GitOrigin-RevId: 843d885f82
tags/v1.1.0
| @@ -11,6 +11,7 @@ | |||
| #pragma once | |||
| #include "megdnn/basic_types.h" | |||
| #include "megdnn/handle.h" | |||
| #include "megdnn/internal/visibility_prologue.h" | |||
| namespace megdnn { | |||
| @@ -105,11 +106,11 @@ public: | |||
| virtual bool is_reproducible() const = 0; | |||
| virtual const char* name() const = 0; | |||
| //! a pointer to represent class type | |||
| virtual void* type() const { return nullptr; } | |||
| Handle::HandleType handle_type() const { return m_handle_type; } | |||
| protected: | |||
| ~Algorithm() = default; | |||
| Handle::HandleType m_handle_type = Handle::HandleType::NAIVE; | |||
| }; | |||
| /*! | |||
| @@ -45,7 +45,7 @@ public: | |||
| SmallVector<AlgoBase*> matmul_algos; | |||
| }; | |||
| SmallVector<ConvBiasImpl::AlgoBase*> ConvBiasImpl::algo_pack() { | |||
| SmallVector<fallback::ConvBiasImpl::AlgoBase*> ConvBiasImpl::algo_pack() { | |||
| static AlgoPack sl_algo_pack; | |||
| auto&& algos = arm_common::ConvBiasImpl::algo_pack(); | |||
| algos.insert(algos.begin(), sl_algo_pack.direct_algos.begin(), | |||
| @@ -18,11 +18,16 @@ namespace aarch64 { | |||
| class ConvBiasImpl : public arm_common::ConvBiasImpl { | |||
| public: | |||
| using arm_common::ConvBiasImpl::ConvBiasImpl; | |||
| class AlgoBase : public arm_common::ConvBiasImpl::AlgoBase { | |||
| public: | |||
| AlgoBase() : arm_common::ConvBiasImpl::AlgoBase() { | |||
| m_handle_type = Handle::HandleType::AARCH64; | |||
| } | |||
| }; | |||
| SmallVector<AlgoBase*> algo_pack() override; | |||
| SmallVector<fallback::ConvBiasImpl::AlgoBase*> algo_pack() override; | |||
| protected: | |||
| const char* get_algorithm_set_name() const override; | |||
| private: | |||
| @@ -26,7 +26,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -37,7 +36,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -48,7 +46,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -59,7 +56,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(4, 16, 4, 4, AlgoDataType::FLOAT32, MK4) | |||
| }; | |||
| @@ -75,7 +71,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -86,7 +81,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(8, 8, 8, 2, AlgoDataType::FLOAT16, MK8) | |||
| }; | |||
| @@ -103,7 +97,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -116,7 +109,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| #else | |||
| @@ -129,7 +121,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| PackMode packmode() const override { return PackMode::DEFAULT; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| @@ -143,7 +134,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -156,7 +146,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| #endif | |||
| @@ -169,7 +158,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -182,7 +170,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -196,7 +183,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| PackMode packmode() const override { return PackMode::DEFAULT; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| @@ -212,7 +198,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| PackMode packmode() const override { return PackMode::DEFAULT; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| @@ -226,7 +211,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| PackMode packmode() const override { return PackMode::DEFAULT; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| @@ -240,7 +224,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -251,7 +234,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(8, 8, 8, 2, AlgoDataType::INT16X16X32, MK8) | |||
| }; | |||
| @@ -266,7 +248,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -278,7 +259,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override { return 0; } | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| AlgoSet algoset() const override { return AlgoSet::ALGO_TYPE_GEMV; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 2, AlgoDataType::QUINT8X8X32, DEFAULT) | |||
| @@ -292,7 +272,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| #endif | |||
| @@ -52,7 +52,7 @@ class MatrixMulImpl::AlgoPack : NonCopyableObj { | |||
| #endif | |||
| public: | |||
| SmallVector<MatrixMulImpl::AlgoBase*> all_algos; | |||
| SmallVector<fallback::MatrixMulImpl::AlgoBase*> all_algos; | |||
| AlgoPack() { | |||
| all_algos.emplace_back(&f32_gemv); | |||
| @@ -89,7 +89,7 @@ public: | |||
| } | |||
| }; | |||
| SmallVector<MatrixMulImpl::AlgoBase*> MatrixMulImpl::algo_pack() { | |||
| SmallVector<fallback::MatrixMulImpl::AlgoBase*> MatrixMulImpl::algo_pack() { | |||
| static AlgoPack s_algo_pack; | |||
| auto&& algos = arm_common::MatrixMulImpl::algo_pack(); | |||
| algos.insert(algos.begin(), s_algo_pack.all_algos.begin(), | |||
| @@ -18,8 +18,14 @@ namespace aarch64 { | |||
| class MatrixMulImpl : public arm_common::MatrixMulImpl { | |||
| public: | |||
| using arm_common::MatrixMulImpl::MatrixMulImpl; | |||
| class AlgoBase : public arm_common::MatrixMulImpl::AlgoBase { | |||
| public: | |||
| AlgoBase() : arm_common::MatrixMulImpl::AlgoBase() { | |||
| m_handle_type = Handle::HandleType::AARCH64; | |||
| } | |||
| }; | |||
| SmallVector<AlgoBase*> algo_pack() override; | |||
| SmallVector<fallback::MatrixMulImpl::AlgoBase*> algo_pack() override; | |||
| private: | |||
| class AlgoF32K8x12x1; // Aarch64 F32 Kernel 8X12X1 | |||
| @@ -57,7 +63,7 @@ private: | |||
| #else | |||
| class AlgoQuint8K8x8x8; // Aarch64 Quint8 Kernel 8x8x8 | |||
| #endif | |||
| class AlgoInt8x8x16MK4_K8x8x8; // Aarch64 Int4x4x16 Kernel 4x4x16 | |||
| class AlgoInt8x8x16MK4_K8x8x8; // Aarch64 Int4x4x16 Kernel 4x4x16 | |||
| class AlgoPack; | |||
| }; | |||
| @@ -11,6 +11,7 @@ | |||
| */ | |||
| #include "megdnn/opr_param_defs.h" | |||
| #include "megdnn/oprs/base.h" | |||
| #include "src/arm_common/conv_bias/int8/algos.h" | |||
| #include "src/arm_common/conv_bias/int8x8x16/algos.h" | |||
| #include "src/arm_common/conv_bias/quint8/algos.h" | |||
| @@ -18,6 +19,7 @@ | |||
| #include "src/arm_common/conv_bias/opr_impl.h" | |||
| #include "src/common/metahelper.h" | |||
| #include "src/common/utils.h" | |||
| #include "src/fallback/conv_bias/opr_impl.h" | |||
| #include "src/naive/handle.h" | |||
| #include "src/arm_common/convolution/opr_impl.h" | |||
| @@ -37,7 +39,12 @@ using namespace megdnn; | |||
| using namespace arm_common; | |||
| namespace { | |||
| uint8_t arm_common_algo_type_storage; | |||
| bool is_fallback_or_naive(const detail::Algorithm* algo) { | |||
| return algo->handle_type() == Handle::HandleType::NAIVE || | |||
| algo->handle_type() == Handle::HandleType::FALLBACK; | |||
| } | |||
| } // anonymous namespace | |||
| class ConvBiasImpl::AlgoPack : NonCopyableObj { | |||
| @@ -50,7 +57,8 @@ class ConvBiasImpl::AlgoPack : NonCopyableObj { | |||
| AlgoS8DirectStride1 s8_direct_stride1; | |||
| AlgoS8ChanWiseStride1NCHW44 s8_channel_wise_stride1_nchw44; | |||
| AlgoS8ChanWiseStride2NCHW44 s8_channel_wise_stride2_nchw44; | |||
| AlgoS8x8x16ChanWiseStride1Stride2NCHW44 s8x8x16_channel_wise_stride1_stride2_nchw44; | |||
| AlgoS8x8x16ChanWiseStride1Stride2NCHW44 | |||
| s8x8x16_channel_wise_stride1_stride2_nchw44; | |||
| #if __ARM_FEATURE_DOTPROD | |||
| AlgoDotS8DirectStride1 ds8_direct_stride1; | |||
| @@ -129,7 +137,7 @@ public: | |||
| ->select_algo_type( | |||
| {AlgoDataType::FLOAT32, MatmulFormat::MK4}); | |||
| for (auto&& algo : matmul_algos) { | |||
| if (algo->type() == nullptr) | |||
| if (is_fallback_or_naive(algo)) | |||
| continue; | |||
| for (uint32_t tile_size : {16, 8, 24, 32}) { | |||
| refhold.emplace_back(new AlgoFP32WinogradF23_4x4( | |||
| @@ -166,7 +174,7 @@ public: | |||
| ->select_algo_type({AlgoDataType::FLOAT32, | |||
| MatmulFormat::DEFAULT}); | |||
| for (auto&& algo : matmul_algos) { | |||
| if (algo->type() == nullptr) | |||
| if (is_fallback_or_naive(algo)) | |||
| continue; | |||
| for (uint32_t tile_size : {16, 8, 24, 32}) { | |||
| refhold.emplace_back(new AlgoFP32WinogradF63( | |||
| @@ -189,7 +197,7 @@ public: | |||
| ->select_algo_type({AlgoDataType::FLOAT16, | |||
| MatmulFormat::DEFAULT}); | |||
| for (auto&& algo : matmul_algos) { | |||
| if (algo->type() == nullptr) | |||
| if (is_fallback_or_naive(algo)) | |||
| continue; | |||
| for (uint32_t tile_size : {16, 8, 24, 32}) { | |||
| refhold.emplace_back(new AlgoFP16WinogradF23( | |||
| @@ -210,7 +218,7 @@ public: | |||
| ->select_algo_type({AlgoDataType::FLOAT16, | |||
| MatmulFormat::MK8}); | |||
| for (auto&& algo : matmul_algos) { | |||
| if (algo->type() == nullptr) | |||
| if (is_fallback_or_naive(algo)) | |||
| continue; | |||
| for (uint32_t tile_size : {16, 8, 24, 32}) { | |||
| refhold.emplace_back(new AlgoFP16WinogradF23_8x8( | |||
| @@ -224,7 +232,7 @@ public: | |||
| ->select_algo_type({AlgoDataType::INT16X16X32, | |||
| MatmulFormat::MK8}); | |||
| for (auto&& algo : matmul_algos) { | |||
| if (algo->type() == nullptr) | |||
| if (is_fallback_or_naive(algo)) | |||
| continue; | |||
| for (uint32_t tile_size : {16, 8, 24, 32}) { | |||
| refhold.emplace_back(new AlgoS8WinogradF23_8x8( | |||
| @@ -242,7 +250,7 @@ public: | |||
| SmallVector<AlgoBase*> winograd_algos; | |||
| }; | |||
| SmallVector<ConvBiasImpl::AlgoBase*> ConvBiasImpl::algo_pack() { | |||
| SmallVector<fallback::ConvBiasImpl::AlgoBase*> ConvBiasImpl::algo_pack() { | |||
| static AlgoPack sl_algo_pack; | |||
| auto&& algos = fallback::ConvBiasImpl::algo_pack(); | |||
| algos.insert(algos.begin(), sl_algo_pack.direct_algos.begin(), | |||
| @@ -252,9 +260,6 @@ SmallVector<ConvBiasImpl::AlgoBase*> ConvBiasImpl::algo_pack() { | |||
| return std::move(algos); | |||
| } | |||
| void* const ConvBiasImpl::sm_arm_common_algo_type = | |||
| &arm_common_algo_type_storage; | |||
| bool ConvBiasImpl::is_matmul_quantized_prefer( | |||
| const ConvBiasImpl::NCBKernSizeParam& param) const { | |||
| fallback::ConvBiasImpl::NCBKernSizeParam conv_ncb_param( | |||
| @@ -19,23 +19,25 @@ namespace arm_common { | |||
| class ConvBiasImpl : public fallback::ConvBiasImpl { | |||
| public: | |||
| using fallback::ConvBiasImpl::ConvBiasImpl; | |||
| using FallbackConvBiasImpl = fallback::ConvBiasImpl; | |||
| using NCBKernIndex = fallback::ConvBiasImpl::NCBKernIndex; | |||
| bool is_thread_safe() const override { return true; } | |||
| class AlgoBase : public fallback::ConvBiasImpl::AlgoBase { | |||
| public: | |||
| AlgoBase() : fallback::ConvBiasImpl::AlgoBase() { | |||
| m_handle_type = Handle::HandleType::ARM_COMMON; | |||
| } | |||
| }; | |||
| SmallVector<AlgoBase*> algo_pack() override; | |||
| SmallVector<fallback::ConvBiasImpl::AlgoBase*> algo_pack() override; | |||
| bool is_matmul_quantized_prefer( | |||
| const ConvBiasImpl::NCBKernSizeParam& ncb_param) const override; | |||
| const fallback::ConvBiasImpl::NCBKernSizeParam& ncb_param) | |||
| const override; | |||
| SmallVector<AlgoCategory> suggest_algo_category_order( | |||
| const NCBKernSizeParam& param) const override; | |||
| class AlgoPack; | |||
| protected: | |||
| static void* const sm_arm_common_algo_type; | |||
| const char* get_algorithm_set_name() const override; | |||
| private: | |||
| @@ -93,7 +95,7 @@ private: | |||
| class AlgoF16Direct; | |||
| class AlgoF16DirectStride1; | |||
| #endif | |||
| }; | |||
| }; | |||
| } // namespace arm_common | |||
| } // namespace megdnn | |||
| @@ -26,12 +26,14 @@ using namespace arm_common; | |||
| /* ===================== ConvolutionBackwardData ===================== */ | |||
| /* ===================== direct stride 1 algo ===================== */ | |||
| bool ConvolutionBackwardDataImpl::AlgoSdot8DirectStride1::usable( | |||
| ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const { | |||
| fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const { | |||
| return deconv::can_stride1_int8x8x32_dot(param); | |||
| } | |||
| size_t ConvolutionBackwardDataImpl::AlgoSdot8DirectStride1::get_workspace( | |||
| ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const { | |||
| fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_conv_int8832_kimpl, | |||
| midout_iv("AlgoSdot8DirectStride1::get_workspace"_hash)) { | |||
| return deconv::get_workspace_in_bytes_stride1_int8x8x32_dot(param); | |||
| @@ -42,7 +44,7 @@ size_t ConvolutionBackwardDataImpl::AlgoSdot8DirectStride1::get_workspace( | |||
| ConvolutionBackwardDataImpl::ncb_kern_t | |||
| ConvolutionBackwardDataImpl::AlgoSdot8DirectStride1::dispatch_kern( | |||
| ConvolutionBackwardDataImpl*, const NCBKernSizeParam&) const { | |||
| fallback::ConvolutionBackwardDataImpl*, const NCBKernSizeParam&) const { | |||
| MIDOUT_BEGIN(megdnn_arm_conv_int8832_kimpl, | |||
| midout_iv("AlgoSdot8DirectStride1::dispatch_kern"_hash)) { | |||
| return deconv::stride1_int8x8x32_dot; | |||
| @@ -53,12 +55,14 @@ ConvolutionBackwardDataImpl::AlgoSdot8DirectStride1::dispatch_kern( | |||
| /* ===================== direct stride 2 algo ===================== */ | |||
| bool ConvolutionBackwardDataImpl::AlgoSdot8DirectStride2::usable( | |||
| ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const { | |||
| fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const { | |||
| return deconv::can_stride2_int8x8x32_dot(param); | |||
| } | |||
| size_t ConvolutionBackwardDataImpl::AlgoSdot8DirectStride2::get_workspace( | |||
| ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const { | |||
| fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_conv_int8832_kimpl, | |||
| midout_iv("AlgoSdot8DirectStride2::get_workspace"_hash)) { | |||
| return deconv::get_workspace_in_bytes_stride2_int8x8x32_dot(param); | |||
| @@ -69,7 +73,7 @@ size_t ConvolutionBackwardDataImpl::AlgoSdot8DirectStride2::get_workspace( | |||
| ConvolutionBackwardDataImpl::ncb_kern_t | |||
| ConvolutionBackwardDataImpl::AlgoSdot8DirectStride2::dispatch_kern( | |||
| ConvolutionBackwardDataImpl*, const NCBKernSizeParam&) const { | |||
| fallback::ConvolutionBackwardDataImpl*, const NCBKernSizeParam&) const { | |||
| MIDOUT_BEGIN(megdnn_arm_conv_int8832_kimpl, | |||
| midout_iv("AlgoSdot8DirectStride2::dispatch_kern"_hash)) { | |||
| return deconv::stride2_int8x8x32_dot; | |||
| @@ -6,7 +6,8 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #pragma once | |||
| @@ -19,38 +20,40 @@ namespace arm_common { | |||
| #if __ARM_FEATURE_DOTPROD | |||
| /* ===================== ConvolutionBackwardData ===================== */ | |||
| class ConvolutionBackwardDataImpl::AlgoSdot8DirectStride1 final : public AlgoBase { | |||
| class ConvolutionBackwardDataImpl::AlgoSdot8DirectStride1 final | |||
| : public AlgoBase { | |||
| public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "AARCH32_I8x8x32_DECONV_STRIDE1"; } | |||
| const char* name() const override { | |||
| return "AARCH32_I8x8x32_DECONV_STRIDE1"; | |||
| } | |||
| bool usable(ConvolutionBackwardDataImpl*, | |||
| bool usable(fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(ConvolutionBackwardDataImpl*, | |||
| size_t get_workspace(fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| ncb_kern_t dispatch_kern(ConvolutionBackwardDataImpl*, | |||
| ncb_kern_t dispatch_kern(fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| }; | |||
| class ConvolutionBackwardDataImpl::AlgoSdot8DirectStride2 final : public AlgoBase { | |||
| class ConvolutionBackwardDataImpl::AlgoSdot8DirectStride2 final | |||
| : public AlgoBase { | |||
| public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "AARCH32_I8x8x32_DECONV_STRIDE2"; } | |||
| const char* name() const override { | |||
| return "AARCH32_I8x8x32_DECONV_STRIDE2"; | |||
| } | |||
| bool usable(ConvolutionBackwardDataImpl*, | |||
| bool usable(fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(ConvolutionBackwardDataImpl*, | |||
| size_t get_workspace(fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| ncb_kern_t dispatch_kern(ConvolutionBackwardDataImpl*, | |||
| ncb_kern_t dispatch_kern(fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| }; | |||
| #endif | |||
| @@ -21,9 +21,6 @@ | |||
| using namespace megdnn; | |||
| using namespace arm_common; | |||
| namespace { | |||
| uint8_t arm_common_algo_type_storage; | |||
| } // anonymous namespace | |||
| /* ===================== ConvolutionBackwardData ===================== */ | |||
| struct ConvolutionBackwardDataImpl::AlgoPack { | |||
| @@ -36,46 +33,44 @@ struct ConvolutionBackwardDataImpl::AlgoPack { | |||
| }; | |||
| ConvolutionBackwardDataImpl::AlgoPack ConvolutionBackwardDataImpl::sm_algo_pack; | |||
| void* const ConvolutionBackwardDataImpl::sm_arm_common_algo_type = | |||
| &arm_common_algo_type_storage; | |||
| ConvolutionBackwardDataImpl::ncb_kern_t ConvolutionBackwardDataImpl::ncb_1g_dispatch_kern( | |||
| ConvolutionBackwardDataImpl::ncb_kern_t | |||
| ConvolutionBackwardDataImpl::ncb_1g_dispatch_kern( | |||
| Algorithm* algo, const NCBKernSizeParam& param) { | |||
| if (algo->type() == sm_arm_common_algo_type) { | |||
| if (algo->handle_type() == Handle::HandleType::ARM_COMMON) { | |||
| return static_cast<AlgoBase*>(algo)->dispatch_kern(this, param); | |||
| } | |||
| return fallback::ConvolutionBackwardDataImpl::ncb_1g_dispatch_kern(algo, param); | |||
| return fallback::ConvolutionBackwardDataImpl::ncb_1g_dispatch_kern(algo, | |||
| param); | |||
| } | |||
| size_t ConvolutionBackwardDataImpl::ncb_1g_get_workspace(Algorithm* algo, | |||
| const NCBKernSizeParam& param) { | |||
| if (algo->type() == sm_arm_common_algo_type) { | |||
| size_t ConvolutionBackwardDataImpl::ncb_1g_get_workspace( | |||
| Algorithm* algo, const NCBKernSizeParam& param) { | |||
| if (algo->handle_type() == Handle::HandleType::ARM_COMMON) { | |||
| return static_cast<AlgoBase*>(algo)->get_workspace(this, param); | |||
| } | |||
| return fallback::ConvolutionBackwardDataImpl::ncb_1g_get_workspace(algo, param); | |||
| return fallback::ConvolutionBackwardDataImpl::ncb_1g_get_workspace(algo, | |||
| param); | |||
| } | |||
| std::vector<ConvolutionBackwardDataImpl::Algorithm*> | |||
| ConvolutionBackwardDataImpl::ncb_1g_get_all_algorithms(const NCBKernSizeParam& param) { | |||
| auto ret = fallback::ConvolutionBackwardDataImpl::ncb_1g_get_all_algorithms(param); | |||
| ConvolutionBackwardDataImpl::ncb_1g_get_all_algorithms( | |||
| const NCBKernSizeParam& param) { | |||
| auto ret = fallback::ConvolutionBackwardDataImpl::ncb_1g_get_all_algorithms( | |||
| param); | |||
| #if __ARM_FEATURE_DOTPROD | |||
| if((param.filter_type.enumv() == DTypeEnum::QuantizedS8 || | |||
| param.filter_type.enumv() == DTypeEnum::Int8) && | |||
| (param.grad_type.enumv() == DTypeEnum::QuantizedS32 || | |||
| param.grad_type.enumv() == DTypeEnum::Int32)) { | |||
| if ((param.filter_type.enumv() == DTypeEnum::QuantizedS8 || | |||
| param.filter_type.enumv() == DTypeEnum::Int8) && | |||
| (param.grad_type.enumv() == DTypeEnum::QuantizedS32 || | |||
| param.grad_type.enumv() == DTypeEnum::Int32)) { | |||
| if (sm_algo_pack.i8x8x32_direct_stride1_sdot.usable(this, param)) { | |||
| ret.insert(ret.begin(), &sm_algo_pack.i8x8x32_direct_stride1_sdot); | |||
| } | |||
| if (sm_algo_pack.i8x8x32_direct_stride2_sdot.usable(this, param)) { | |||
| ret.insert(ret.begin(), &sm_algo_pack.i8x8x32_direct_stride2_sdot); | |||
| } | |||
| } | |||
| else if(param.filter_type.enumv() == DTypeEnum::Quantized8Asymm && | |||
| param.grad_type.enumv() == DTypeEnum::QuantizedS32) { | |||
| } else if (param.filter_type.enumv() == DTypeEnum::Quantized8Asymm && | |||
| param.grad_type.enumv() == DTypeEnum::QuantizedS32) { | |||
| if (sm_algo_pack.quint8_direct_stride1_udot.usable(this, param)) { | |||
| ret.insert(ret.begin(), &sm_algo_pack.quint8_direct_stride1_udot); | |||
| } | |||
| @@ -18,24 +18,27 @@ namespace arm_common { | |||
| class ConvBiasImpl; | |||
| class ConvolutionBackwardDataImpl : public fallback::ConvolutionBackwardDataImpl { | |||
| class ConvolutionBackwardDataImpl | |||
| : public fallback::ConvolutionBackwardDataImpl { | |||
| public: | |||
| using fallback::ConvolutionBackwardDataImpl::ConvolutionBackwardDataImpl; | |||
| protected: | |||
| static void* const sm_arm_common_algo_type; | |||
| class AlgoBase : public Algorithm { | |||
| class AlgoBase : public fallback::ConvolutionBackwardDataImpl::AlgoBase { | |||
| protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| virtual bool usable(ConvolutionBackwardDataImpl* opr, | |||
| AlgoBase() : fallback::ConvolutionBackwardDataImpl::AlgoBase() { | |||
| m_handle_type = Handle::HandleType::ARM_COMMON; | |||
| } | |||
| virtual bool usable(fallback::ConvolutionBackwardDataImpl* opr, | |||
| const NCBKernSizeParam& param) const = 0; | |||
| virtual size_t get_workspace(ConvolutionBackwardDataImpl* opr, | |||
| virtual size_t get_workspace(fallback::ConvolutionBackwardDataImpl* opr, | |||
| const NCBKernSizeParam& param) const = 0; | |||
| virtual ncb_kern_t dispatch_kern( | |||
| ConvolutionBackwardDataImpl* opr, const NCBKernSizeParam& param) const = 0; | |||
| fallback::ConvolutionBackwardDataImpl* opr, | |||
| const NCBKernSizeParam& param) const = 0; | |||
| }; | |||
| ncb_kern_t ncb_1g_dispatch_kern(Algorithm* algo, | |||
| @@ -49,7 +52,7 @@ protected: | |||
| const char* get_algorithm_set_name() const override; | |||
| private: | |||
| private: | |||
| #if __ARM_FEATURE_DOTPROD | |||
| class AlgoSdot8DirectStride1; | |||
| class AlgoSdot8DirectStride2; | |||
| @@ -62,4 +65,4 @@ protected: | |||
| } // namespace arm_common | |||
| } // namespace megdnn | |||
| // vim: syntax=cpp.doxygen | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -27,12 +27,14 @@ using namespace arm_common; | |||
| /* ===================== direct stride 1 algo ===================== */ | |||
| bool ConvolutionBackwardDataImpl::AlgoUdot8DirectStride1::usable( | |||
| ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const { | |||
| fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const { | |||
| return deconv::can_stride1_quint8_dot(param); | |||
| } | |||
| size_t ConvolutionBackwardDataImpl::AlgoUdot8DirectStride1::get_workspace( | |||
| ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const { | |||
| fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_conv_quint8_kimpl, | |||
| midout_iv("AlgoUdot8DirectStride1::get_workspace"_hash)) { | |||
| return deconv::get_workspace_in_bytes_stride1_quint8_dot(param); | |||
| @@ -43,7 +45,7 @@ size_t ConvolutionBackwardDataImpl::AlgoUdot8DirectStride1::get_workspace( | |||
| ConvolutionBackwardDataImpl::ncb_kern_t | |||
| ConvolutionBackwardDataImpl::AlgoUdot8DirectStride1::dispatch_kern( | |||
| ConvolutionBackwardDataImpl*, const NCBKernSizeParam&) const { | |||
| fallback::ConvolutionBackwardDataImpl*, const NCBKernSizeParam&) const { | |||
| MIDOUT_BEGIN(megdnn_arm_conv_quint8_kimpl, | |||
| midout_iv("AlgoUdot8DirectStride1::dispatch_kern"_hash)) { | |||
| return deconv::stride1_quint8_dot; | |||
| @@ -54,12 +56,14 @@ ConvolutionBackwardDataImpl::AlgoUdot8DirectStride1::dispatch_kern( | |||
| /* ===================== direct stride 2 algo ===================== */ | |||
| bool ConvolutionBackwardDataImpl::AlgoUdot8DirectStride2::usable( | |||
| ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const { | |||
| fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const { | |||
| return deconv::can_stride2_quint8_dot(param); | |||
| } | |||
| size_t ConvolutionBackwardDataImpl::AlgoUdot8DirectStride2::get_workspace( | |||
| ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const { | |||
| fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_conv_quint8_kimpl, | |||
| midout_iv("AlgoUdot8DirectStride2::get_workspace"_hash)) { | |||
| return deconv::get_workspace_in_bytes_stride2_quint8_dot(param); | |||
| @@ -70,7 +74,7 @@ size_t ConvolutionBackwardDataImpl::AlgoUdot8DirectStride2::get_workspace( | |||
| ConvolutionBackwardDataImpl::ncb_kern_t | |||
| ConvolutionBackwardDataImpl::AlgoUdot8DirectStride2::dispatch_kern( | |||
| ConvolutionBackwardDataImpl*, const NCBKernSizeParam&) const { | |||
| fallback::ConvolutionBackwardDataImpl*, const NCBKernSizeParam&) const { | |||
| MIDOUT_BEGIN(megdnn_arm_conv_quint8_kimpl, | |||
| midout_iv("AlgoUdot8DirectStride2::dispatch_kern"_hash)) { | |||
| return deconv::stride2_quint8_dot; | |||
| @@ -6,7 +6,8 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #pragma once | |||
| @@ -18,38 +19,42 @@ namespace arm_common { | |||
| #if __ARM_FEATURE_DOTPROD | |||
| /* ===================== ConvolutionBackwardData ===================== */ | |||
| class ConvolutionBackwardDataImpl::AlgoUdot8DirectStride1 final : public AlgoBase { | |||
| class ConvolutionBackwardDataImpl::AlgoUdot8DirectStride1 final | |||
| : public AlgoBase { | |||
| public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "ARM_COMMON_QUINT8_DIRECT_DECONV_STRIDE1"; } | |||
| const char* name() const override { | |||
| return "ARM_COMMON_QUINT8_DIRECT_DECONV_STRIDE1"; | |||
| } | |||
| bool usable(ConvolutionBackwardDataImpl*, | |||
| bool usable(fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(ConvolutionBackwardDataImpl*, | |||
| size_t get_workspace(fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| ncb_kern_t dispatch_kern(ConvolutionBackwardDataImpl*, | |||
| ncb_kern_t dispatch_kern(fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| }; | |||
| class ConvolutionBackwardDataImpl::AlgoUdot8DirectStride2 final : public AlgoBase { | |||
| class ConvolutionBackwardDataImpl::AlgoUdot8DirectStride2 final | |||
| : public AlgoBase { | |||
| public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "ARM_COMMON_QUINT8_DIRECT_DECONV_STRIDE2"; } | |||
| const char* name() const override { | |||
| return "ARM_COMMON_QUINT8_DIRECT_DECONV_STRIDE2"; | |||
| } | |||
| bool usable(ConvolutionBackwardDataImpl*, | |||
| bool usable(fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(ConvolutionBackwardDataImpl*, | |||
| size_t get_workspace(fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| ncb_kern_t dispatch_kern(ConvolutionBackwardDataImpl*, | |||
| ncb_kern_t dispatch_kern(fallback::ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| }; | |||
| #endif | |||
| } // namespace arm_common | |||
| @@ -24,7 +24,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 4, AlgoDataType::INT8X8X16, DEFAULT) | |||
| }; | |||
| @@ -37,7 +36,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override { return 0; } | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| AlgoSet algoset() const override { return AlgoSet::ALGO_TYPE_GEMV; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 2, AlgoDataType::QINT8X8X32, DEFAULT) | |||
| @@ -51,7 +49,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override { return 0; } | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| AlgoSet algoset() const override { return AlgoSet::ALGO_TYPE_GEMV; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 2, AlgoDataType::QINT8X8X32, MK4) | |||
| @@ -66,7 +63,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override { return 0; } | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| AlgoSet algoset() const override { return AlgoSet::ALGO_TYPE_GEMV; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 2, AlgoDataType::QINT8X8X32, MK4_DOT) | |||
| @@ -84,7 +80,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override { return 0; } | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| AlgoSet algoset() const override { return AlgoSet::ALGO_TYPE_GEMV; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 4, AlgoDataType::FLOAT32, DEFAULT) | |||
| @@ -98,7 +93,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override { return 0; } | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| AlgoSet algoset() const override { return AlgoSet::ALGO_TYPE_GEMV; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(4, 1, 1, 4, AlgoDataType::FLOAT32, MK4) | |||
| @@ -113,7 +107,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override { return 0; } | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| AlgoSet algoset() const override { return AlgoSet::ALGO_TYPE_GEMV; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 2, AlgoDataType::FLOAT16, DEFAULT) | |||
| @@ -128,7 +121,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override { return 0; } | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| AlgoSet algoset() const override { return AlgoSet::ALGO_TYPE_GEMV; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC( | |||
| @@ -15,13 +15,6 @@ | |||
| using namespace megdnn; | |||
| using namespace arm_common; | |||
| namespace { | |||
| uint8_t arm_common_algo_type_storage; | |||
| } // anonymous namespace | |||
| void* const MatrixMulImpl::sm_arm_common_algo_type = | |||
| &arm_common_algo_type_storage; | |||
| class MatrixMulImpl::AlgoPack : NonCopyableObj { | |||
| AlgoInt8x8x16 int8x8x16; | |||
| #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
| @@ -49,10 +42,10 @@ public: | |||
| all_algos.emplace_back(&f32_gemv_mk4); | |||
| all_algos.emplace_back(&gevm); | |||
| } | |||
| SmallVector<AlgoBase*> all_algos; | |||
| SmallVector<fallback::MatrixMulImpl::AlgoBase*> all_algos; | |||
| }; | |||
| SmallVector<MatrixMulImpl::AlgoBase*> MatrixMulImpl::algo_pack() { | |||
| SmallVector<fallback::MatrixMulImpl::AlgoBase*> MatrixMulImpl::algo_pack() { | |||
| static AlgoPack s_algo_pack; | |||
| auto&& algos = fallback::MatrixMulImpl::algo_pack(); | |||
| algos.insert(algos.begin(), s_algo_pack.all_algos.begin(), | |||
| @@ -18,13 +18,18 @@ namespace arm_common { | |||
| class MatrixMulImpl : public fallback::MatrixMulImpl { | |||
| public: | |||
| using fallback::MatrixMulImpl::MatrixMulImpl; | |||
| bool is_thread_safe() const override { return true; } | |||
| SmallVector<AlgoBase*> algo_pack() override; | |||
| class AlgoBase : public fallback::MatrixMulImpl::AlgoBase { | |||
| public: | |||
| AlgoBase() : fallback::MatrixMulImpl::AlgoBase() { | |||
| m_handle_type = Handle::HandleType::ARM_COMMON; | |||
| } | |||
| }; | |||
| SmallVector<fallback::MatrixMulImpl::AlgoBase*> algo_pack() override; | |||
| protected: | |||
| static void* const sm_arm_common_algo_type; | |||
| class AlgoF32Gemv; // Arm_common F32 Gemv | |||
| class AlgoF32GemvMK4; // Arm_common F32 Gemv NCHW44 | |||
| class AlgoInt8x8x32Gemv; // Arm_common Int8x8x32 Gemv | |||
| @@ -32,7 +32,7 @@ public: | |||
| SmallVector<AlgoBase*> all_algos; | |||
| }; | |||
| SmallVector<ConvBiasImpl::AlgoBase*> ConvBiasImpl::algo_pack() { | |||
| SmallVector<fallback::ConvBiasImpl::AlgoBase*> ConvBiasImpl::algo_pack() { | |||
| static AlgoPack sl_algo_pack; | |||
| auto&& algos = arm_common::ConvBiasImpl::algo_pack(); | |||
| //! TODO fused matmul bias is slower than matmul + elemwise in armv7 now, | |||
| @@ -18,11 +18,16 @@ namespace armv7 { | |||
| class ConvBiasImpl : public arm_common::ConvBiasImpl { | |||
| public: | |||
| using arm_common::ConvBiasImpl::ConvBiasImpl; | |||
| class AlgoBase : public arm_common::ConvBiasImpl::AlgoBase { | |||
| public: | |||
| AlgoBase() : arm_common::ConvBiasImpl::AlgoBase() { | |||
| m_handle_type = Handle::HandleType::ARMV7; | |||
| } | |||
| }; | |||
| SmallVector<AlgoBase*> algo_pack() override; | |||
| SmallVector<fallback::ConvBiasImpl::AlgoBase*> algo_pack() override; | |||
| protected: | |||
| const char* get_algorithm_set_name() const override; | |||
| private: | |||
| @@ -26,7 +26,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -37,7 +36,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -48,7 +46,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(4, 8, 4, 4, AlgoDataType::FLOAT32, MK4) | |||
| }; | |||
| @@ -61,7 +58,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| class MatrixMulImpl::AlgoF16MK8_4x8 final : public AlgoBase { | |||
| @@ -71,7 +67,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(4, 8, 8, 2, AlgoDataType::FLOAT16, MK8) | |||
| }; | |||
| @@ -121,7 +116,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -133,7 +127,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -144,7 +137,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -156,7 +148,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -168,7 +159,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -180,7 +170,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -192,7 +181,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -203,7 +191,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(4, 8, 8, 2, AlgoDataType::INT16X16X32, MK8) | |||
| }; | |||
| @@ -216,7 +203,6 @@ public: | |||
| bool preferred(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_arm_common_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -44,7 +44,7 @@ class MatrixMulImpl::AlgoPack : NonCopyableObj { | |||
| AlgoInt16x16x32MK8_4x8 int16x16x32_mk8_4x8; | |||
| public: | |||
| SmallVector<MatrixMulImpl::AlgoBase*> all_algos; | |||
| SmallVector<fallback::MatrixMulImpl::AlgoBase*> all_algos; | |||
| AlgoPack() { | |||
| all_algos.emplace_back(&f32_gemv); | |||
| @@ -73,7 +73,7 @@ public: | |||
| } | |||
| }; | |||
| SmallVector<MatrixMulImpl::AlgoBase*> MatrixMulImpl::algo_pack() { | |||
| SmallVector<fallback::MatrixMulImpl::AlgoBase*> MatrixMulImpl::algo_pack() { | |||
| static AlgoPack s_algo_pack; | |||
| auto algos = arm_common::MatrixMulImpl::algo_pack(); | |||
| algos.insert(algos.begin(), s_algo_pack.all_algos.begin(), | |||
| @@ -18,7 +18,14 @@ namespace armv7 { | |||
| class MatrixMulImpl : public arm_common::MatrixMulImpl { | |||
| public: | |||
| using arm_common::MatrixMulImpl::MatrixMulImpl; | |||
| SmallVector<AlgoBase*> algo_pack() override; | |||
| class AlgoBase : public arm_common::MatrixMulImpl::AlgoBase { | |||
| public: | |||
| AlgoBase() : arm_common::MatrixMulImpl::AlgoBase() { | |||
| m_handle_type = Handle::HandleType::ARMV7; | |||
| } | |||
| }; | |||
| SmallVector<fallback::MatrixMulImpl::AlgoBase*> algo_pack() override; | |||
| private: | |||
| class AlgoF32; // Armv7 F32 | |||
| @@ -26,6 +26,7 @@ protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs { | |||
| BatchConvBiasForwardImpl* opr; | |||
| TensorLayout src_layout, filter_layout, bias_layout, z_layout, | |||
| @@ -28,6 +28,7 @@ protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs { | |||
| BatchedMatrixMulForwardImpl* opr; | |||
| TensorLayout layout_a, layout_b, layout_c; | |||
| @@ -38,6 +38,7 @@ protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs : public conv_bias::BiasForwardSizeArgs { | |||
| ConvBiasForwardImpl* opr; | |||
| @@ -28,6 +28,7 @@ class ConvolutionBackwardDataImpl::AlgoBase: public Algorithm { | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs { | |||
| HandleImpl *handle; | |||
| CanonizedFilterMeta filter_meta; | |||
| @@ -28,6 +28,7 @@ class ConvolutionBackwardFilterImpl::AlgoBase: public Algorithm { | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs { | |||
| HandleImpl *handle; | |||
| const TensorLayout *src_layout, *diff_layout, *grad_layout; | |||
| @@ -28,6 +28,7 @@ class Convolution3DBackwardDataImpl::AlgoBase: public Algorithm { | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs { | |||
| HandleImpl *handle; | |||
| CanonizedFilterMeta filter_meta; | |||
| @@ -22,6 +22,7 @@ class Convolution3DBackwardFilterImpl::AlgoBase: public Algorithm { | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs { | |||
| HandleImpl *handle; | |||
| const TensorLayout *src_layout, *diff_layout; | |||
| @@ -128,8 +129,8 @@ class Convolution3DBackwardFilterImpl::AlgoInplaceMatmul final: public AlgoBase | |||
| const char* name() const override { | |||
| return "INPLACE_MATMUL"; | |||
| } | |||
| bool is_reproducible() const override { | |||
| return false; | |||
| bool is_reproducible() const override { | |||
| return false; | |||
| } | |||
| }; | |||
| @@ -34,6 +34,7 @@ class Convolution3DForwardImpl::AlgoBase: public Algorithm { | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs: public convolution3d::ForwardSizeArgs { | |||
| Convolution3DForwardImpl *opr; | |||
| @@ -42,11 +43,11 @@ class Convolution3DForwardImpl::AlgoBase: public Algorithm { | |||
| desc.set(*src_layout, filter_meta, *dst_layout, opr->param()); | |||
| } | |||
| SizeArgs(Convolution3DForwardImpl *opr, | |||
| const TensorLayout &src, | |||
| const TensorLayout &src, | |||
| const TensorLayout &filter, | |||
| const TensorLayout &dst); | |||
| SizeArgs(Convolution3DForwardImpl *opr, | |||
| const TensorLayout &src, | |||
| const TensorLayout &src, | |||
| const CanonizedFilterMeta &filter, | |||
| const TensorLayout &dst); | |||
| }; | |||
| @@ -26,6 +26,7 @@ protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs { | |||
| DeformableConvBackwardDataImpl* opr; | |||
| HandleImpl* handle; | |||
| @@ -26,6 +26,7 @@ protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs { | |||
| DeformableConvBackwardFilterImpl* opr; | |||
| HandleImpl* handle; | |||
| @@ -24,6 +24,7 @@ protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs { | |||
| DeformableConvForwardImpl* opr; | |||
| HandleImpl* handle; | |||
| @@ -25,6 +25,7 @@ protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs { | |||
| LocalShareBackwardDataImpl* opr; | |||
| TensorLayout filter_layout, diff_layout, grad_layout; | |||
| @@ -25,6 +25,7 @@ protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs { | |||
| LocalShareBackwardFilterImpl* opr; | |||
| TensorLayout src_layout, diff_layout, grad_layout; | |||
| @@ -25,6 +25,7 @@ protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs { | |||
| LocalShareForwardImpl* opr; | |||
| TensorLayout src_layout, filter_layout, dst_layout; | |||
| @@ -32,13 +32,14 @@ protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs { | |||
| MatrixMulForwardImpl* opr; | |||
| TensorLayout layout_a, layout_b, layout_c; | |||
| std::string to_string() const; | |||
| SizeArgs(MatrixMulForwardImpl* opr, const TensorLayout& A, const TensorLayout& B, | |||
| const TensorLayout& C); | |||
| SizeArgs(MatrixMulForwardImpl* opr, const TensorLayout& A, | |||
| const TensorLayout& B, const TensorLayout& C); | |||
| bool can_be_treated_as_int8x8x32() const { | |||
| return layout_a.dtype.enumv() == layout_b.dtype.enumv() && | |||
| @@ -213,6 +213,9 @@ public: | |||
| class AlgoBase : public Algorithm { | |||
| public: | |||
| AlgoBase() : Algorithm() { | |||
| m_handle_type = Handle::HandleType::FALLBACK; | |||
| } | |||
| virtual ~AlgoBase() = default; | |||
| virtual bool usable( | |||
| const NCBKernSizeParam& param, | |||
| @@ -141,8 +141,6 @@ public: | |||
| return get_kimpl(m_algorithm, param); | |||
| } | |||
| void* type() const override { return sm_fallback_conv_algo_type; } | |||
| //! select matmul to the highest preference | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| @@ -168,7 +166,6 @@ public: | |||
| const NCBKernSizeParam& param) const override; | |||
| ncb_kern_t dispatch_kern(ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| void* type() const override { return sm_fallback_deconv_algo_type; } | |||
| }; | |||
| class ConvolutionBackwardDataImpl::AlgoMatrixMul final : public AlgoBase { | |||
| @@ -181,7 +178,6 @@ public: | |||
| const NCBKernSizeParam& param) const override; | |||
| ncb_kern_t dispatch_kern(ConvolutionBackwardDataImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| void* type() const override { return sm_fallback_deconv_algo_type; } | |||
| }; | |||
| } // namespace fallback | |||
| @@ -37,8 +37,6 @@ class NaiveConvolutionBackwardData final | |||
| const char* name() const override { return "NCBD"; } | |||
| }; | |||
| NaiveConvolutionBackwardData naive_conv_backward_data; | |||
| uint8_t fallback_deconv_algo_type_storage; | |||
| uint8_t fallback_conv_algo_type_storage; | |||
| template <typename T> | |||
| void incr_ptr(T*& dst, ptrdiff_t delta) { | |||
| @@ -69,9 +67,6 @@ public: | |||
| SmallVector<AlgoBase*> all_algos; | |||
| }; | |||
| void* const ConvolutionImpl::sm_fallback_conv_algo_type = | |||
| &fallback_conv_algo_type_storage; | |||
| SmallVector<ConvolutionImpl::AlgoBase*> ConvolutionImpl::algo_pack() { | |||
| static AlgoPack sl_algo_pack; | |||
| return sl_algo_pack.all_algos; | |||
| @@ -412,9 +407,6 @@ ConvolutionImpl::NCBKernSizeParam::deduce_algo_data_type() const { | |||
| /* ===================== ConvolutionBackwardData ===================== */ | |||
| void* const ConvolutionBackwardDataImpl::sm_fallback_deconv_algo_type = | |||
| &fallback_deconv_algo_type_storage; | |||
| struct ConvolutionBackwardDataImpl::AlgoPack { | |||
| AlgoDirect direct; | |||
| AlgoMatrixMul matmul; | |||
| @@ -630,7 +622,7 @@ ConvolutionBackwardDataImpl::get_algorithm_heuristic_with_ncb( | |||
| size_t ConvolutionBackwardDataImpl::ncb_1g_get_workspace( | |||
| Algorithm* algo, const NCBKernSizeParam& param) { | |||
| megdnn_assert(param.filter_meta.group == 1); | |||
| if (algo->type() == sm_fallback_deconv_algo_type) { | |||
| if (algo->handle_type() == Handle::HandleType::FALLBACK) { | |||
| return static_cast<AlgoBase*>(algo)->get_workspace(this, param); | |||
| } | |||
| megdnn_assert(algo == &naive_conv_backward_data); | |||
| @@ -642,7 +634,7 @@ ConvolutionBackwardDataImpl::ncb_1g_dispatch_kern( | |||
| Algorithm* algo, const NCBKernSizeParam& param) { | |||
| megdnn_assert(param.filter_meta.group == 1); | |||
| if (algo->type() == sm_fallback_deconv_algo_type) { | |||
| if (algo->handle_type() == Handle::HandleType::FALLBACK) { | |||
| return static_cast<AlgoBase*>(algo)->dispatch_kern(this, param); | |||
| } | |||
| @@ -177,8 +177,6 @@ public: | |||
| } | |||
| }; | |||
| static void* const sm_fallback_conv_algo_type; | |||
| /** | |||
| * \brief Kernel run time id, This information is used for getting the | |||
| * work data | |||
| @@ -197,6 +195,9 @@ public: | |||
| class AlgoBase : public Algorithm { | |||
| public: | |||
| AlgoBase() : Algorithm() { | |||
| m_handle_type = Handle::HandleType::FALLBACK; | |||
| } | |||
| virtual ~AlgoBase() = default; | |||
| virtual bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const = 0; | |||
| @@ -407,13 +408,14 @@ protected: | |||
| const NCBKernSizeParam& param, size_t workspace_limit_in_bytes, | |||
| bool reproducible = false); | |||
| static void* const sm_fallback_deconv_algo_type; | |||
| class AlgoBase : public Algorithm { | |||
| protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { | |||
| m_handle_type = Handle::HandleType::FALLBACK; | |||
| } | |||
| virtual bool usable(ConvolutionBackwardDataImpl* opr, | |||
| const NCBKernSizeParam& param) const = 0; | |||
| virtual size_t get_workspace(ConvolutionBackwardDataImpl* opr, | |||
| @@ -103,6 +103,7 @@ public: | |||
| } | |||
| public: | |||
| AlgoBase() { m_handle_type = Handle::HandleType::FALLBACK; } | |||
| enum class AlgoSet : uint32_t { | |||
| ALGO_TYPE_GEMM = 0, | |||
| ALGO_TYPE_GEMV = 1, | |||
| @@ -6,10 +6,11 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "hcc_detail/hcc_defs_prologue.h" | |||
| #include "./opr_impl.h" | |||
| #include "hcc_detail/hcc_defs_prologue.h" | |||
| #include "src/common/utils.cuh" | |||
| #include "src/rocm/handle.h" | |||
| @@ -92,8 +93,8 @@ void BatchedMatrixMulForwardImpl::exec(_megdnn_tensor_in A, _megdnn_tensor_in B, | |||
| static_cast<const rocblas_half*>(A.raw_ptr), | |||
| A.layout.stride[1], A.layout.stride[0], | |||
| reinterpret_cast<const rocblas_half*>(zero_half), | |||
| static_cast<rocblas_half*>(C.raw_ptr), | |||
| C.layout.stride[1], C.layout.stride[0], batch)); | |||
| static_cast<rocblas_half*>(C.raw_ptr), C.layout.stride[1], | |||
| C.layout.stride[0], batch)); | |||
| }; | |||
| #endif | |||
| @@ -25,6 +25,7 @@ protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::ROCM; } | |||
| struct SizeArgs { | |||
| HandleImpl* handle; | |||
| CanonizedFilterMeta filter_meta; | |||
| @@ -26,6 +26,7 @@ protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::ROCM; } | |||
| struct SizeArgs { | |||
| HandleImpl* handle; | |||
| const TensorLayout *src_layout, *diff_layout; | |||
| @@ -32,6 +32,7 @@ protected: | |||
| ~AlgoBase() = default; | |||
| public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::ROCM; } | |||
| struct SizeArgs : public convolution::ForwardSizeArgs { | |||
| ConvolutionForwardImpl* opr; | |||
| @@ -47,8 +47,6 @@ public: | |||
| return get_kimpls(param); | |||
| } | |||
| void* type() const override; | |||
| ConvAlgoTypePack get_algo_type() const override { | |||
| return {AlgoDataType::FLOAT32, AlgoCategory::DIRECT}; | |||
| } | |||
| @@ -84,8 +82,6 @@ public: | |||
| return get_kimpls(param); | |||
| } | |||
| void* type() const override; | |||
| ConvAlgoTypePack get_algo_type() const override { | |||
| return {AlgoDataType::FLOAT32, AlgoCategory::DIRECT}; | |||
| } | |||
| @@ -103,7 +99,6 @@ public: | |||
| } | |||
| return m_name.c_str(); | |||
| } | |||
| void* type() const override; | |||
| MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(AlgoDataType::FLOAT32); | |||
| }; | |||
| @@ -119,7 +114,6 @@ public: | |||
| } | |||
| return m_name.c_str(); | |||
| } | |||
| void* type() const override; | |||
| MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(AlgoDataType::FLOAT32); | |||
| }; | |||
| @@ -161,7 +155,6 @@ public: | |||
| }; | |||
| return {{kern, {1_z, 1_z, 1_z}}}; | |||
| } | |||
| void* type() const override; | |||
| ConvAlgoTypePack get_algo_type() const override { | |||
| return {AlgoDataType::FLOAT32, AlgoCategory::DIRECT}; | |||
| @@ -32,7 +32,6 @@ public: | |||
| const NCBKernSizeParam& param) const override { | |||
| return get_kimpls(param); | |||
| } | |||
| void* type() const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| ConvAlgoTypePack get_algo_type() const override { | |||
| @@ -57,7 +56,6 @@ public: | |||
| const NCBKernSizeParam& param) const override { | |||
| return get_kimpls(param); | |||
| } | |||
| void* type() const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| ConvAlgoTypePack get_algo_type() const override { | |||
| @@ -82,7 +80,6 @@ public: | |||
| const NCBKernSizeParam& param) const override { | |||
| return get_kimpls(param); | |||
| } | |||
| void* type() const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| ConvAlgoTypePack get_algo_type() const override { | |||
| @@ -107,7 +104,6 @@ public: | |||
| const NCBKernSizeParam& param) const override { | |||
| return get_kimpls(param); | |||
| } | |||
| void* type() const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| ConvAlgoTypePack get_algo_type() const override { | |||
| @@ -148,7 +144,6 @@ public: | |||
| }; | |||
| return {{kern, {group, n, 1_z}}}; | |||
| } | |||
| void* type() const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| ConvAlgoTypePack get_algo_type() const override { | |||
| @@ -179,8 +174,6 @@ public: | |||
| //! select matmul to the highest preference | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| void* type() const override; | |||
| ConvAlgoTypePack get_algo_type() const override { | |||
| return {AlgoDataType::QINT8X8X32, AlgoCategory::IM2COL}; | |||
| } | |||
| @@ -22,54 +22,14 @@ | |||
| using namespace megdnn; | |||
| using namespace x86; | |||
| namespace { | |||
| uint8_t x86_algo_type_storage; | |||
| void* x86_algo_type = &x86_algo_type_storage; | |||
| } // anonymous namespace | |||
| #if MEGDNN_X86_WITH_MKL_DNN | |||
| void* ConvBiasImpl::AlgoMkldnnQint8::type() const { | |||
| return x86_algo_type; | |||
| } | |||
| void* ConvBiasImpl::AlgoMkldnnMatmulQint8::type() const { | |||
| return x86_algo_type; | |||
| } | |||
| void* ConvBiasImpl::AlgoMkldnnConv::type() const { | |||
| return x86_algo_type; | |||
| } | |||
| #endif | |||
| void* ConvBiasImpl::AlgoDirect::type() const { | |||
| return x86_algo_type; | |||
| } | |||
| void* ConvBiasImpl::AlgoDirectStride2::type() const { | |||
| return x86_algo_type; | |||
| } | |||
| void* ConvBiasImpl::AlgoDirectAvx2Stride1Int8::type() const { | |||
| return x86_algo_type; | |||
| bool is_fallback_or_naive(const detail::Algorithm* algo) { | |||
| return algo->handle_type() == Handle::HandleType::NAIVE || | |||
| algo->handle_type() == Handle::HandleType::FALLBACK; | |||
| } | |||
| void* ConvBiasImpl::AlgoFP32WinogradF63_8x8::type() const { | |||
| return x86_algo_type; | |||
| } | |||
| void* ConvBiasImpl::AlgoFP32WinogradF23_8x8::type() const { | |||
| return x86_algo_type; | |||
| } | |||
| void* ConvBiasImpl::AlgoAVX2DirectConvStride2::type() const { | |||
| return x86_algo_type; | |||
| } | |||
| void* ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::type() const { | |||
| return x86_algo_type; | |||
| } | |||
| void* ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::type() const { | |||
| return x86_algo_type; | |||
| } | |||
| } // anonymous namespace | |||
| class ConvBiasImpl::AlgoPack : NonCopyableObj { | |||
| AlgoDirect stride1_direct; | |||
| @@ -88,8 +48,8 @@ class ConvBiasImpl::AlgoPack : NonCopyableObj { | |||
| public: | |||
| AlgoPack() { | |||
| //! FIXME: preference to use mkldnn algo on VNNI devices | |||
| //! But now mkldnn algo preference issue with NCHW->NHWC->NCHW | |||
| //! FIXME: preference to use mkldnn algo on VNNI devices | |||
| //! But now mkldnn algo preference issue with NCHW->NHWC->NCHW | |||
| #if MEGDNN_X86_WITH_MKL_DNN | |||
| //! Create the mkldnn algo | |||
| all_algos.emplace_back(&mkldnn_conv_fp32); | |||
| @@ -108,7 +68,7 @@ public: | |||
| auto&& matmul_algos = | |||
| static_cast<MatrixMulImpl*>(matmul_opr)->algo_pack(); | |||
| for (auto&& algo : matmul_algos) { | |||
| if (algo->type() == nullptr) | |||
| if (is_fallback_or_naive(algo)) | |||
| continue; | |||
| for (uint32_t tile_size : {8, 16, 24}) { | |||
| refhold.emplace_back(new AlgoFP32WinogradF63_8x8( | |||
| @@ -126,7 +86,7 @@ public: | |||
| SmallVector<AlgoBase*> winograd_algos; | |||
| }; | |||
| SmallVector<ConvBiasImpl::AlgoBase*> ConvBiasImpl::algo_pack() { | |||
| SmallVector<fallback::ConvBiasImpl::AlgoBase*> ConvBiasImpl::algo_pack() { | |||
| static AlgoPack sl_algo_pack; | |||
| auto&& algos = fallback::ConvBiasImpl::algo_pack(); | |||
| algos.insert(algos.begin(), sl_algo_pack.all_algos.begin(), | |||
| @@ -176,8 +136,8 @@ bool ConvBiasImpl::is_matmul_quantized_prefer( | |||
| !chanwise_avx2_stride2_qint8_usable_preferred(param)); | |||
| } | |||
| SmallVector<AlgoCategory> | |||
| ConvBiasImpl::suggest_algo_category_order(const NCBKernSizeParam& param) const { | |||
| SmallVector<AlgoCategory> ConvBiasImpl::suggest_algo_category_order( | |||
| const NCBKernSizeParam& param) const { | |||
| auto IC = param.filter_meta.icpg; | |||
| auto OC = param.filter_meta.ocpg; | |||
| auto FH = param.filter_meta.spatial[0]; | |||
| @@ -20,10 +20,15 @@ namespace x86 { | |||
| class ConvBiasImpl : public fallback::ConvBiasImpl { | |||
| public: | |||
| using fallback::ConvBiasImpl::ConvBiasImpl; | |||
| using FallbackConvBiasImpl = fallback::ConvBiasImpl; | |||
| class AlgoBase : public fallback::ConvBiasImpl::AlgoBase { | |||
| public: | |||
| AlgoBase() : fallback::ConvBiasImpl::AlgoBase() { | |||
| m_handle_type = Handle::HandleType::X86; | |||
| } | |||
| }; | |||
| bool is_thread_safe() const override { return true; } | |||
| SmallVector<AlgoBase*> algo_pack() override; | |||
| SmallVector<fallback::ConvBiasImpl::AlgoBase*> algo_pack() override; | |||
| SmallVector<AlgoCategory> suggest_algo_category_order( | |||
| const NCBKernSizeParam& param) const override; | |||
| @@ -25,7 +25,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override { return 0; } | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_x86_algo_type; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 4, AlgoDataType::FLOAT32, DEFAULT) | |||
| }; | |||
| @@ -38,7 +37,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override { return 0; } | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_x86_algo_type; } | |||
| PackMode packmode() const override { return PackMode::ONLY_PACKA; } | |||
| kern_naked_t get_kern_naked(const KernSizeParam&) const override; | |||
| void pack_A(const KernParam& kern_param, void* out, size_t index, | |||
| @@ -60,7 +58,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_x86_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -71,7 +68,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_x86_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -86,7 +82,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_x86_algo_type; } | |||
| bool preferred(const KernSizeParam&) const override; | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -102,7 +97,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_x86_algo_type; } | |||
| bool preferred(const KernSizeParam&) const override; | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -114,7 +108,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_x86_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| @@ -125,7 +118,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_x86_algo_type; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(8, 8, 8, 4, AlgoDataType::FLOAT32, MK8) | |||
| }; | |||
| @@ -138,7 +130,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override; | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_x86_algo_type; } | |||
| MEGDNN_REG_GEMM_FUNC_FOR_IM2COL(); | |||
| }; | |||
| #endif | |||
| @@ -151,7 +142,6 @@ public: | |||
| bool usable(const KernSizeParam&) const override; | |||
| size_t get_workspace(const KernSizeParam&) const override { return 0; } | |||
| kern_t get_kern(const KernSizeParam&) const override; | |||
| void* type() const override { return sm_x86_algo_type; } | |||
| PackMode packmode() const override { return PackMode::NO_PACK; } | |||
| MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 2, AlgoDataType::QINT8X8X32, DEFAULT) | |||
| }; | |||
| @@ -16,12 +16,6 @@ | |||
| using namespace megdnn; | |||
| using namespace x86; | |||
| namespace { | |||
| uint8_t x86_algo_type_storage; | |||
| } // anonymous namespace | |||
| void* const MatrixMulImpl::sm_x86_algo_type = &x86_algo_type_storage; | |||
| class MatrixMulImpl::AlgoPack : NonCopyableObj { | |||
| AlgoF32Blas f32blas; | |||
| @@ -62,10 +56,10 @@ public: | |||
| all_algos.emplace_back(&f32mkl_packa); | |||
| #endif | |||
| } | |||
| SmallVector<AlgoBase*> all_algos; | |||
| SmallVector<fallback::MatrixMulImpl::AlgoBase*> all_algos; | |||
| }; | |||
| SmallVector<MatrixMulImpl::AlgoBase*> MatrixMulImpl::algo_pack() { | |||
| SmallVector<fallback::MatrixMulImpl::AlgoBase*> MatrixMulImpl::algo_pack() { | |||
| static AlgoPack s_algo_pack; | |||
| auto&& algos = fallback::MatrixMulImpl::algo_pack(); | |||
| algos.insert(algos.begin(), s_algo_pack.all_algos.begin(), | |||
| @@ -33,13 +33,18 @@ namespace x86 { | |||
| class MatrixMulImpl : public fallback::MatrixMulImpl { | |||
| public: | |||
| using fallback::MatrixMulImpl::MatrixMulImpl; | |||
| class AlgoBase : public fallback::MatrixMulImpl::AlgoBase { | |||
| public: | |||
| AlgoBase() : fallback::MatrixMulImpl::AlgoBase() { | |||
| m_handle_type = Handle::HandleType::X86; | |||
| } | |||
| }; | |||
| bool is_thread_safe() const override { return true; } | |||
| SmallVector<AlgoBase*> algo_pack() override; | |||
| SmallVector<fallback::MatrixMulImpl::AlgoBase*> algo_pack() override; | |||
| protected: | |||
| static void* const sm_x86_algo_type; | |||
| class AlgoF32Blas; | |||
| #if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM | |||
| class AlgoF32MKLPackA; | |||