GitOrigin-RevId: 52ddd805b4
tags/v1.10.0
| @@ -175,13 +175,13 @@ struct MaxOp<src_ctype, dst_ctype, dt_float32> { | |||
| : INIT(wtype(DTypeTrait<wtype>::min())), src(src), dst(dst), B(B) {} | |||
| }; | |||
| template <typename src_ctype, typename index_ctype, typename dst_ctype, typename wtype_> | |||
| template <typename src_ctype, typename dst_ctype, typename wtype_> | |||
| struct CheckNonFiniteOp { | |||
| typedef wtype_ wtype; | |||
| const wtype INIT; | |||
| src_ctype** srcs; | |||
| index_ctype* srcs_total_nr_elems; | |||
| size_t* srcs_total_nr_elems; | |||
| dst_ctype* dst; | |||
| const size_t B; | |||
| const src_ctype scale; | |||
| @@ -206,7 +206,7 @@ struct CheckNonFiniteOp { | |||
| return lhs | rhs; | |||
| } | |||
| MEGDNN_HOST MEGDNN_DEVICE CheckNonFiniteOp( | |||
| src_ctype** srcs, index_ctype* srcs_total_nr_elems, dst_ctype* dst, | |||
| src_ctype** srcs, size_t* srcs_total_nr_elems, dst_ctype* dst, | |||
| size_t B, src_ctype scale) | |||
| : INIT(wtype(0)), | |||
| srcs(srcs), | |||
| @@ -8,10 +8,10 @@ namespace cuda { | |||
| #define COMMA , | |||
| #define cb(_dtype) \ | |||
| INST_REDUCE( \ | |||
| device_reduce::CheckNonFiniteOp< \ | |||
| _dtype COMMA size_t COMMA dt_int32 COMMA dt_int32>, \ | |||
| #define cb(_dtype) \ | |||
| INST_REDUCE( \ | |||
| device_reduce::CheckNonFiniteOp< \ | |||
| _dtype COMMA dt_float32 COMMA dt_int32 COMMA dt_int32>, \ | |||
| false); | |||
| cb(dt_float32); | |||
| @@ -10,11 +10,11 @@ namespace megdnn { | |||
| namespace cuda { | |||
| using device_reduce::CheckNonFiniteOp; | |||
| #define total_nr_elems_max 2048 | |||
| #define total_nr_elems_max 8192 | |||
| template <typename T> | |||
| size_t CheckNonFiniteImpl::_get_workspace_in_bytes() { | |||
| // Call the _get_workspace_in_bytes to reduce the loop fetch workspace bytes | |||
| typedef CheckNonFiniteOp<T, size_t, dt_int32, dt_int32> Op; | |||
| typedef CheckNonFiniteOp<T, dt_float32, dt_int32, dt_int32> Op; | |||
| megdnn_assert(m_size > 0); | |||
| WorkspaceBundle bundle( | |||
| nullptr, { | |||
| @@ -59,7 +59,7 @@ void CheckNonFiniteImpl::_exec( | |||
| _megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst, | |||
| _megdnn_workspace workspace) { | |||
| check_exec(srcs, dst, workspace.size); | |||
| typedef CheckNonFiniteOp<T, size_t, dt_int32, dt_int32> Op; | |||
| typedef CheckNonFiniteOp<T, dt_float32, dt_int32, dt_int32> Op; | |||
| auto stream = cuda_stream(this->handle()); | |||
| SmallVector<size_t> workspace_sizes{ | |||
| sizeof(T*) * m_size, | |||
| @@ -102,7 +102,7 @@ void CheckNonFiniteImpl::_exec( | |||
| cuda_check(cudaStreamAddCallback( | |||
| stream, callback_free, static_cast<void*>(workspace_cpu_raw), 0)); | |||
| return run_reduce<Op, false>( | |||
| run_reduce<Op, false>( | |||
| static_cast<dt_int32*>( | |||
| (void*)((char*)workspace_gpu_raw + | |||
| workspace_gpu.total_size_in_bytes())), | |||
| @@ -141,8 +141,10 @@ class GradScaler: | |||
| tensor.grad = None | |||
| return self | |||
| def _check_gradients(self, grad, scale): | |||
| return _check_non_finite(grad, scale) | |||
| def _check_gradients(self, grads, scale): | |||
| if len(grads) == 0: | |||
| return False | |||
| return _check_non_finite(grads, scale) | |||
| def update(self, new_scale: float = None): | |||
| r"""Update the scale factor according to whether encountered overflow grad. | |||
| @@ -691,11 +691,13 @@ def _check_non_finite(inps: Iterable[Tensor], scale=1.0) -> Tensor: | |||
| r"""Check whether input contains infinite or nan value. | |||
| Args: | |||
| inp: a tensor to be checked. | |||
| inps: tensors to be checked. | |||
| Returns: | |||
| a int32 scalar tensor, 0 for False and 1 for True. | |||
| """ | |||
| if isinstance(inps, Tensor): | |||
| inps = [inps] | |||
| op = builtin.CheckNonFinite(scale=scale) | |||
| oups = apply(op, *inps) | |||
| out = oups[-1] | |||
| @@ -1,4 +1,5 @@ | |||
| import numpy as np | |||
| import pytest | |||
| import megengine as mge | |||
| from megengine.amp import GradScaler | |||
| @@ -6,23 +7,46 @@ from megengine.autodiff import GradManager | |||
| from megengine.jit import trace | |||
| def test_grad_scaler(): | |||
| def f(): | |||
| gm = GradManager() | |||
| scaler = GradScaler() | |||
| x = mge.tensor(1.0) | |||
| for _ in range(3): | |||
| with gm: | |||
| y = x + 1 | |||
| gm.attach(y) | |||
| loss = y + 1 | |||
| scaler.backward(gm, loss, unscale_grad=False) | |||
| np.testing.assert_equal(y.grad.numpy(), scaler.scale_factor) | |||
| scaler.unscale(gm.attached_tensors()) | |||
| np.testing.assert_equal(y.grad.numpy(), 1) | |||
| # test handle None elements | |||
| scaler.unscale(gm.attached_tensors()) | |||
| f() | |||
| trace(f)() | |||
| @pytest.mark.parametrize( | |||
| "is_trace", [False, True], | |||
| ) | |||
| def test_grad_scaler(is_trace): | |||
| gm = GradManager() | |||
| scaler = GradScaler() | |||
| def f(idx, data, calc): | |||
| x = mge.tensor(data, no_cache=True) | |||
| y = mge.tensor(data, no_cache=True) | |||
| if is_trace: | |||
| calc = trace(calc) | |||
| gm.attach([x, y]) | |||
| with gm: | |||
| loss = calc(x, y) | |||
| scaler.backward(gm, loss, unscale_grad=False) | |||
| np.testing.assert_equal(x.grad.numpy(), 2 * scaler.scale_factor) | |||
| scaler.unscale(filter(lambda t: t.grad is not None, gm.attached_tensors())) | |||
| # scaler.unscale(gm.attached_tensors()) | |||
| np.testing.assert_equal(x.grad.numpy(), 2) | |||
| def double_variables(x, y): | |||
| z = x + 2 * y | |||
| loss = 2 * z + 1 | |||
| return loss | |||
| def single_variable(x, y): | |||
| z = x + 1 | |||
| loss = 2 * z + 1 | |||
| return loss | |||
| # need grad being unique storage or not inplace modifying grad | |||
| def double_variables_with_same_grad(x, y): | |||
| z = x + y | |||
| loss = 2 * z + 1 | |||
| return loss | |||
| for data in [np.random.random((1, 2, 3, 4)), 1.0]: | |||
| for calc in [double_variables, single_variable, double_variables_with_same_grad]: | |||
| for idx in range(3): | |||
| f(idx, data, calc) | |||