/** * \file dnn/src/common/dot.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megdnn/oprs.h" #include "src/common/utils.h" namespace megdnn { void DotForward::check_exec( const TensorLayout& A, const TensorLayout& B, const TensorLayout& C, size_t workspace_in_bytes) { auto errmsg = [&]() { return megdnn_layout_msg(A) + ", " + megdnn_layout_msg(B) + ", " + megdnn_layout_msg(C); }; MEGDNN_MARK_USED_VAR(errmsg); megdnn_assert(A.ndim == 1_z && A.stride[0] >= 0, "%s", errmsg().c_str()); megdnn_assert(B.ndim == 1_z && B.stride[0] >= 0, "%s", errmsg().c_str()); megdnn_assert(A.shape[0] == B.shape[0], "%s", errmsg().c_str()); megdnn_assert(C.is_scalar(), "%s", errmsg().c_str()); megdnn_assert(A.dtype == B.dtype && A.dtype == C.dtype); auto required_workspace_in_bytes = get_workspace_in_bytes(A, B, C); megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes); } void DotForward::deduce_layout( const TensorLayout& A, const TensorLayout&, TensorLayout& C) { C = TensorLayout(TensorShape{1}, A.dtype); } } // namespace megdnn // vim: syntax=cpp.doxygen