
- BlobManager::inst()->alloc_workspace_with_defrag(comp_node, layout);
-
- dnn_op.op->exec(inp_tensornds[0], out.as_megdnn(), dnn_wk);
-
- if (!keepdim && src.ndim > 1) {
- auto out_layout = out.layout();
- out_layout.remove_axis_inplace(axis);
- out_layout.init_contiguous_stride();
- out.resize(out_layout);
- }
-
- return {Tensor::make(out)};
- }
-
- std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible(
- const OpDef& def, const SmallVector<LogicalTensorDesc>& inputs) {
- auto&& op_def = def.cast_final_safe<Reduce>();
- auto axis = op_def.param().axis;
- auto keepdim = op_def.keepdim;
-
- size_t size = inputs.size();
- SmallVector<LogicalTensorDesc> dests(size);
-
- for (size_t i = 0; i < size; i++) {
- if (inputs[i].layout.ndim == 0) {
- return {{{TensorLayout(inputs[0].layout.dtype), inputs[0].comp_node}},
- false};
- }
- }
- if (size > 1) {
- auto [output_descs, validated] =
- proxy_graph_detail::infer_output_attrs_fallible(def, inputs);
- if (!inputs[1].value.empty()) {
- cg::copy_tensor_value_to_shape(output_descs[0].layout, inputs[1].value);
- output_descs[0].layout.init_contiguous_stride();
- }
- return {output_descs, validated};
- }
-
- if (axis < 0) {
- axis = inputs[0].layout.ndim + axis;
- }
-
- if (axis == INT_MAX || inputs[0].layout.ndim == 1) {
- TensorLayout layout{inputs[0].layout.dtype};
- layout.shape[0] = 1;
- layout.ndim = 1;
- dests[0].layout = layout;
- dests[0].comp_node = inputs[0].comp_node;
- } else {
- for (size_t i = 0; i < size; ++i) {
- dests[i].comp_node = inputs[i].comp_node;
- dests[i].layout = inputs[i].layout;
- if (not keepdim && dests[i].layout.ndim > 1) {
- dests[i].layout.remove_axis_inplace(axis);
- } else {
- dests[i].layout.shape[axis] = 1;
- }
- dests[i].layout.init_contiguous_stride();
- }
- }
-
- return {dests, true};
- }
-
- SmallVector<VarNode::LayoutConstraintCallback> get_input_layout_constraint(
- const OpDef& def, const SmallVector<TensorPtr>& inputs) {
- SmallVector<VarNode::LayoutConstraintCallback> layout_checker(inputs.size());
- layout_checker[0] = [](const TensorLayout& layout) {
- return layout.is_contiguous();
- };
- return layout_checker;
- }
-
- OP_TRAIT_REG(Reduce, Reduce, opr::Reduce)
- .make_from_op_node(make_from_op_node)
- .apply_on_var_node(apply_on_var_node)
- .apply_on_physical_tensor(apply_on_physical_tensor)
- .infer_output_attrs_fallible(infer_output_attrs_fallible)
- .get_input_layout_constraint(get_input_layout_constraint)
- .fallback();
- } // namespace reduce
- } // namespace
- } // namespace imperative
- } // namespace mgb
-
- // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
|