# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import collections import copy import functools import weakref from inspect import getmembers, isclass, ismethod from typing import Callable, Dict, Iterable, List, Sequence, Type import numpy as np from numpy.lib.arraysetops import isin from ... import functional as F from ... import get_logger from ... import module as M from ...core._imperative_rt.core2 import Tensor as RawTensor from ...core._imperative_rt.core2 import ( is_tracing_module, set_module_tracing, unset_module_tracing, ) from ...core._trace_option import set_symbolic_shape from ...core.tensor.array_method import ArrayMethodMixin from ...module import Module from ...tensor import Tensor from .expr import Apply, CallFunction, CallMethod, Constant, Expr, GetAttr, Input from .module_tracer import ( Patcher, active_module_tracer, module_tracer, set_active_module_tracer, ) from .node import ModuleNode, Node, NodeMixin, TensorNode from .pytree import tree_flatten logger = get_logger(__name__) def _leaf_type(node): if isinstance(node, RawTensor): return (Tensor, TensorNode) elif isinstance(node, (NodeMixin, Module)): return (Module, ModuleNode, NodeMixin) else: return type(node) def _is_leaf(node): assert isinstance(node, RawTensor), "doesn't support {} in return values".format( type(node) ) return isinstance(node, RawTensor) def _is_const_leaf(node): if isinstance(node, (RawTensor, NodeMixin, Module)): return False return True class InternalGraph: """ ``InternalGraph`` is a graph consist of ``Node`` and ``Expr``, it is used to represent the execution procedure of Module's forward method. Attributes: _exprs: List of Exprs in order of execution _inputs: Input Nodes of InternalGraph _outputs: Output Nodes of InternalGraph """ _exprs = None # type: List[Expr] _inputs = None # type: List[Node] _outputs = None # type: List[Node] def __init__(self): self._exprs = [] self._inputs = [] self._outputs = [] def insert(self, expr): self._exprs.append(expr) @property def inputs(self): return self._inputs @property def outputs(self): return self._outputs @property def exprs(self): return ExprFilter(_expr_iter(self)) def get_call_function(self, func: Callable = None): return self.exprs.call_function(func) def get_call_method(self, method: str = None): return self.exprs.call_method(method) def add_input(self, i): self._inputs.append(i) def add_output(self, o): self._outputs.append(o) def _replace_inputs_outputs(self, repl_dict): for node, repl_node in repl_dict.items(): assert node in self._inputs or node in self._outputs for i in node.users: if i not in repl_node.users: repl_node.users.append(i) for idx, i in enumerate(self._inputs): if i in repl_dict: self._inputs[idx] = repl_dict[i] for idx, o in enumerate(self._outputs): if o in repl_dict: self._outputs[idx] = repl_dict[o] self._outputs[idx].expr = node.expr for expr in self._exprs: for idx, i in enumerate(expr.inputs): if i in repl_dict: expr.inputs[idx] = repl_dict[i] for idx, o in enumerate(expr.outputs): if o in repl_dict: expr.outputs[idx] = repl_dict[o] def get_dep_exprs(self, nodes: Sequence[Node]) -> List[Expr]: if not isinstance(nodes, Sequence): nodes = (nodes,) ret = list() queue = list(nodes) while queue: node = queue.pop() expr = node.expr if expr not in ret: ret.append(expr) for i in expr.inputs: if i not in queue: queue.append(i) return ret def insert_call_function(self, func: Callable, nodes: Sequence[Node]): if not isinstance(nodes, Sequence): nodes = [nodes] assert isinstance(func, Callable) for i in nodes: assert isinstance( i, TensorNode ), "CallFunction only accept TensorNode as inputs" expr = CallFunction(func) expr.inputs = nodes for i in nodes: i.users.append(expr) idx = max(self._exprs.index(i.expr) for i in nodes) + 1 self._exprs.insert(idx, expr) fake_inp_val = tuple(F.zeros(shape=i.shape, dtype=i.dtype) for i in nodes) fake_out_val = func(*fake_inp_val) def create_node(val: Tensor): node = TensorNode(expr) node.shape = val.shape node.dtype = val.dtype return node out_nodes = list(create_node(i) for i in fake_out_val) expr.outputs = out_nodes return out_nodes def insert_call_method(self, target, method, args): if not isinstance(args, Sequence): args = [args] assert isinstance(target, (TensorNode, ModuleNode)) assert isinstance(method, str) for i in args: assert isinstance(i, TensorNode) expr = CallMethod(method) expr.inputs = [target, *args] if isinstance(target, TensorNode): fake_target_val = F.zeros(shape=target.shape, dtype=target.dtype) fake_inp_val = tuple(F.zeros(shape=i.shape, dtype=i.dtype) for i in args) fake_out_val = getattr(fake_target_val, method)(fake_inp_val) def create_node(val: Tensor): node = TensorNode(expr) node.shape = val.shape node.dtype = val.dtype return node out_nodes = list(create_node(i) for i in fake_out_val) expr.outputs = out_nodes else: raise NotImplementedError() return out_nodes def replace_node(self, repl_dict: Dict[Node, Node]): while repl_dict: node, repl_node = repl_dict.popitem() # check graph inputs and outputs assert node not in self.inputs, "Cannot replace inputs" for i, n in enumerate(self.outputs): if n is node: self.outputs[i] = repl_node # update users of node and repl_node # update inputs of expr in node.users dep_exprs = self.get_dep_exprs(repl_node) i = 0 while i < len(node.users): n = node.users[i] if n in dep_exprs: logger.info("Find a loop: ignore this replacement once") logger.info("node: %s" % node.__repr__()) logger.info("repl_node: %s" % repl_node.__repr__()) i += 1 continue repl_node.users.append(n) node.users.pop(i) idx = n.inputs.index(node) n.inputs[idx] = repl_node def compile(self): """ Delete unused expr. """ dep_exprs = self.get_dep_exprs(self.outputs) i = 0 while i < len(self._exprs): expr = self._exprs[i] if expr in dep_exprs: i += 1 continue for n in expr.inputs: n.users.remove(expr) self._exprs.remove(expr) def interpret(self, *inputs): node2value = {} for n, v in zip(self._inputs, inputs): node2value[n] = v for expr in self._exprs: values = expr.interpret(*list(node2value[i] for i in expr.inputs)) if values is not None: for n, v in zip(expr.outputs, values): node2value[n] = v return list(node2value[i] for i in self._outputs) def __repr__(self): return "InternalGraph ({}) {{\n\t{}\n\treturn {}\n}}".format( ", ".join(str(i) for i in self._inputs), "\n\t".join(str(i) for i in self._exprs), ", ".join(str(i) for i in self._outputs), ) def _get_meth_name(obj, func): tp = obj if isinstance(obj, type) else type(obj) for cls in tp.mro(): for k, v in cls.__dict__.items(): if v == func: return k return None def _wrapped_function(orig_func): @functools.wraps(orig_func) def wrapped_fn(*args, **kwargs): if is_tracing_module(): unset_module_tracing() inputs, tree_def = tree_flatten( (args, kwargs), leaf_type=_leaf_type, is_const_leaf=_is_const_leaf ) for i in inputs: if not NodeMixin.get(i, None): if isinstance(i, (RawTensor, NodeMixin)): NodeMixin.wrap_safe(i, Constant.make(i)) meth_name = _get_meth_name(args[0], wrapped_fn) if meth_name: self = inputs[0] if meth_name == "__new__": if all([not isinstance(i, RawTensor) for i in inputs]): # only trace Tensor.__new__() when there are tensors in args set_module_tracing() return orig_func(*args, **kwargs) if isinstance(args[1], RawTensor): node = NodeMixin.get(inputs[1]) inputs[1] = copy.copy(inputs[1]) # copy inputs[1] to avoid tensor and Tensor(tensor) share same m_tensor, which will cause they have same _NodeMixin__node in tracing. NodeMixin.wrap_safe(inputs[1], node) args, kwargs = tree_def.unflatten(inputs) call_node = CallMethod.make(self, meth_name) else: call_node = CallMethod.make(NodeMixin.get(self), meth_name) call_node.add_inputs(inputs[1:]) else: call_node = CallFunction.make(orig_func) call_node.add_inputs(inputs) call_node.arg_def = tree_def outputs = orig_func(*args, **kwargs) call_node.add_outputs(outputs) set_module_tracing() return outputs return orig_func(*args, **kwargs) return wrapped_fn class TracedModuleBuilder(NodeMixin): _mod = None # type: Module _body = None # type: InternalGraph _is_builtin = None # type: bool _argdef_graph_map = None # type: Dict[Treedef, "InternalGraph"] _argdef_outdef_map = None # type: Dict[Treedef, Treedef] nodes = None __builder_attributes__ = [ "_mod", "_body", "_NodeMixin__node", "_is_builtin", "build", "_argdef_graph_map", "_argdef_outdef_map", "nodes", ] def __init__(self, mod, is_top_module=False): super(TracedModuleBuilder, self).__init__() self._mod = mod self._body = None self._is_builtin = module_tracer.is_builtin(mod) self._argdef_graph_map = {} self._argdef_outdef_map = {} self.nodes = set() def build(self): if self._is_builtin: for node in self.nodes: node.module_type = type(self._mod) # node._owner = weakref.ref(self._mod) return self._mod else: traced_module = TracedModule( self._argdef_graph_map, self._argdef_outdef_map ) for _, g in self._argdef_graph_map.items(): g.compile() # for node in self.nodes: # node._owner = weakref.ref(traced_module) for k, v in self.__dict__.items(): if k not in TracedModuleBuilder.__builder_attributes__: if isinstance(v, TracedModuleBuilder): v = v.build() setattr(traced_module, k, v) return traced_module def _record_wrapped_nodes(self, node): self.nodes.add(node) def __call__(self, *args, **kwargs): assert isinstance(self._mod, Module) # prepare args and kwargs for inner graph def mark_constant(x): node = NodeMixin.get(x, None) if node is None: # capture as constant NodeMixin.wrap(x, lambda: Constant.make(x)) inputs, tree_def = tree_flatten( ((self, *args), kwargs), leaf_type=_leaf_type, is_const_leaf=_is_const_leaf ) for i in inputs: mark_constant(i) callnode = CallMethod.make(NodeMixin.get(self)) callnode.add_inputs(inputs[1:]) callnode.arg_def = tree_def if self._is_builtin: unset_module_tracing() rst = self._mod(*args, **kwargs) outputs, out_def = tree_flatten(rst, leaf_type=_leaf_type, is_leaf=_is_leaf) set_module_tracing() if self._is_builtin: self._body = None else: self_node = None if self._body: self_node = self._body.inputs[0] self._body = InternalGraph() active_module_tracer().push_scope(self._body) # rebind self to new input node orig_self = NodeMixin.get(self) if self_node: NodeMixin.wrap_safe(self, self_node) active_module_tracer().current_scope().add_input(self_node) else: NodeMixin.wrap_safe( self, self_node if self_node else Input.make("self", NodeMixin.get_wrapped_type(self)), ) origin_inp_node = [NodeMixin.get(i, None) for i in inputs[1:]] # prepare args and kwargs for inner graph def wrap(x): if isinstance(x, (RawTensor, NodeMixin)): NodeMixin.wrap( x, lambda: Input.make(type=NodeMixin.get_wrapped_type(x)), ) return x args = [self] for i in inputs[1:]: args.append(wrap(i)) args, kwargs = tree_def.unflatten(args) active_module_tracer().patcher.auto_patch( getattr(getattr(self._mod, "forward", self._mod), "__globals__", {}) ) rst = type(self._mod).forward(*args, **kwargs) outputs, out_def = tree_flatten(rst, leaf_type=_leaf_type, is_leaf=_is_leaf) for i in ( outputs if isinstance(outputs, collections.abc.Sequence) else (outputs,) ): active_module_tracer().current_scope().add_output(NodeMixin.get(i)) NodeMixin.wrap_safe(self, orig_self) for arg, node in zip(inputs[1:], origin_inp_node): if node: NodeMixin.wrap_safe(arg, node) active_module_tracer().pop_scope() # rebind output to outer graph callnode.add_outputs(outputs) self._argdef_graph_map[callnode.arg_def] = self._body self._argdef_outdef_map[callnode.arg_def] = out_def return rst def __getattr__(self, name): if name not in self._mod.__dict__: attr = getattr(type(self._mod), name).__get__(self, type(self)) else: attr = getattr(self._mod, name) if isinstance(attr, Module): attr = TracedModuleBuilder(attr) setattr(self, name, attr) NodeMixin.wrap( attr, lambda: GetAttr.make( NodeMixin.get(self), name, type=NodeMixin.get_wrapped_type(attr) ), ) return attr def __getattribute__(self, name): if name in TracedModuleBuilder.__builder_attributes__: return super().__getattribute__(name) else: wrapped = super().__getattribute__(name) if name in self._mod.__dict__: assert not self._is_builtin if isinstance(wrapped, (NodeMixin, RawTensor)): NodeMixin.wrap( wrapped, lambda: GetAttr.make( NodeMixin.get(self), name, type=NodeMixin.get_wrapped_type(wrapped), ), ) """ else: node = NodeMixin.get(wrapped) expr = node.expr assert isinstance(expr, GetAttr) if expr not in active_module_tracer().current_scope()._exprs: active_module_tracer().current_scope().insert(expr) """ return wrapped class _expr_iter: def __init__(self, graph: InternalGraph): self.graph = graph def __iter__(self): for expr in self.graph._exprs: if isinstance(expr, CallMethod) and isinstance(expr.inputs[0], ModuleNode): yield expr if expr.graph is not None: yield from expr.graph.exprs else: yield expr class ExprFilter: def __init__(self, expr_iter: Iterable): self._iter = expr_iter def __iter__(self): return iter(self._iter) def call_function(self, func): return ExprFilterCallFunction(self, func) def call_method(self, method): return ExprFilterCallMethod(self, method) def as_list(self): return list(self) def as_dict(self): raise NotImplementedError("need key") def as_unique(self): (expr,) = self return expr def as_count(self): return sum(1 for _ in self) class ExprFilterCallFunction(ExprFilter): def __init__(self, expr_iter, func: Callable = None): super().__init__(expr_iter) self.func = func def __iter__(self): for i in self._iter: if not isinstance(i, CallFunction): continue if self.func is None or i.func == self.func: yield i class ExprFilterCallMethod(ExprFilter): def __init__(self, expr_iter, method: str = None): super().__init__(expr_iter) self.method = method def __iter__(self): for i in self._iter: if not isinstance(i, CallMethod): continue if self.method is None or i.method == self.method: yield i class TracedModule(Module): """ `TracedModule` is the Module created by tracing normal module. It owns an argdef to graph(InternalGraph) map. The forward method of `TracedModule` will get a graph from `argdef_graph_map` according to the argdef of input args/kwargs and interpret it. """ # m_node = None # type: ModuleNode argdef_graph_map = None argdef_outdef_map = None def __init__(self, argdef_graph_map, argdef_outdef_map): super(TracedModule, self).__init__() self.argdef_graph_map = argdef_graph_map self.argdef_outdef_map = argdef_outdef_map def forward(self, *args, **kwargs): inputs, treedef = tree_flatten( ((self, *args), kwargs), _leaf_type, is_const_leaf=_is_const_leaf ) assert treedef in self.argdef_graph_map inputs = filter( lambda i: isinstance(i, (Module, TracedModuleBuilder, RawTensor)), inputs ) # allow TracedModuleBuilder for retrace. outputs = self.argdef_graph_map[treedef].interpret(*inputs) out_def = self.argdef_outdef_map[treedef] outputs = out_def.unflatten(outputs) return outputs @property def graph(self): self._update_modulenode_ref() assert len(self.argdef_graph_map) == 1 return list(self.argdef_graph_map.values())[0] def _update_modulenode_ref(self): for _, graph in self.argdef_graph_map.items(): graph._inputs[0]._owner = weakref.ref(self) node2obj = {} node2obj[graph._inputs[0]] = self for expr in graph._exprs: if isinstance(expr, GetAttr) and isinstance( expr.outputs[0], ModuleNode ): obj = getattr(node2obj[expr.inputs[0]], expr.name) expr.outputs[0]._owner = weakref.ref(obj) node2obj[expr.outputs[0]] = obj if isinstance(obj, TracedModule): obj._update_modulenode_ref() @property def exprs(self): return self.graph.exprs def flatten(self): """ Get a new module, which eliminates ``GetAttr`` and has no hierarchy. :return: :class:`TracedModule` """ new_module = copy.deepcopy(self) def _flatten_subgraph(graph, module, call=None): if graph is None: assert not isinstance(module, TracedModule) const = Constant(module) const.outputs[0] = call.inputs[0] const.outputs[0].expr = const return [const, call] if call is not None: graph = copy.deepcopy(graph) exprs = [] node2obj = {} node2obj[graph._inputs[0]] = module if call: node2obj[call.inputs[0]] = module for expr in graph._exprs: # replace inputs for submodule's exprx if call: repl_dict = dict( zip(graph._inputs + graph._outputs, call.inputs + call.outputs) ) graph._replace_inputs_outputs(repl_dict) if isinstance(expr, GetAttr): # replace GetAttr with Constant if isinstance(expr.outputs[0], TensorNode): const = Constant(getattr(node2obj[expr.inputs[0]], expr.name)) const.outputs = expr.outputs const.outputs[0].expr = const exprs.append(const) elif isinstance(expr.outputs[0], ModuleNode): node2obj[expr.outputs[0]] = getattr( node2obj[expr.inputs[0]], expr.name ) elif isinstance(expr, CallMethod): obj_node = expr.inputs[0] if isinstance(obj_node, ModuleNode): pre_expr = expr.inputs[0].expr if isinstance(pre_expr, GetAttr): (obj,) = pre_expr.interpret(node2obj[pre_expr.inputs[0]]) expr_graph = ( obj.argdef_graph_map[expr.arg_def] if hasattr(obj, "argdef_graph_map") else None ) exprs.extend(_flatten_subgraph(expr_graph, obj, expr)) else: # module has been replaced. assert isinstance(pre_expr, Constant) exprs.append(expr) else: exprs.append(expr) else: exprs.append(expr) if call is not None: for i in call.inputs: i.users.remove(call) return exprs new_module.graph._exprs = _flatten_subgraph(new_module.graph, new_module) return new_module def __getstate__(self): d = self.__dict__ for k in Module.__dict__: d.pop(k, None) return d def cpp_apply_module_trace(opdef, *args): return Apply.apply_module_trace_hook(opdef, *args) def register_as_builtin(mod_cls: Type[Module]) -> None: """ Registers class ``mod_cls`` (subclass of megengine.module.Module) as builtin module. param mod_cls: the Module class which will be threated as builtin module in tracing """ module_tracer.register_as_builtin(mod_cls) def _register_all_builtin_module(): for sub_mod in [M, M.qat, M.quantized]: for m in getmembers(sub_mod): if ( isclass(m[1]) and issubclass(m[1], M.Module) and m[1] is not M.Sequential ): module_tracer.register_as_builtin(m[1]) def trace_module(mod: Module, *args: Tensor, **kwargs: Tensor) -> TracedModule: """ Traces module ``mod`` and returns corresponding TracedModule. param mod: the module will be converted to TracedModule param input: the positional arguments passed to forward method of ``mod`` param kwargs: the keyword arguments passed to forward method of ``mod`` """ assert active_module_tracer() is None try: use_sym_shape = set_symbolic_shape(True) set_module_tracing() set_active_module_tracer(module_tracer(_wrapped_function)) with active_module_tracer().patcher: global_scope = InternalGraph() active_module_tracer().push_scope(global_scope) builder = TracedModuleBuilder(mod, True) NodeMixin.wrap_safe(builder, Input.make("TopModule", ModuleNode)) inputs, _ = tree_flatten((args, kwargs), is_const_leaf=_is_const_leaf) for _, i in enumerate(inputs): if isinstance(i, RawTensor): NodeMixin.wrap_safe( i, Input.make("arg_{}".format(_), NodeMixin.get_wrapped_type(i)) ) builder(*args, **kwargs) active_module_tracer().pop_scope() return builder.build() finally: set_symbolic_shape(use_sym_shape) set_active_module_tracer(None) unset_module_tracing()