# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import multiprocessing as mp import platform import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine import Parameter, Tensor, tensor from megengine.device import get_default_device, set_default_device from megengine.functional.distributed import ( all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter, ) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.isolated_distributed def test_reduce_sum(): world_size = 2 server = dist.Server() port = server.py_server_port def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = reduce_sum(inp) if rank == 0: assert np.allclose(output.numpy(), expect) else: assert np.allclose(output.numpy(), 0) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = x + y p0 = mp.Process(target=worker, args=(0, x, z, port)) p1 = mp.Process(target=worker, args=(1, y, None, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.isolated_distributed def test_broadcast(): world_size = 2 server = dist.Server() port = server.py_server_port def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = broadcast(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = x + 1 p0 = mp.Process(target=worker, args=(0, x, x, port)) p1 = mp.Process(target=worker, args=(1, y, x, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.isolated_distributed def test_all_gather(): world_size = 2 server = dist.Server() port = server.py_server_port def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = all_gather(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.concatenate((x, y)) p0 = mp.Process(target=worker, args=(0, x, z, port)) p1 = mp.Process(target=worker, args=(1, y, z, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.isolated_distributed def test_reduce_scatter_sum(): world_size = 2 server = dist.Server() port = server.py_server_port def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = reduce_scatter_sum(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = x + y p0 = mp.Process(target=worker, args=(0, x, z[: shape[0] // 2], port)) p1 = mp.Process(target=worker, args=(1, y, z[shape[0] // 2 :], port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 4), (8, 10), (88, 44)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.isolated_distributed def test_all_reduce_sum(): world_size = 2 server = dist.Server() port = server.py_server_port def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = all_reduce_sum(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = x + y p0 = mp.Process(target=worker, args=(0, x, z, port)) p1 = mp.Process(target=worker, args=(1, y, z, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.isolated_distributed def test_all_reduce_max(): world_size = 2 server = dist.Server() port = server.py_server_port def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = all_reduce_max(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.maximum(x, y) p0 = mp.Process(target=worker, args=(0, x, z, port)) p1 = mp.Process(target=worker, args=(1, y, z, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.isolated_distributed def test_all_reduce_min(): world_size = 2 server = dist.Server() port = server.py_server_port def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = all_reduce_min(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.minimum(x, y) p0 = mp.Process(target=worker, args=(0, x, z, port)) p1 = mp.Process(target=worker, args=(1, y, z, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.isolated_distributed def test_gather(): world_size = 2 server = dist.Server() port = server.py_server_port def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = gather(inp) if rank == 0: assert np.allclose(output.numpy(), expect) else: assert np.allclose(output.numpy(), 0) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.concatenate((x, y)) p0 = mp.Process(target=worker, args=(0, x, z, port)) p1 = mp.Process(target=worker, args=(1, y, None, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.isolated_distributed def test_scatter(): world_size = 2 server = dist.Server() port = server.py_server_port def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = scatter(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = x + 1 p0 = mp.Process(target=worker, args=(0, x, x[: shape[0] // 2], port)) p1 = mp.Process(target=worker, args=(1, y, x[shape[0] // 2 :], port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (100, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.isolated_distributed def test_all_to_all(): world_size = 2 server = dist.Server() port = server.py_server_port def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = all_to_all(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") a = np.concatenate((x[: shape[0] // 2], y[: shape[0] // 2])) b = np.concatenate((x[shape[0] // 2 :], y[shape[0] // 2 :])) p0 = mp.Process(target=worker, args=(0, x, a, port)) p1 = mp.Process(target=worker, args=(1, y, b, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (100, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.isolated_distributed def test_io_remote(): world_size = 2 server = dist.Server() port = server.py_server_port val = np.random.rand(4, 5).astype(np.float32) def worker(rank): if mge.get_device_count("gpu") < world_size: return if rank == 0: # remote send dist.init_process_group("localhost", port, world_size, rank, rank) x = Tensor(val, device="gpu0") y = remote_send(x, 1) assert y.numpy()[0] == 0 else: # remote recv dist.init_process_group("localhost", port, world_size, rank, rank) y = remote_recv(0, val.shape, val.dtype) assert y.device == "gpu1" np.testing.assert_almost_equal(val, y.numpy()) procs = [] for rank in range(world_size): p = mp.Process(target=worker, args=(rank,)) p.start() procs.append(p) for p in procs: p.join(10) assert p.exitcode == 0