GitOrigin-RevId: 61c54ad258
tags/v1.0.0-rc1
| @@ -31,35 +31,10 @@ using namespace im2col; | |||
| * *Through witch can convenient get the needed ptr | |||
| */ | |||
| struct Im2colBundelIndex { | |||
| static constexpr size_t BUNDLE_PADDING_INDEX = 0_z; | |||
| static constexpr size_t BUNDLE_PACKA_INDEX = 1_z; | |||
| static constexpr size_t BUNDLE_THREAD_INDEX = 2_z; | |||
| }; | |||
| using Pack_Mode=fallback::MatrixMulImpl::AlgoBase::PackMode; | |||
| //! Process one input channel copy padding | |||
| static void copy_padding_kern(WorkspaceBundle& bundle, | |||
| const ConvBiasImpl::NCBKernParam& param, | |||
| const ConvBiasImpl::NCBKernIndex& ncb_index, | |||
| StrategyBase* im2colstrategy, size_t pack_oc_size) { | |||
| im2colstrategy->copy_padding_kern(bundle, param, ncb_index, pack_oc_size); | |||
| } | |||
| //! packA_kern | |||
| static void packA_kern( | |||
| WorkspaceBundle& bundle, | |||
| const fallback::ConvBiasImpl::NCBKernParam& param, | |||
| fallback::MatrixMulImpl::KernSizeParam matmulparam, | |||
| fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
| const fallback::ConvBiasImpl::NCBKernIndex& ncb_index, | |||
| StrategyBase* im2colstrategy, | |||
| const fallback::MatrixMulImpl::AlgoBase::MatmulDescription& matmul_desc, | |||
| size_t pack_oc_size) { | |||
| im2colstrategy->packA_kern(bundle, param, matmulparam, matmul_algo, | |||
| ncb_index, matmul_desc, pack_oc_size); | |||
| } | |||
| /*! | |||
| * *\brief Im2colKerns collects all the im2col kerns in it | |||
| */ | |||
| @@ -124,8 +99,8 @@ public: | |||
| WorkspaceBundle get_thread_bundle( | |||
| const fallback::ConvBiasImpl::NCBKernSizeParam& param, | |||
| fallback::MatrixMulImpl::KernSizeParam im2col_kern_param, | |||
| MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size, | |||
| const fallback::MatrixMulImpl::KernSizeParam& im2col_kern_param, | |||
| const MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size, | |||
| size_t oc_tile_size) { | |||
| size_t IC = param.filter_meta.icpg, FH = param.filter_meta.spatial[0], | |||
| FW = param.filter_meta.spatial[1]; | |||
| @@ -205,8 +180,8 @@ public: | |||
| } | |||
| WorkspaceBundle get_thread_bundle( | |||
| const fallback::ConvBiasImpl::NCBKernSizeParam& param, | |||
| fallback::MatrixMulImpl::KernSizeParam im2col_kern_param, | |||
| MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size, | |||
| const fallback::MatrixMulImpl::KernSizeParam& im2col_kern_param, | |||
| const MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size, | |||
| size_t oc_tile_size) { | |||
| size_t IC = param.filter_meta.icpg, FH = param.filter_meta.spatial[0], | |||
| FW = param.filter_meta.spatial[1]; | |||
| @@ -288,8 +263,8 @@ public: | |||
| } | |||
| WorkspaceBundle get_thread_bundle( | |||
| const fallback::ConvBiasImpl::NCBKernSizeParam& param, | |||
| fallback::MatrixMulImpl::KernSizeParam im2col_kern_param, | |||
| MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size, | |||
| const fallback::MatrixMulImpl::KernSizeParam& im2col_kern_param, | |||
| const MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size, | |||
| size_t oc_tile_size) { | |||
| size_t IC = param.filter_meta.icpg, FH = param.filter_meta.spatial[0], | |||
| FW = param.filter_meta.spatial[1]; | |||
| @@ -322,15 +297,16 @@ public: | |||
| } | |||
| }; | |||
| fallback::MatrixMulImpl::KernSizeParam | |||
| ConvBiasImpl::AlgoIm2col ::get_matmul_kern_param(const NCBKernSizeParam& param, | |||
| size_t ohw_tile_size, | |||
| size_t oc_tile_size) const { | |||
| namespace { | |||
| static fallback::MatrixMulImpl::KernSizeParam get_matmul_kern_param( | |||
| const fallback::ConvBiasImpl::NCBKernSizeParam& param, | |||
| size_t ohw_tile_size, size_t oc_tile_size) { | |||
| auto format = param::MatrixMul::Format::DEFAULT; | |||
| size_t pack_oc_size = pack_size(param.filter_meta.format); | |||
| if (param.filter_meta.format == param::ConvBias::Format::NCHW44) { | |||
| format = param::MatrixMul::Format::MK4; | |||
| } else if(param.filter_meta.format == param::ConvBias::Format::NCHW44_DOT){ | |||
| } else if (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW44_DOT) { | |||
| format = param::MatrixMul::Format::MK4_DOT; | |||
| } | |||
| size_t M = oc_tile_size; | |||
| @@ -358,10 +334,23 @@ ConvBiasImpl::AlgoIm2col ::get_matmul_kern_param(const NCBKernSizeParam& param, | |||
| format}; | |||
| } | |||
| void ConvBiasImpl::AlgoIm2col::choice_ohw_oc_block( | |||
| const NCBKernSizeParam& param, size_t& oc_tile_size, | |||
| size_t& ohw_tile_size, size_t block_m, size_t block_n, | |||
| fallback::MatrixMulImpl::AlgoBase::PackMode pack_mode) const { | |||
| static void choice_ohw_oc_block( | |||
| const fallback::ConvBiasImpl::NCBKernSizeParam& param, | |||
| size_t& oc_tile_size, size_t& ohw_tile_size, size_t block_m, | |||
| size_t block_n, const size_t m_ohw_tile_size, | |||
| fallback::MatrixMulImpl::AlgoBase::PackMode pack_mode) { | |||
| //! calculate m_oc_tile_size in choice_ohw_oc_block() fucntion, | |||
| //! when ohw_tile_size < this value ohw_tile_size = ohw | |||
| static constexpr size_t DEFAULT_OHW_MIN_TILE_SIZE = 32; | |||
| //! when nr_threads > 1 and round(ohw,nr_threads)>nr_threads, | |||
| //! oc_tile_size = DEFAULT_OC_TILE_SIZE | |||
| static constexpr size_t DEFAULT_OC_TILE_SIZE = 512; | |||
| //! when oc_tile_size > this value m_oc_tile_size = | |||
| //! DEFAULT_OC_MAX_TILE_SIZE | |||
| static constexpr size_t DEFAULT_OC_MAX_TILE_SIZE = 1024; | |||
| //! when oc_tile_size < this value oc_tile_size = | |||
| //! DEFAULT_OC_MIN_TILE_SIZE the purpose is aligning the calculation | |||
| static constexpr size_t DEFAULT_OC_MIN_TILE_SIZE = 128; | |||
| size_t nr_threads = param.nr_threads; | |||
| size_t OC = param.filter_meta.ocpg; | |||
| size_t ohw = param.osz[0] * param.osz[1]; | |||
| @@ -393,8 +382,74 @@ void ConvBiasImpl::AlgoIm2col::choice_ohw_oc_block( | |||
| } | |||
| } | |||
| WorkspaceBundle ConvBiasImpl::AlgoIm2col::get_bundle( | |||
| const NCBKernSizeParam& param) const { | |||
| static size_t packA_group_size( | |||
| const MatrixMulImpl::AlgoBase* matmul_algo, | |||
| const fallback::MatrixMulImpl::KernSizeParam& matmul_param, | |||
| const fallback::MatrixMulImpl::AlgoBase::MatmulDescription& matmul_desc, | |||
| size_t packa_parallel_times) { | |||
| if (matmul_desc.packmode == | |||
| fallback::MatrixMulImpl::AlgoBase::PackMode::DEFAULT) { | |||
| return matmul_algo->get_bundle(matmul_param).get_size(0); | |||
| } else if (matmul_desc.packmode == | |||
| fallback::MatrixMulImpl::AlgoBase::PackMode::ONLY_PACKA) { | |||
| return packa_parallel_times * | |||
| matmul_algo->get_bundle(matmul_param).get_size(0); | |||
| } | |||
| megdnn_assert(matmul_desc.packmode == | |||
| fallback::MatrixMulImpl::AlgoBase::PackMode::NO_PACK); | |||
| //! nopack mode return 0; | |||
| return 0; | |||
| } | |||
| static WorkspaceBundle get_thread_bundle( | |||
| const fallback::ConvBiasImpl::NCBKernSizeParam& param, | |||
| const MatrixMulImpl::AlgoBase* matmul_algo, | |||
| const fallback::MatrixMulImpl::KernSizeParam& matmul_param, | |||
| const fallback::MatrixMulImpl::AlgoBase::MatmulDescription& matmul_desc, | |||
| size_t oc_tile_size, size_t ohw_tile_size) { | |||
| if (matmul_desc.packmode == Pack_Mode::DEFAULT) { | |||
| MIDOUT_BEGIN( | |||
| megdnn_fallback_im2col, | |||
| midout_iv("ConvBiasImpl::AlgoIm2col::get_bundle_dft"_hash)) { | |||
| Im2colKerns<Pack_Mode::DEFAULT> defaultkern; | |||
| return defaultkern.get_thread_bundle(param, matmul_param, | |||
| matmul_algo, ohw_tile_size, | |||
| oc_tile_size); | |||
| } | |||
| MIDOUT_END(); | |||
| } else if (matmul_desc.packmode == | |||
| fallback::MatrixMulImpl::AlgoBase::PackMode::ONLY_PACKA) { | |||
| MIDOUT_BEGIN( | |||
| megdnn_fallback_im2col, | |||
| midout_iv( | |||
| "ConvBiasImpl::AlgoIm2col::get_bundle_onlypacka"_hash)) { | |||
| Im2colKerns<Pack_Mode::ONLY_PACKA> onlypackakern; | |||
| return onlypackakern.get_thread_bundle(param, matmul_param, | |||
| matmul_algo, ohw_tile_size, | |||
| oc_tile_size); | |||
| } | |||
| MIDOUT_END(); | |||
| } else { | |||
| megdnn_assert(matmul_desc.packmode == | |||
| fallback::MatrixMulImpl::AlgoBase::PackMode::NO_PACK); | |||
| MIDOUT_BEGIN( | |||
| megdnn_fallback_im2col, | |||
| midout_iv( | |||
| "ConvBiasImpl::AlgoIm2col::get_thread_bundle_nopack"_hash)) { | |||
| Im2colKerns<Pack_Mode::NO_PACK> nopackkern; | |||
| return nopackkern.get_thread_bundle(param, matmul_param, | |||
| matmul_algo, ohw_tile_size, | |||
| oc_tile_size); | |||
| } | |||
| MIDOUT_END(); | |||
| } | |||
| return {nullptr, {}}; | |||
| } | |||
| static WorkspaceBundle get_bundle( | |||
| const fallback::ConvBiasImpl::NCBKernSizeParam& param, | |||
| MatrixMulImpl::AlgoBase* matmul_algo, size_t oc_tile_size, | |||
| size_t ohw_tile_size) { | |||
| UNPACK_CONV_F32_NCB_KERN_SIZES(param); | |||
| MEGDNN_MARK_USED_VAR(OC); | |||
| MEGDNN_MARK_USED_VAR(OH); | |||
| @@ -410,23 +465,20 @@ WorkspaceBundle ConvBiasImpl::AlgoIm2col::get_bundle( | |||
| size_t padding = 0, packa_size = 0, packa_group_size = 0; | |||
| size_t nr_threads = param.nr_threads; | |||
| size_t GROUP = param.filter_meta.group; | |||
| fallback::MatrixMulImpl::AlgoBase::MatmulDescription mdesc = | |||
| m_matmul_algo->matmul_description(); | |||
| bool need_pack = mdesc.packmode == Pack_Mode::DEFAULT; | |||
| bool only_packA = mdesc.packmode == Pack_Mode::ONLY_PACKA; | |||
| size_t oc_tile_size = 0, ohw_tile_size = 0; | |||
| choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size, | |||
| mdesc.innerblocksize.m, mdesc.innerblocksize.n, | |||
| mdesc.packmode); | |||
| if (need_pack || only_packA) { | |||
| auto im2col_kern_param = get_matmul_kern_param( | |||
| param, ohw_tile_size, only_packA ? oc_tile_size : OC); | |||
| size_t oc_parallel_times = div_ceil<size_t>(OC, oc_tile_size); | |||
| WorkspaceBundle wb = m_matmul_algo->get_bundle(im2col_kern_param); | |||
| packa_group_size = only_packA ? oc_parallel_times * wb.get_size(0) | |||
| : wb.get_size(0); | |||
| } else { //! not support pack,not need pack | |||
| fallback::MatrixMulImpl::AlgoBase::MatmulDescription matmul_desc = | |||
| matmul_algo->matmul_description(); | |||
| bool default_pack = matmul_desc.packmode == Pack_Mode::DEFAULT; | |||
| //! packmode is default should use oc | |||
| //! packmode is onlypackA should use oc_tile_size | |||
| auto im2col_kern_param = get_matmul_kern_param( | |||
| param, ohw_tile_size, default_pack ? OC : oc_tile_size); | |||
| if (is_enable_filter_preprocess(param)) { | |||
| packa_group_size = 0; | |||
| } else { | |||
| size_t oc_parallel_times = div_ceil<size_t>(OC, oc_tile_size); | |||
| packa_group_size = packA_group_size(matmul_algo, im2col_kern_param, | |||
| matmul_desc, oc_parallel_times); | |||
| } | |||
| if (no_need_pading) { | |||
| @@ -437,50 +489,27 @@ WorkspaceBundle ConvBiasImpl::AlgoIm2col::get_bundle( | |||
| } | |||
| packa_size = GROUP * packa_group_size; //! for packA size = GROUP * a_size | |||
| WorkspaceBundle ws = {nullptr, {}}; | |||
| auto im2col_kern_param = | |||
| get_matmul_kern_param(param, ohw_tile_size, oc_tile_size); | |||
| if (m_matmul_algo->packmode() == Pack_Mode::DEFAULT) { | |||
| MIDOUT_BEGIN( | |||
| megdnn_fallback_im2col, | |||
| midout_iv("ConvBiasImpl::AlgoIm2col::get_bundle_dft"_hash)) { | |||
| Im2colKerns<Pack_Mode::DEFAULT> defaultkern; | |||
| ws = defaultkern.get_thread_bundle(param, im2col_kern_param, | |||
| m_matmul_algo, ohw_tile_size, | |||
| oc_tile_size); | |||
| } | |||
| MIDOUT_END(); | |||
| } else if (m_matmul_algo->packmode() == Pack_Mode::ONLY_PACKA) { | |||
| MIDOUT_BEGIN( | |||
| megdnn_fallback_im2col, | |||
| midout_iv("ConvBiasImpl::AlgoIm2col::get_bundle_packa"_hash)) { | |||
| Im2colKerns<Pack_Mode::ONLY_PACKA> onlypackakern; | |||
| ws = onlypackakern.get_thread_bundle(param, im2col_kern_param, | |||
| m_matmul_algo, ohw_tile_size, | |||
| oc_tile_size); | |||
| } | |||
| MIDOUT_END(); | |||
| } else { | |||
| MIDOUT_BEGIN( | |||
| megdnn_fallback_im2col, | |||
| midout_iv("ConvBiasImpl::AlgoIm2col::get_bundle_other"_hash)) { | |||
| Im2colKerns<Pack_Mode::NO_PACK> nopackkern; | |||
| ws = nopackkern.get_thread_bundle(param, im2col_kern_param, | |||
| m_matmul_algo, ohw_tile_size, | |||
| oc_tile_size); | |||
| } | |||
| MIDOUT_END(); | |||
| } | |||
| WorkspaceBundle ws = | |||
| get_thread_bundle(param, matmul_algo, im2col_kern_param, | |||
| matmul_desc, oc_tile_size, ohw_tile_size); | |||
| return {nullptr, | |||
| {padding, packa_size, ws.total_size_in_bytes() * nr_threads}}; | |||
| } | |||
| } // namespace | |||
| size_t ConvBiasImpl::AlgoIm2col::get_workspace( | |||
| const NCBKernSizeParam& p) const { | |||
| MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 0) { | |||
| return get_bundle(p).total_size_in_bytes(); | |||
| fallback::MatrixMulImpl::AlgoBase::MatmulDescription matmul_desc = | |||
| m_matmul_algo->matmul_description(); | |||
| size_t oc_tile_size = 0, ohw_tile_size = 0; | |||
| choice_ohw_oc_block(p, oc_tile_size, ohw_tile_size, | |||
| matmul_desc.innerblocksize.m, matmul_desc.innerblocksize.n, | |||
| m_ohw_tile_size, matmul_desc.packmode); | |||
| return get_bundle(p, m_matmul_algo, oc_tile_size, ohw_tile_size) | |||
| .total_size_in_bytes(); | |||
| } | |||
| MIDOUT_END(); | |||
| return 0; | |||
| @@ -499,22 +528,21 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns( | |||
| size_t oc_tile_size = 0, ohw_tile_size = 0; | |||
| size_t ohw = OH * OW; | |||
| size_t GROUP = param.filter_meta.group; | |||
| WorkspaceBundle bundle = get_bundle(param); | |||
| WorkspaceBundle bundle_thread = {nullptr, {}}; | |||
| bool need_padding = (PH != 0 || PW != 0); | |||
| fallback::MatrixMulImpl::AlgoBase::MatmulDescription mdesc = | |||
| fallback::MatrixMulImpl::AlgoBase::MatmulDescription matmul_desc = | |||
| m_matmul_algo->matmul_description(); | |||
| Pack_Mode packmode = mdesc.packmode; | |||
| bool default_pack = packmode == Pack_Mode::DEFAULT; | |||
| bool no_pack = packmode == Pack_Mode::NO_PACK; | |||
| bool only_packA = packmode == Pack_Mode::ONLY_PACKA; | |||
| bool default_pack = matmul_desc.packmode == Pack_Mode::DEFAULT; | |||
| bool no_pack = matmul_desc.packmode == Pack_Mode::NO_PACK; | |||
| bool only_packA = matmul_desc.packmode == Pack_Mode::ONLY_PACKA; | |||
| bool enable_filter_preprocess = is_enable_filter_preprocess(param); | |||
| choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size, | |||
| mdesc.innerblocksize.m, mdesc.innerblocksize.n, | |||
| mdesc.packmode); | |||
| matmul_desc.innerblocksize.m, | |||
| matmul_desc.innerblocksize.n, m_ohw_tile_size, | |||
| matmul_desc.packmode); | |||
| WorkspaceBundle bundle = get_bundle(param,m_matmul_algo,oc_tile_size,ohw_tile_size); | |||
| size_t ohw_parallel_times = div_ceil(ohw, ohw_tile_size); | |||
| size_t oc_parallel_times = div_ceil<size_t>(OC, oc_tile_size); | |||
| size_t packa_parallel_times = 0; | |||
| @@ -523,28 +551,16 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns( | |||
| if (only_packA) { | |||
| packa_parallel_times = div_ceil<size_t>(OC, oc_tile_size); | |||
| } else if (default_pack) { | |||
| packa_parallel_times = div_ceil<size_t>(OC, mdesc.innerblocksize.m); | |||
| packa_parallel_times = | |||
| div_ceil<size_t>(OC, matmul_desc.innerblocksize.m); | |||
| } | |||
| auto matmul_param = get_matmul_kern_param( | |||
| param, ohw_tile_size, only_packA ? oc_tile_size : OC); | |||
| if (mdesc.packmode == Pack_Mode::DEFAULT) { | |||
| Im2colKerns<Pack_Mode::DEFAULT> defaultkern; | |||
| bundle_thread = defaultkern.get_thread_bundle( | |||
| param, matmul_param, m_matmul_algo, ohw_tile_size, | |||
| oc_tile_size); | |||
| } else if (mdesc.packmode == Pack_Mode::ONLY_PACKA) { | |||
| Im2colKerns<Pack_Mode::ONLY_PACKA> onlypackakern; | |||
| bundle_thread = onlypackakern.get_thread_bundle( | |||
| param, matmul_param, m_matmul_algo, ohw_tile_size, | |||
| oc_tile_size); | |||
| } else { | |||
| Im2colKerns<Pack_Mode::NO_PACK> nopackkern; | |||
| bundle_thread = nopackkern.get_thread_bundle( | |||
| param, matmul_param, m_matmul_algo, ohw_tile_size, | |||
| oc_tile_size); | |||
| } | |||
| param, ohw_tile_size, default_pack ? OC : oc_tile_size); | |||
| WorkspaceBundle bundle_thread = | |||
| get_thread_bundle(param, m_matmul_algo, matmul_param, | |||
| matmul_desc, oc_tile_size, ohw_tile_size); | |||
| StrategyParam strategyparam; | |||
| strategyparam.ohw = ohw; | |||
| strategyparam.is_dst_8bit = | |||
| @@ -557,6 +573,9 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns( | |||
| strategyparam.is_ohw_size_bigger && !strategyparam.is_dst_8bit; | |||
| strategyparam.oc_tile_size = oc_tile_size; | |||
| strategyparam.pack_oc_size = pack_oc_size; | |||
| strategyparam.enable_filter_preprocess = enable_filter_preprocess; | |||
| strategyparam.packA_group_size = packA_group_size( | |||
| m_matmul_algo, matmul_param, matmul_desc, packa_parallel_times); | |||
| SmallVector<ConvBiasImpl::NCBKern> ret_kern; | |||
| MIDOUT_BEGIN( | |||
| @@ -569,88 +588,126 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns( | |||
| const NCBKernParam& param, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| bundle.set(param.workspace_ptr); | |||
| copy_padding_kern(bundle, param, ncb_index, im2colstrategy, | |||
| pack_oc_size); | |||
| im2colstrategy->copy_padding_kern(bundle, param, ncb_index, | |||
| pack_oc_size); | |||
| }; | |||
| auto kern_packA = [bundle, matmul_algo = m_matmul_algo, | |||
| matmul_param, im2colstrategy, | |||
| pack_oc_size = pack_oc_size, mdesc = mdesc]( | |||
| strategyparam = strategyparam, | |||
| matmul_desc = matmul_desc]( | |||
| const NCBKernParam& param, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| bundle.set(param.workspace_ptr); | |||
| packA_kern(bundle, param, matmul_param, matmul_algo, ncb_index, | |||
| im2colstrategy, mdesc, pack_oc_size); | |||
| im2colstrategy->packA_kern(bundle, param, matmul_param, | |||
| matmul_algo, ncb_index, matmul_desc, | |||
| strategyparam); | |||
| }; | |||
| if (default_pack) { | |||
| auto kern_compute_default = | |||
| [bundle, bundle_thread, matmul_param, | |||
| matmul_algo = m_matmul_algo, | |||
| ohw_tile_size = ohw_tile_size, | |||
| strategyparam = strategyparam, matmul_desc = mdesc, | |||
| im2colstrategy]( | |||
| const NCBKernParam& param, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| bundle.set(param.workspace_ptr); | |||
| Im2colKerns<Pack_Mode::DEFAULT>::kerns( | |||
| bundle, bundle_thread, param, matmul_param, | |||
| matmul_algo, matmul_desc, strategyparam, | |||
| ncb_index, ohw_tile_size, im2colstrategy); | |||
| }; | |||
| ret_kern.push_back({kern_packA, {GROUP, packa_parallel_times}}); | |||
| if (need_padding) { | |||
| ret_kern.push_back({kern_padding, | |||
| {param.n, GROUP, IC / pack_oc_size}}); | |||
| MIDOUT_BEGIN( | |||
| megdnn_fallback_im2col, | |||
| midout_iv( | |||
| "ConvBiasImpl::AlgoIm2col::dispatch_kerns_default_pack"_hash)) { | |||
| auto kern_compute_default = | |||
| [bundle, bundle_thread, matmul_param, | |||
| matmul_algo = m_matmul_algo, | |||
| ohw_tile_size = ohw_tile_size, | |||
| strategyparam = strategyparam, | |||
| matmul_desc = matmul_desc, im2colstrategy]( | |||
| const NCBKernParam& param, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| bundle.set(param.workspace_ptr); | |||
| Im2colKerns<Pack_Mode::DEFAULT>::kerns( | |||
| bundle, bundle_thread, param, | |||
| matmul_param, matmul_algo, matmul_desc, | |||
| strategyparam, ncb_index, ohw_tile_size, | |||
| im2colstrategy); | |||
| }; | |||
| if (!enable_filter_preprocess) { | |||
| ret_kern.push_back( | |||
| {kern_packA, {GROUP, packa_parallel_times}}); | |||
| } | |||
| if (need_padding) { | |||
| ret_kern.push_back( | |||
| {kern_padding, | |||
| {param.n, GROUP, IC / pack_oc_size}}); | |||
| } | |||
| ret_kern.push_back({kern_compute_default, | |||
| {N, GROUP, ohw_parallel_times, | |||
| oc_parallel_times}}); | |||
| return ret_kern; | |||
| } | |||
| ret_kern.push_back( | |||
| {kern_compute_default, | |||
| {N, GROUP, ohw_parallel_times, oc_parallel_times}}); | |||
| MIDOUT_END(); | |||
| return {}; | |||
| } else if (only_packA) { | |||
| auto kern_compute_onlypackA = | |||
| [bundle, bundle_thread, matmul_param, | |||
| matmul_algo = m_matmul_algo, | |||
| strategyparam = strategyparam, | |||
| ohw_tile_size = ohw_tile_size, matmul_desc = mdesc, | |||
| im2colstrategy]( | |||
| const NCBKernParam& param, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| bundle.set(param.workspace_ptr); | |||
| Im2colKerns<Pack_Mode::ONLY_PACKA>::kerns( | |||
| bundle, bundle_thread, param, matmul_param, | |||
| matmul_algo, matmul_desc, strategyparam, | |||
| ncb_index, ohw_tile_size, im2colstrategy); | |||
| }; | |||
| ret_kern.push_back({kern_packA, {GROUP, packa_parallel_times}}); | |||
| if (need_padding) { | |||
| ret_kern.push_back({kern_padding, {param.n, GROUP, IC}}); | |||
| MIDOUT_BEGIN( | |||
| megdnn_fallback_im2col, | |||
| midout_iv( | |||
| "ConvBiasImpl::AlgoIm2col::dispatch_kerns_onlypacka"_hash)) { | |||
| auto kern_compute_onlypackA = | |||
| [bundle, bundle_thread, matmul_param, | |||
| matmul_algo = m_matmul_algo, | |||
| strategyparam = strategyparam, | |||
| ohw_tile_size = ohw_tile_size, | |||
| matmul_desc = matmul_desc, im2colstrategy]( | |||
| const NCBKernParam& param, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| bundle.set(param.workspace_ptr); | |||
| Im2colKerns<Pack_Mode::ONLY_PACKA>::kerns( | |||
| bundle, bundle_thread, param, | |||
| matmul_param, matmul_algo, matmul_desc, | |||
| strategyparam, ncb_index, ohw_tile_size, | |||
| im2colstrategy); | |||
| }; | |||
| if (!enable_filter_preprocess) { | |||
| ret_kern.push_back( | |||
| {kern_packA, {GROUP, packa_parallel_times}}); | |||
| } | |||
| if (need_padding) { | |||
| ret_kern.push_back( | |||
| {kern_padding, {param.n, GROUP, IC}}); | |||
| } | |||
| ret_kern.push_back({kern_compute_onlypackA, | |||
| {N, GROUP, ohw_parallel_times, | |||
| oc_parallel_times}}); | |||
| return ret_kern; | |||
| } | |||
| ret_kern.push_back( | |||
| {kern_compute_onlypackA, | |||
| {N, GROUP, ohw_parallel_times, oc_parallel_times}}); | |||
| MIDOUT_END(); | |||
| return {}; | |||
| } else if (no_pack) { | |||
| auto kern_compute_nopack = | |||
| [bundle, bundle_thread, matmul_param, | |||
| matmul_algo = m_matmul_algo, | |||
| strategyparam = strategyparam, | |||
| ohw_tile_size = ohw_tile_size, matmul_desc = mdesc, | |||
| im2colstrategy]( | |||
| const NCBKernParam& param, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| bundle.set(param.workspace_ptr); | |||
| Im2colKerns<Pack_Mode::NO_PACK>::kerns( | |||
| bundle, bundle_thread, param, matmul_param, | |||
| matmul_algo, matmul_desc, strategyparam, | |||
| ncb_index, ohw_tile_size, im2colstrategy); | |||
| }; | |||
| if (need_padding) { | |||
| ret_kern.push_back({kern_padding, {param.n, GROUP, IC}}); | |||
| MIDOUT_BEGIN( | |||
| megdnn_fallback_im2col, | |||
| midout_iv( | |||
| "ConvBiasImpl::AlgoIm2col::dispatch_kerns_no_pack"_hash)) { | |||
| auto kern_compute_nopack = | |||
| [bundle, bundle_thread, matmul_param, | |||
| matmul_algo = m_matmul_algo, | |||
| strategyparam = strategyparam, | |||
| ohw_tile_size = ohw_tile_size, | |||
| matmul_desc = matmul_desc, im2colstrategy]( | |||
| const NCBKernParam& param, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| bundle.set(param.workspace_ptr); | |||
| Im2colKerns<Pack_Mode::NO_PACK>::kerns( | |||
| bundle, bundle_thread, param, | |||
| matmul_param, matmul_algo, matmul_desc, | |||
| strategyparam, ncb_index, ohw_tile_size, | |||
| im2colstrategy); | |||
| }; | |||
| if (need_padding) { | |||
| ret_kern.push_back( | |||
| {kern_padding, {param.n, GROUP, IC}}); | |||
| } | |||
| ret_kern.push_back({kern_compute_nopack, | |||
| {N, GROUP, ohw_parallel_times, | |||
| oc_parallel_times}}); | |||
| return ret_kern; | |||
| } | |||
| ret_kern.push_back( | |||
| {kern_compute_nopack, | |||
| {N, GROUP, ohw_parallel_times, oc_parallel_times}}); | |||
| MIDOUT_END(); | |||
| return {}; | |||
| } | |||
| return ret_kern; | |||
| return {}; | |||
| } | |||
| MIDOUT_END(); | |||
| return {}; | |||
| @@ -694,12 +751,19 @@ bool ConvBiasImpl::AlgoIm2col::usable( | |||
| return false; | |||
| } | |||
| } | |||
| fallback::MatrixMulImpl::AlgoBase::MatmulDescription mdesc = | |||
| fallback::MatrixMulImpl::AlgoBase::MatmulDescription matmul_desc = | |||
| m_matmul_algo->matmul_description(); | |||
| //! only matmul's packmode is packa or default support weight preprocess | |||
| if (is_enable_filter_preprocess(param) && | |||
| (matmul_desc.packmode == | |||
| fallback::MatrixMulImpl::AlgoBase::PackMode::NO_PACK)) { | |||
| return false; | |||
| } | |||
| if (format == param::ConvBias::Format::NCHW44 || | |||
| format == param::ConvBias::Format::NCHW44_DOT) { | |||
| //! current NCHW44 im2col only support DEFAULT mode matmul | |||
| if (mdesc.packmode != Pack_Mode::DEFAULT) { | |||
| if (matmul_desc.packmode != Pack_Mode::DEFAULT) { | |||
| return false; | |||
| //! nchw44 hybird mode and channel wise is not support | |||
| } else if (param.filter_meta.icpg < 4_z || | |||
| @@ -711,8 +775,9 @@ bool ConvBiasImpl::AlgoIm2col::usable( | |||
| size_t oc_tile_size = 0, ohw_tile_size = 0; | |||
| choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size, | |||
| mdesc.innerblocksize.m, mdesc.innerblocksize.n, | |||
| m_matmul_algo->packmode()); | |||
| matmul_desc.innerblocksize.m, | |||
| matmul_desc.innerblocksize.n, m_ohw_tile_size, | |||
| matmul_desc.packmode); | |||
| fallback::MatrixMulImpl::KernSizeParam matmul_param = | |||
| get_matmul_kern_param(param, ohw_tile_size, oc_tile_size); | |||
| bool matmulusable = m_matmul_algo->usable(matmul_param); | |||
| @@ -731,4 +796,104 @@ bool ConvBiasImpl::AlgoIm2col::usable( | |||
| return false; | |||
| } | |||
| SmallVector<TensorLayout> | |||
| ConvBiasImpl::AlgoIm2col::deduce_preprocessed_filter_layout( | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN( | |||
| megdnn_fallback_im2col, | |||
| midout_iv( | |||
| "ConvBiasImpl::AlgoIm2col::deduce_preprocessed_filter_layout"_hash)) { | |||
| fallback::MatrixMulImpl::AlgoBase::MatmulDescription matmul_desc = | |||
| m_matmul_algo->matmul_description(); | |||
| //! only support default_pack and only_packa mode | |||
| if (matmul_desc.packmode == Pack_Mode::NO_PACK) { | |||
| return {}; | |||
| } | |||
| size_t GROUP = param.filter_meta.group; | |||
| bool default_pack = matmul_desc.packmode == Pack_Mode::DEFAULT; | |||
| size_t OC = param.filter_meta.ocpg; | |||
| SmallVector<TensorLayout> preprocessed_layouts; | |||
| size_t oc_tile_size = 0, ohw_tile_size = 0; | |||
| choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size, | |||
| matmul_desc.innerblocksize.m, | |||
| matmul_desc.innerblocksize.n, m_ohw_tile_size, | |||
| matmul_desc.packmode); | |||
| auto matmul_param = get_matmul_kern_param( | |||
| param, ohw_tile_size, default_pack ? OC : oc_tile_size); | |||
| size_t packa_parallel_times = div_ceil<size_t>( | |||
| OC, default_pack ? matmul_desc.innerblocksize.m : oc_tile_size); | |||
| size_t packa_group_size = packA_group_size( | |||
| m_matmul_algo, matmul_param, matmul_desc, packa_parallel_times); | |||
| preprocessed_layouts.push_back( | |||
| {{GROUP, packa_group_size}, dtype::Int8()}); | |||
| return preprocessed_layouts; | |||
| } | |||
| MIDOUT_END(); | |||
| return {}; | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoIm2col::dispatch_preprocess_kerns( | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 3) { | |||
| size_t OC = param.filter_meta.ocpg; | |||
| size_t oc_tile_size = 0, ohw_tile_size = 0; | |||
| size_t GROUP = param.filter_meta.group; | |||
| fallback::MatrixMulImpl::AlgoBase::MatmulDescription matmul_desc = | |||
| m_matmul_algo->matmul_description(); | |||
| choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size, | |||
| matmul_desc.innerblocksize.m, | |||
| matmul_desc.innerblocksize.n, m_ohw_tile_size, | |||
| matmul_desc.packmode); | |||
| WorkspaceBundle bundle = | |||
| get_bundle(param, m_matmul_algo, oc_tile_size, ohw_tile_size); | |||
| Pack_Mode packmode = matmul_desc.packmode; | |||
| bool default_pack = packmode == Pack_Mode::DEFAULT; | |||
| bool only_packA = packmode == Pack_Mode::ONLY_PACKA; | |||
| size_t packa_parallel_times = 0; | |||
| if (only_packA) { | |||
| packa_parallel_times = div_ceil<size_t>(OC, oc_tile_size); | |||
| } else if (default_pack) { | |||
| packa_parallel_times = | |||
| div_ceil<size_t>(OC, matmul_desc.innerblocksize.m); | |||
| } else { | |||
| //! if nopack return null so that OprWeightPreprocessProxy can run | |||
| //! with nopack mode | |||
| return {}; | |||
| } | |||
| auto matmul_param = get_matmul_kern_param( | |||
| param, ohw_tile_size, default_pack ? OC : oc_tile_size); | |||
| StrategyParam strategyparam; | |||
| strategyparam.enable_filter_preprocess = | |||
| is_enable_filter_preprocess(param); | |||
| strategyparam.packA_group_size = packA_group_size( | |||
| m_matmul_algo, matmul_param, matmul_desc, packa_parallel_times); | |||
| SmallVector<ConvBiasImpl::NCBKern> ret_kern; | |||
| StrategyBase* im2colstrategy = | |||
| Factory::get_im2col_strategy(param, m_matmul_algo); | |||
| auto kern_packA = [bundle, matmul_algo = m_matmul_algo, matmul_param, | |||
| im2colstrategy, strategyparam = strategyparam, | |||
| matmul_desc = matmul_desc]( | |||
| const NCBKernParam& param, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| bundle.set(param.workspace_ptr); | |||
| im2colstrategy->packA_kern(bundle, param, matmul_param, matmul_algo, | |||
| ncb_index, matmul_desc, strategyparam); | |||
| }; | |||
| ret_kern.push_back({kern_packA, {GROUP, packa_parallel_times}}); | |||
| return ret_kern; | |||
| } | |||
| MIDOUT_END(); | |||
| return {}; | |||
| } | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -22,27 +22,6 @@ namespace megdnn { | |||
| namespace fallback { | |||
| class ConvBiasImpl::AlgoIm2col final : public AlgoBase { | |||
| //! calculate m_oc_tile_size in choice_ohw_oc_block() fucntion, | |||
| //! when m_oc_tile_size < this value m_oc_tile_size = ohw | |||
| static constexpr size_t DEFAULT_OHW_MIN_TILE_SIZE = 32; | |||
| //! when nr_threads > 1 and round(ohw,nr_threads)>nr_threads, | |||
| //! m_oc_tile_size = DEFAULT_OC_TILE_SIZE | |||
| static constexpr size_t DEFAULT_OC_TILE_SIZE = 512; | |||
| //! when m_oc_tile_size > this value m_oc_tile_size = | |||
| //! DEFAULT_OC_MAX_TILE_SIZE | |||
| static constexpr size_t DEFAULT_OC_MAX_TILE_SIZE = 1024; | |||
| //! when m_oc_tile_size < this value m_oc_tile_size = | |||
| //! DEFAULT_OC_MIN_TILE_SIZE the purpose is aligning the calculation | |||
| static constexpr size_t DEFAULT_OC_MIN_TILE_SIZE = 128; | |||
| fallback::MatrixMulImpl::KernSizeParam get_matmul_kern_param( | |||
| const NCBKernSizeParam& param, size_t ohw_tile_size, | |||
| size_t oc_tile_size) const; | |||
| WorkspaceBundle get_bundle(const NCBKernSizeParam& param) const; | |||
| void choice_ohw_oc_block( | |||
| const NCBKernSizeParam& param, size_t& oc_tile_size, | |||
| size_t& ohw_tile_size, size_t block_m, size_t block_n, | |||
| fallback::MatrixMulImpl::AlgoBase::PackMode pack_mode) const; | |||
| public: | |||
| AlgoIm2col(MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size) | |||
| : m_matmul_algo(matmul_algo), | |||
| @@ -59,10 +38,16 @@ public: | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns( | |||
| SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam& param) const override; | |||
| SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_preprocess_workspace( | |||
| const NCBKernSizeParam& /*param*/) const override { | |||
| return 0; | |||
| } | |||
| SmallVector<NCBKern> dispatch_preprocess_kerns( | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred( | |||
| const NCBKernSizeParam& param) const override { | |||
| bool is_preferred(const NCBKernSizeParam& param) const override { | |||
| if (param.src_type.category() == DTypeCategory::QUANTIZED) { | |||
| static CpuOprDelegationStorage<1> storage; | |||
| auto conv_bias_opr = storage.get<ConvBias, 0>(); | |||
| @@ -40,9 +40,11 @@ struct StrategyParam { | |||
| size_t block_n; | |||
| size_t block_k; | |||
| size_t pack_oc_size; | |||
| size_t packA_group_size; | |||
| bool skip_copy_dst; | |||
| bool is_dst_8bit; | |||
| bool is_ohw_size_bigger; | |||
| bool enable_filter_preprocess; | |||
| }; | |||
| class StrategyBase { | |||
| @@ -62,7 +64,7 @@ public: | |||
| const fallback::ConvBiasImpl::NCBKernIndex& ncb_index, | |||
| const fallback::MatrixMulImpl::AlgoBase::MatmulDescription& | |||
| matmul_desec, | |||
| size_t pack_size) = 0; | |||
| const StrategyParam& sparam) = 0; | |||
| virtual void exec_im2col( | |||
| const WorkspaceBundle& bundle, const WorkspaceBundle& bundle_thread, | |||
| @@ -296,7 +298,7 @@ public: | |||
| const fallback::ConvBiasImpl::NCBKernIndex& ncb_index, | |||
| const fallback::MatrixMulImpl::AlgoBase::MatmulDescription& | |||
| matmul_desc, | |||
| size_t pack_size) override; | |||
| const StrategyParam& sparam) override; | |||
| virtual void exec_im2col( | |||
| const WorkspaceBundle& bundle, const WorkspaceBundle& bundle_thread, | |||
| const StrategyParam& sparam, | |||
| @@ -375,7 +377,7 @@ public: | |||
| const fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
| const fallback::ConvBiasImpl::NCBKernIndex& ncb_index, | |||
| const fallback::MatrixMulImpl::AlgoBase::MatmulDescription& MDsec, | |||
| size_t pack_size) override; | |||
| const StrategyParam& sparam) override; | |||
| void exec_matmul(const fallback::ConvBiasImpl::NCBKernParam& param, | |||
| const StrategyParam& sparam, const WorkspaceBundle& bundle, | |||
| @@ -431,7 +433,7 @@ public: | |||
| const fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
| const fallback::ConvBiasImpl::NCBKernIndex& ncb_index, | |||
| const fallback::MatrixMulImpl::AlgoBase::MatmulDescription& MDsec, | |||
| size_t pack_size) override; | |||
| const StrategyParam& sparam) override; | |||
| void exec_im2col( | |||
| const WorkspaceBundle& bundle, const WorkspaceBundle& bundle_thread, | |||
| @@ -25,19 +25,23 @@ void Strategy<src_ctype, bias_ctype, dst_ctype, op_ctype, op_dtype, | |||
| const fallback::ConvBiasImpl::NCBKernIndex& ncb_index, | |||
| const fallback::MatrixMulImpl::AlgoBase::MatmulDescription& | |||
| matmul_desc, | |||
| size_t) { | |||
| const StrategyParam& sparam) { | |||
| fallback::MatrixMulImpl::KernParam matmul_param; | |||
| size_t group_id = ncb_index.ndrange_id[0]; | |||
| static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) = | |||
| matmulparam; | |||
| size_t packA_group_size = matmul_algo->get_bundle(matmul_param).get_size(0); | |||
| size_t packed_per_oc_block_size = | |||
| round_up(matmul_param.K, matmul_desc.innerblocksize.k) * | |||
| matmul_desc.innerblocksize.m * matmul_desc.packa_type_size; | |||
| size_t a_panel_offset = ncb_index.ndrange_id[1] * packed_per_oc_block_size; | |||
| int8_t* a_panel = static_cast<int8_t*>(bundle.get(BUNDLE_PACKA_INDEX)) + | |||
| group_id * packA_group_size + a_panel_offset; | |||
| int8_t* tmp_ptr = | |||
| sparam.enable_filter_preprocess | |||
| ? static_cast<int8_t*>( | |||
| param.preprocessed_filter->tensors[0].raw_ptr) | |||
| : static_cast<int8_t*>(bundle.get(BUNDLE_PACKA_INDEX)); | |||
| int8_t* a_panel = | |||
| tmp_ptr + group_id * sparam.packA_group_size + a_panel_offset; | |||
| matmul_param.A_ptr = | |||
| const_cast<src_ctype*>(param.filter<src_ctype>(group_id)); | |||
| matmul_algo->pack_A(matmul_param, a_panel, ncb_index.ndrange_id[1], | |||
| @@ -149,15 +153,20 @@ void Strategy<src_ctype, bias_ctype, dst_ctype, op_ctype, op_dtype, | |||
| size_t packA_per_oc_block_size = | |||
| round_up(matmul_param.K, matmul_desc.innerblocksize.k) * | |||
| sparam.oc_tile_size * matmul_desc.packa_type_size; | |||
| size_t packA_group_size = matmul_algo->get_bundle(matmul_param).get_size(0); | |||
| size_t packA_group_size = sparam.packA_group_size; | |||
| size_t a_panel_offset = ncb_index.ndrange_id[1] * packA_group_size + | |||
| ncb_index.ndrange_id[3] * packA_per_oc_block_size; | |||
| void* matmul_dst = get_matmul_dst_ptr(param, bundle_thread, sparam); | |||
| src_ctype* a_panel = reinterpret_cast<src_ctype*>( | |||
| reinterpret_cast<uintptr_t>(bundle.get(BUNDLE_PACKA_INDEX)) + | |||
| a_panel_offset); | |||
| int8_t* tmp_ptr = | |||
| sparam.enable_filter_preprocess | |||
| ? static_cast<int8_t*>( | |||
| param.preprocessed_filter->tensors[0].raw_ptr) | |||
| : static_cast<int8_t*>(bundle.get(BUNDLE_PACKA_INDEX)); | |||
| src_ctype* a_panel = | |||
| reinterpret_cast<src_ctype*>(tmp_ptr + a_panel_offset); | |||
| src_ctype* b_panel = | |||
| reinterpret_cast<src_ctype*>(reinterpret_cast<uintptr_t>( | |||
| bundle_thread.get(THREAD_BUNDLE_PACKB_INDEX))); | |||
| @@ -26,7 +26,7 @@ void Strategy<src_ctype, bias_ctype, dst_ctype, op_ctype, op_dtype, | |||
| const fallback::ConvBiasImpl::NCBKernIndex& ncb_index, | |||
| const fallback::MatrixMulImpl::AlgoBase:: | |||
| MatmulDescription& /*matmul_dsec*/, | |||
| size_t) { | |||
| const StrategyParam&) { | |||
| MEGDNN_MARK_USED_VAR(bundle); | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(matmulparam); | |||
| @@ -26,7 +26,7 @@ void Strategy<src_ctype, bias_ctype, dst_ctype, op_ctype, op_dtype, | |||
| const fallback::ConvBiasImpl::NCBKernIndex& ncb_index, | |||
| const fallback::MatrixMulImpl::AlgoBase:: | |||
| MatmulDescription& /*matmul_desc*/, | |||
| size_t) { | |||
| const StrategyParam& sparam) { | |||
| fallback::MatrixMulImpl::KernParam matmul_param; | |||
| static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) = | |||
| matmulparam; | |||
| @@ -36,12 +36,17 @@ void Strategy<src_ctype, bias_ctype, dst_ctype, op_ctype, op_dtype, | |||
| size_t output_block_oc_size = | |||
| std::min(oc_tile_size, OC - ncb_index.ndrange_id[1] * oc_tile_size); | |||
| size_t oc_cur_index = ncb_index.ndrange_id[1] * oc_tile_size; | |||
| size_t packA_group_size = | |||
| bundle.get_size(BUNDLE_PACKA_INDEX) / param.filter_meta.group; | |||
| size_t a_panel_offset = ncb_index.ndrange_id[1] * | |||
| matmul_algo->get_bundle(matmul_param).get_size(0); | |||
| int8_t* a_panel = static_cast<int8_t*>(bundle.get(BUNDLE_PACKA_INDEX)) + | |||
| group_id * packA_group_size + a_panel_offset; | |||
| int8_t* tmp_ptr = | |||
| sparam.enable_filter_preprocess | |||
| ? static_cast<int8_t*>( | |||
| param.preprocessed_filter->tensors[0].raw_ptr) | |||
| : static_cast<int8_t*>(bundle.get(BUNDLE_PACKA_INDEX)); | |||
| int8_t* a_panel = tmp_ptr + | |||
| group_id * sparam.packA_group_size + a_panel_offset; | |||
| matmul_param.A_ptr = | |||
| const_cast<src_ctype*>(param.filter<src_ctype>(group_id)) + | |||
| oc_cur_index * matmul_param.K; | |||
| @@ -60,20 +65,22 @@ void Strategy<src_ctype, bias_ctype, dst_ctype, op_ctype, op_dtype, | |||
| fallback::MatrixMulImpl::KernParam matmul_param, | |||
| const fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
| const fallback::ConvBiasImpl::NCBKernIndex& ncb_index, | |||
| const fallback::MatrixMulImpl::AlgoBase:: | |||
| MatmulDescription& /*matmul_desc*/ | |||
| ) { | |||
| size_t packA_group_size = | |||
| bundle.get_size(BUNDLE_PACKA_INDEX) / param.filter_meta.group; | |||
| const fallback::MatrixMulImpl::AlgoBase::MatmulDescription& | |||
| /*matmul_desc*/) { | |||
| size_t a_panel_offset = ncb_index.ndrange_id[3] * | |||
| matmul_algo->get_bundle(matmul_param).get_size(0); | |||
| a_panel_offset = sparam.group_id * packA_group_size + a_panel_offset; | |||
| a_panel_offset = | |||
| sparam.group_id * sparam.packA_group_size + a_panel_offset; | |||
| void* matmul_dst = get_matmul_dst_ptr(param, bundle_thread, sparam); | |||
| src_ctype* a_panel = reinterpret_cast<src_ctype*>( | |||
| reinterpret_cast<uintptr_t>(bundle.get(BUNDLE_PACKA_INDEX)) + | |||
| a_panel_offset); | |||
| int8_t* tmp_ptr = | |||
| sparam.enable_filter_preprocess | |||
| ? static_cast<int8_t*>( | |||
| param.preprocessed_filter->tensors[0].raw_ptr) | |||
| : static_cast<int8_t*>(bundle.get(BUNDLE_PACKA_INDEX)); | |||
| src_ctype* a_panel = reinterpret_cast<src_ctype*>(tmp_ptr + a_panel_offset); | |||
| src_ctype* b_panel = nullptr; | |||
| src_ctype* im2col_dst = static_cast<src_ctype*>( | |||
| @@ -154,7 +154,8 @@ void ConvBiasImpl::exec_preprocess(const TensorLayout& src_layout, | |||
| bias{nullptr, bias_layout}; | |||
| auto fparam = make_ncb_kern_param(src, filter, bias, dst, workspace, | |||
| preprocessed_filter); | |||
| ConvolutionImpl::Algorithm* algo = get_algorithm(fparam, workspace.size); | |||
| //! should not pass workspace_size limit otherwise can not find match algo | |||
| ConvBiasImpl::Algorithm* algo = get_algorithm(fparam); | |||
| if (!is_naive_algo(algo) && NCB_ALGO_FUNC(get_preprocess_workspace, algo, | |||
| fparam) <= workspace.size) { | |||
| exec_preprocess_with_ncb_kern(fparam, algo); | |||
| @@ -299,6 +299,11 @@ private: | |||
| const PreprocessedFilter* preprocessed_filter); | |||
| }; | |||
| inline bool is_enable_filter_preprocess( | |||
| const ConvBiasImpl::NCBKernSizeParam& param) { | |||
| return param.preprocessed_filter && | |||
| param.preprocessed_filter->tensors.size() >= 1; | |||
| } | |||
| } // namespace fallback | |||
| } // namespace megdnn | |||
| @@ -109,7 +109,9 @@ void ConvolutionImpl::exec_preprocess(const TensorLayout& src_layout, | |||
| TensorND src{nullptr, src_layout}, dst{nullptr, dst_layout}; | |||
| auto fparam = make_ncb_kern_param(src, filter, dst, preprocessed_filter, | |||
| workspace); | |||
| ConvolutionImpl::Algorithm* algo = get_algorithm(fparam, workspace.size); | |||
| //! should not pass workspace_size limit otherwise can not find match algo | |||
| ConvolutionImpl::Algorithm* algo = get_algorithm(fparam); | |||
| if (!is_naive_algo(algo) && NCB_ALGO_FUNC(get_preprocess_workspace, algo, | |||
| fparam) <= workspace.size) { | |||
| exec_preprocess_with_ncb_kern(fparam, algo); | |||
| @@ -1837,6 +1837,21 @@ void checker_conv_bias(std::vector<conv_bias::TestArg> args, Handle* handle, | |||
| {arg.src, arg.filter, arg.bias, {}, {}}); | |||
| } | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE2_PREPROCESS) { | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess( \ | |||
| get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 2, false, false, false), \ | |||
| handle(), nullptr, 0.001, dtype::Float32(), dtype::Float32(), \ | |||
| dtype::Float32(), dtype::Float32(), name); | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_F32K8X12X1") | |||
| cb("IM2COLMATMUL:AARCH64_F32K4X16X1") | |||
| #elif MEGDNN_ARMV7 | |||
| cb("IM2COLMATMUL:ARMV7_F32") | |||
| #endif | |||
| #undef cb | |||
| } | |||
| // clang-format off | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE2) { | |||
| #define cb(name) \ | |||
| @@ -1851,6 +1866,22 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE2) { | |||
| cb("IM2COLMATMUL:ARMV7_F32") | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE1_PREPROCESS) { | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess( \ | |||
| get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false), \ | |||
| handle(), nullptr, 0.001, dtype::Float32(), dtype::Float32(), \ | |||
| dtype::Float32(), dtype::Float32(), name); | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_F32K8X12X1") | |||
| cb("IM2COLMATMUL:AARCH64_F32K4X16X1") | |||
| #elif MEGDNN_ARMV7 | |||
| cb("IM2COLMATMUL:ARMV7_F32") | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE1) { | |||
| @@ -1899,6 +1930,37 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM) { | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_PREPROCESS) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \ | |||
| false, true, true), \ | |||
| handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \ | |||
| dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \ | |||
| dtype::QuantizedS8(60.25f), name); \ | |||
| check_conv_bias_preprocess( \ | |||
| get_conv_bias_args({1}, 2, false, false, false, true, true), \ | |||
| handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \ | |||
| dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \ | |||
| dtype::QuantizedS8(60.25f), name); | |||
| float epsilon = 0.001; | |||
| #if MEGDNN_AARCH64 | |||
| #if __ARM_FEATURE_DOTPROD | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD"); | |||
| #else | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8"); | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16"); | |||
| #endif | |||
| #elif MEGDNN_ARMV7 | |||
| epsilon = 1; | |||
| cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| #if __ARM_FEATURE_DOTPROD | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_MK4_DOT) { | |||
| @@ -1924,6 +1986,29 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_MK4_DOT) { | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_MK4_DOT_PREPROCESS) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess(get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, \ | |||
| false, false, false, true), \ | |||
| handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \ | |||
| dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \ | |||
| dtype::QuantizedS8(60.25f), name); \ | |||
| checker_conv_bias( \ | |||
| get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true), \ | |||
| handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \ | |||
| dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \ | |||
| dtype::QuantizedS8(60.25f), name); | |||
| float epsilon = 0.001; | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96"); | |||
| #elif MEGDNN_ARMV7 | |||
| cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_MK4_DOT_S2_FUSE) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| @@ -1968,6 +2053,31 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_S8x8x32_MK4_DOT) { | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_S8x8x32_MK4_DOT_PREPROCESS) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess( \ | |||
| get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \ | |||
| true, false, true, false, false, true), \ | |||
| handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \ | |||
| dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), {}, name); \ | |||
| check_conv_bias_preprocess( \ | |||
| get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true, \ | |||
| false, false, true), \ | |||
| handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \ | |||
| dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), {}, name); | |||
| float epsilon = 0.001; | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96"); | |||
| #elif MEGDNN_ARMV7 | |||
| cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32_MK4_DOT) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| @@ -1992,6 +2102,30 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32_MK4_DOT) { | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32_MK4_DOT_PREPROCESS) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess( \ | |||
| get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \ | |||
| true, false, true, false, false, true), \ | |||
| handle(), &rng, epsilon, dtype::Int8(), dtype::Int8(), \ | |||
| dtype::Int32(), {}, name); \ | |||
| check_conv_bias_preprocess( \ | |||
| get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true, \ | |||
| false, false, true), \ | |||
| handle(), &rng, epsilon, dtype::Int8(), dtype::Int8(), \ | |||
| dtype::Int32(), {}, name); | |||
| float epsilon = 0.001; | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96"); | |||
| #elif MEGDNN_ARMV7 | |||
| cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CONV1x1_QUANTIZEDSYM_MK4_DOT) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| @@ -2055,6 +2189,41 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDASYM) { | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, | |||
| CONV_BIAS_IM2COLMATMUL_QUANTIZEDASYM_FILTERPREPROCESS) { | |||
| NormalRNG rng(128.f); | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess( \ | |||
| get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false, \ | |||
| true, true), \ | |||
| handle(), &rng, epsilon, \ | |||
| dtype::Quantized8Asymm(1.2f, (uint8_t)125), \ | |||
| dtype::Quantized8Asymm(1.3f, (uint8_t)129), \ | |||
| dtype::QuantizedS32(1.2 * 1.3), \ | |||
| dtype::Quantized8Asymm(50.3f, (uint8_t)120), name); \ | |||
| check_conv_bias_preprocess( \ | |||
| get_conv_bias_args({1}, 2, false, false, false, true, true), \ | |||
| handle(), &rng, epsilon, \ | |||
| dtype::Quantized8Asymm(1.2f, (uint8_t)125), \ | |||
| dtype::Quantized8Asymm(1.3f, (uint8_t)129), \ | |||
| dtype::QuantizedS32(1.2 * 1.3), \ | |||
| dtype::Quantized8Asymm(50.3f, (uint8_t)120), name); | |||
| float epsilon = 0.001; | |||
| #if MEGDNN_AARCH64 | |||
| #if __ARM_FEATURE_DOTPROD | |||
| cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD"); | |||
| #else | |||
| cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8"); | |||
| #endif | |||
| #elif MEGDNN_ARMV7 | |||
| epsilon = 1; | |||
| cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| #endif | |||
| #if MEGDNN_AARCH64 || MEGDNN_ARMV7 | |||
| @@ -2088,6 +2257,39 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUINT8x8x32) { | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUINT8x8x32_FILTERPREPROCESS) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| float epsilon = 0.001; | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess( \ | |||
| get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \ | |||
| handle(), &rng, epsilon, \ | |||
| dtype::Quantized8Asymm(1.2f, (uint8_t)125), \ | |||
| dtype::Quantized8Asymm(1.3f, (uint8_t)129), \ | |||
| dtype::QuantizedS32(1.2 * 1.3), {}, name); \ | |||
| check_conv_bias_preprocess(get_conv_bias_args({1}, 2, false, true, true), \ | |||
| handle(), &rng, epsilon, \ | |||
| dtype::Quantized8Asymm(1.2f, (uint8_t)125), \ | |||
| dtype::Quantized8Asymm(1.3f, (uint8_t)129), \ | |||
| dtype::QuantizedS32(1.2 * 1.3), {}, name); | |||
| #if MEGDNN_AARCH64 | |||
| #if __ARM_FEATURE_DOTPROD | |||
| cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD"); | |||
| #else | |||
| cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8"); | |||
| #endif | |||
| #elif MEGDNN_ARMV7 | |||
| #if __ARM_FEATURE_DOTPROD | |||
| cb("IM2COLMATMUL:AARCH32_QUINT8_K4X8X4"); | |||
| #endif | |||
| cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COLMATMUL_INT8x8x16) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| float epsilon = 0.001; | |||
| @@ -2127,6 +2329,51 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COLMATMUL_INT8x8x16) { | |||
| #undef cb | |||
| #undef cb_nchw44 | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COLMATMUL_INT8x8x16_FILTERPREPROCESS) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| float epsilon = 0.001; | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess( \ | |||
| get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \ | |||
| handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \ | |||
| dtype::Int16{}, dtype::Int16{}, name); \ | |||
| check_conv_bias_preprocess(get_conv_bias_args({1}, 2, false, true, true), \ | |||
| handle(), &rng, epsilon, dtype::Int8{}, \ | |||
| dtype::Int8{}, dtype::Int16{}, dtype::Int16{}, \ | |||
| name); | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X16_K8X8X8"); | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X16_K4X4X16"); | |||
| #elif MEGDNN_ARMV7 | |||
| cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X8X8"); | |||
| cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X2X16"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COLMATMUL_INT8x8x16_NOPACK_FILTERPREPROCESS) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| float epsilon = 0.001; | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess( \ | |||
| get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \ | |||
| handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \ | |||
| dtype::Int16{}, dtype::Int16{}, name); \ | |||
| check_conv_bias_preprocess(get_conv_bias_args({1}, 2, false, true, true), \ | |||
| handle(), &rng, epsilon, dtype::Int8{}, \ | |||
| dtype::Int8{}, dtype::Int16{}, dtype::Int16{}, \ | |||
| name); | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16"); | |||
| #elif MEGDNN_ARMV7 | |||
| cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| #endif | |||
| #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
| @@ -2147,6 +2394,31 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP16) { | |||
| dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, \ | |||
| name); | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_F16_K8X24X1"); | |||
| #elif MEGDNN_ARMV7 | |||
| cb("IM2COLMATMUL:AARCH32_F16_K4X16X1"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP16_FILTERPREPROCESS) { | |||
| using namespace conv_bias; | |||
| param::ConvBias cur_param; | |||
| std::vector<conv_bias::TestArg> args = | |||
| get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false); | |||
| std::vector<conv_bias::TestArg> args1 = | |||
| get_conv_bias_args({1}, 2, false, false, false); | |||
| args.insert(args.begin(), args1.begin(), args1.end()); | |||
| NormalRNG rng(1); | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess(args, handle(), &rng, 0.03, dtype::Float16{}, \ | |||
| dtype::Float16{}, dtype::Float16{}, \ | |||
| dtype::Float16{}, name); | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_F16_K8X24X1"); | |||
| #elif MEGDNN_ARMV7 | |||
| @@ -2185,6 +2457,36 @@ void checker_conv_bias_mul_int8x8x32(std::vector<conv_bias::TestArg> args, | |||
| } | |||
| } | |||
| void checker_conv_bias_int8x8x32_preprocess(std::vector<conv_bias::TestArg> args, | |||
| Handle* handle, const char* algo_name) { | |||
| using namespace conv_bias; | |||
| Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
| handle); | |||
| checker.set_before_exec_callback( | |||
| conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); | |||
| checker.set_dtype(0, dtype::Int8()); | |||
| checker.set_dtype(1, dtype::Int8()); | |||
| checker.set_dtype(2, dtype::Int32()); | |||
| checker.set_dtype(4, dtype::Int32()); | |||
| for (auto&& arg : args) { | |||
| checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}}); | |||
| } | |||
| UniformIntRNG rng{-50, 50}; | |||
| for (auto&& arg : args) { | |||
| checker.set_dtype(0, dtype::QuantizedS8(2.5f)) | |||
| .set_dtype(1, dtype::QuantizedS8(2.5f)) | |||
| .set_dtype(2, dtype::QuantizedS32(6.25f)) | |||
| .set_dtype(4, {}) | |||
| .set_rng(0, &rng) | |||
| .set_rng(1, &rng) | |||
| .set_rng(2, &rng) | |||
| .set_param(arg.param) | |||
| .execs({arg.src, arg.filter, {}, {}, {}}); | |||
| } | |||
| } | |||
| #if MEGDNN_AARCH64 || MEGDNN_ARMV7 | |||
| #if !__ARM_FEATURE_DOTPROD | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S2) { | |||
| @@ -2201,6 +2503,20 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S2) { | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S2_PREPROCESS) { | |||
| using namespace conv_bias; | |||
| std::vector<conv_bias::TestArg> args = | |||
| get_nchw44_conv_bias_args({2, 5, 7}, 2, false, true, true); | |||
| #define cb(name) checker_conv_bias_int8x8x32_preprocess(args, handle(), name); | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96"); | |||
| #else | |||
| cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S1) { | |||
| using namespace conv_bias; | |||
| std::vector<conv_bias::TestArg> args = | |||
| @@ -2216,6 +2532,21 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S1) { | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S1_PREPROCESS) { | |||
| using namespace conv_bias; | |||
| std::vector<conv_bias::TestArg> args = | |||
| get_nchw44_conv_bias_args({3, 4, 6}, 1, false, true, true); | |||
| #define cb(name) checker_conv_bias_int8x8x32_preprocess(args, handle(), name); | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96"); | |||
| #else | |||
| cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, | |||
| CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S2) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| @@ -2234,6 +2565,25 @@ TEST_F(ARM_COMMON_MULTI_THREADS, | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, | |||
| CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S2_PREPROCESS) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess( \ | |||
| get_nchw44_conv_bias_args({3, 4, 6}, 2), handle(), &rng, epsilon, \ | |||
| dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f), \ | |||
| dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f), name); | |||
| float epsilon = 0.001; | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96"); | |||
| #else | |||
| cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, | |||
| CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S1) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| @@ -2252,6 +2602,24 @@ TEST_F(ARM_COMMON_MULTI_THREADS, | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, | |||
| CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S1_PREPROCESS) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess( \ | |||
| get_nchw44_conv_bias_args({2, 5, 7}, 1), handle(), &rng, epsilon, \ | |||
| dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f), \ | |||
| dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f), name); | |||
| float epsilon = 0.001; | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96"); | |||
| #else | |||
| cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| #if MEGDNN_AARCH64 | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, | |||
| CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_FUSE) { | |||
| @@ -2266,6 +2634,21 @@ TEST_F(ARM_COMMON_MULTI_THREADS, | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96"); | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, | |||
| CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_FUSE_PREPROCESS) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess( \ | |||
| get_nchw44_conv_bias_args({3}, 1), handle(), &rng, epsilon, \ | |||
| dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f), \ | |||
| dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f), name); | |||
| float epsilon = 0.001; | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96"); | |||
| #undef cb | |||
| } | |||
| #endif | |||
| #endif | |||
| #endif | |||
| @@ -2287,6 +2670,23 @@ TEST_F(ARM_COMMON_MULTI_THREADS, | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96"); | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, | |||
| CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44DOT_FUSE_PREPROCESS) { | |||
| UniformIntRNG rng{-50, 50}; | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess( \ | |||
| get_nchw44_conv_bias_args({3}, 1, false, false, false, false, \ | |||
| true, false, false, false), \ | |||
| handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \ | |||
| dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \ | |||
| dtype::QuantizedS8(60.25f), name); | |||
| float epsilon = 0.001; | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96"); | |||
| #undef cb | |||
| } | |||
| #endif | |||
| #endif | |||
| @@ -2320,6 +2720,36 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32) { | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8X8X32_FILTER_PREPROCESS) { | |||
| using namespace conv_bias; | |||
| std::vector<conv_bias::TestArg> args = | |||
| get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true); | |||
| std::vector<conv_bias::TestArg> args1 = | |||
| get_conv_bias_args({1}, 2, false, true, true); | |||
| args.insert(args.begin(), args1.begin(), args1.end()); | |||
| #define cb(name) checker_conv_bias_int8x8x32_preprocess(args, handle(), name); | |||
| #if MEGDNN_AARCH64 | |||
| #if __ARM_FEATURE_DOTPROD | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD"); | |||
| #else | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8"); | |||
| cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16"); | |||
| #endif | |||
| #elif MEGDNN_ARMV7 | |||
| #if __ARM_FEATURE_DOTPROD | |||
| cb("IM2COLMATMUL:AARCH32_INT8_K6X8X4"); | |||
| #endif | |||
| cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8"); | |||
| #endif | |||
| #if MEGDNN_ARMV7 | |||
| cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X2X16"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S1_MK4_PACK_F32) { | |||
| using namespace conv_bias; | |||
| std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args( | |||
| @@ -2331,25 +2761,62 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S1_MK4_PACK_F32) { | |||
| #endif | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S1_MK4_PACK_F32_PREPROCESS) { | |||
| using namespace conv_bias; | |||
| std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args( | |||
| {2, 4, 7}, 1, false, false, false, false, false, true,true); | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess(args, handle(), nullptr, 0.001, \ | |||
| dtype::Float32(), dtype::Float32(), \ | |||
| dtype::Float32(), dtype::Float32(), name); | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1"); | |||
| #elif MEGDNN_ARMV7 | |||
| cb("IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S2_MK4_PACK_F32) { | |||
| using namespace conv_bias; | |||
| std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args( | |||
| {3, 5, 6}, 2, false, false, false, false, false, true, true); | |||
| #define cb(name) check_conv_bias(args, handle(), name); | |||
| #if MEGDNN_AARCH64 | |||
| check_conv_bias(args, handle(), "IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1"); | |||
| cb("IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1"); | |||
| #elif MEGDNN_ARMV7 | |||
| check_conv_bias(args, handle(), "IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12"); | |||
| cb("IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S2_MK4_PACK_F32_FUSE_PREPROCESS) { | |||
| using namespace conv_bias; | |||
| std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args( | |||
| {3}, 2, false, false, false, false, false, true, true, false); | |||
| #define cb(name) \ | |||
| check_conv_bias_preprocess(args, handle(), nullptr, 0.001, \ | |||
| dtype::Float32(), dtype::Float32(), \ | |||
| dtype::Float32(), dtype::Float32(), name); | |||
| #if MEGDNN_AARCH64 | |||
| cb("IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1"); | |||
| #elif MEGDNN_ARMV7 | |||
| cb("IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S2_MK4_PACK_F32_FUSE) { | |||
| using namespace conv_bias; | |||
| std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args( | |||
| {3}, 2, false, false, false, false, false, true, true, false); | |||
| #define cb(name) check_conv_bias(args, handle(), name); | |||
| #if MEGDNN_AARCH64 | |||
| check_conv_bias(args, handle(), "IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1"); | |||
| cb("IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1"); | |||
| #elif MEGDNN_ARMV7 | |||
| check_conv_bias(args, handle(), "IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12"); | |||
| cb("IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12"); | |||
| #endif | |||
| #undef cb | |||
| } | |||
| /***************************** Conv1x1 Algo Test ***********************/ | |||
| TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F32) { | |||
| @@ -1118,6 +1118,30 @@ void checker_conv_bias_int8x8x16(std::vector<conv_bias::TestArg> args, | |||
| } | |||
| } | |||
| void check_conv_bias_preprocess(std::vector<conv_bias::TestArg> args, | |||
| Handle* handle, RNG* rng, float epsilon, | |||
| DType type0, DType type1, DType type2, | |||
| DType type3, const char* algo_name) { | |||
| using namespace conv_bias; | |||
| Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
| handle); | |||
| checker.set_dtype(0, type0); | |||
| checker.set_dtype(1, type1); | |||
| checker.set_dtype(2, type2); | |||
| checker.set_dtype(4, type3); | |||
| checker.set_epsilon(epsilon); | |||
| if (NULL != rng) { | |||
| checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng).set_rng(3, rng); | |||
| } | |||
| checker.set_before_exec_callback( | |||
| conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); | |||
| for (auto&& arg : args) { | |||
| checker.set_param(arg.param).execs( | |||
| {arg.src, arg.filter, arg.bias, {}, {}}); | |||
| } | |||
| } | |||
| void winograd_algo_extra_impl(const TensorNDArray& tensors, uint32_t m, | |||
| param::ConvBias param, Handle* handle, | |||
| @@ -58,7 +58,10 @@ std::vector<TestArg> get_int8_chwn4_tensorcore_args(size_t kernel_size); | |||
| std::vector<TestArg> get_int8_nchw44_args(size_t kernel_size, size_t pack_size, | |||
| bool compute_float32 = false, | |||
| bool group_mode = false); | |||
| void check_conv_bias_preprocess(std::vector<conv_bias::TestArg> args, | |||
| Handle* handle, RNG* rng, float epsilon, | |||
| DType type0, DType type1, DType type2, | |||
| DType type3, const char* algo_name); | |||
| template <typename Opr> | |||
| using ConvBiasAlgoChecker = AlgoChecker<Opr>; | |||
| @@ -752,7 +752,7 @@ TEST_F(X86_MULTI_THREADS, CONV_BIAS_DIRECT_STRIDE2) { | |||
| } | |||
| } | |||
| TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8X8X) { | |||
| TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8X8X32) { | |||
| using namespace conv_bias; | |||
| std::vector<TestArg> args; | |||
| @@ -842,6 +842,98 @@ TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8X8X) { | |||
| #undef cb2 | |||
| } | |||
| TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8X8X32_FILTER_PREPROCESS) { | |||
| using namespace conv_bias; | |||
| std::vector<TestArg> args; | |||
| auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, | |||
| size_t p, NonlineMode nonline_mode) { | |||
| if (w + 2 * p < kernel || h + 2 * p < kernel) | |||
| return; | |||
| param::ConvBias param; | |||
| param.stride_h = 1; | |||
| param.stride_w = 1; | |||
| param.pad_h = p; | |||
| param.pad_w = p; | |||
| param.nonlineMode = nonline_mode; | |||
| //! no bias | |||
| args.emplace_back(param, TensorShape{1, ic, h, w}, | |||
| TensorShape{oc, ic, kernel, kernel}, TensorShape{}); | |||
| }; | |||
| for (size_t kernel : {2, 3, 4, 5, 6, 7}) | |||
| for (size_t ic : {1, 4, 8, 16}) | |||
| for (size_t oc : {1, 4, 8}) | |||
| for (size_t p : {0, 2}) | |||
| for (size_t size : {20, 21, 24}) | |||
| for (NonlineMode nonline_mode : | |||
| {NonlineMode::IDENTITY}) { | |||
| run(oc, ic, size, size, kernel, p, nonline_mode); | |||
| } | |||
| //! test OC block | |||
| run(2046, 1, 8, 8, 2, 0, NonlineMode::IDENTITY); | |||
| Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
| handle()); | |||
| UniformIntRNG rng{-50, 50}; | |||
| #define cb(algo_name) \ | |||
| checker.set_before_exec_callback( \ | |||
| conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \ | |||
| checker.set_dtype(0, dtype::Int8()); \ | |||
| checker.set_dtype(1, dtype::Int8()); \ | |||
| checker.set_dtype(2, dtype::Int32()); \ | |||
| checker.set_dtype(4, dtype::Int32()); \ | |||
| for (auto&& arg : args) { \ | |||
| checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}}); \ | |||
| } \ | |||
| for (auto&& arg : args) { \ | |||
| checker.set_dtype(0, dtype::QuantizedS8(2.5f)) \ | |||
| .set_dtype(1, dtype::QuantizedS8(2.5f)) \ | |||
| .set_dtype(2, dtype::QuantizedS32(6.25f)) \ | |||
| .set_dtype(4, {}) \ | |||
| .set_rng(0, &rng) \ | |||
| .set_rng(1, &rng) \ | |||
| .set_rng(2, &rng) \ | |||
| .set_param(arg.param) \ | |||
| .execs({arg.src, arg.filter, {}, {}, {}}); \ | |||
| } | |||
| #define cb2(algo_name) \ | |||
| checker.set_before_exec_callback( \ | |||
| conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \ | |||
| checker.set_dtype(0, dtype::Int8()); \ | |||
| checker.set_dtype(1, dtype::Int8()); \ | |||
| checker.set_dtype(2, dtype::Int16()); \ | |||
| checker.set_dtype(4, dtype::Int16()); \ | |||
| for (auto&& arg : args) { \ | |||
| checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}}); \ | |||
| } | |||
| #if MEGDNN_X86_WITH_MKL_DNN | |||
| if (megdnn::x86::is_supported(x86::SIMDType::VNNI)) { | |||
| cb("IM2COLMATMUL:X86_INT8X8X32_MKLDNN"); | |||
| } | |||
| #endif | |||
| #if MEGDNN_X86_WITH_VNNI | |||
| if (megdnn::x86::is_supported(x86::SIMDType::VNNI)) { | |||
| cb("IM2COLMATMUL:X86_INT8X8X32_VNNI"); | |||
| } | |||
| #endif | |||
| if (megdnn::x86::is_supported(x86::SIMDType::AVX2)) { | |||
| cb("IM2COLMATMUL:X86_INT8X8X32_AVX2_2X4X16"); | |||
| cb("IM2COLMATMUL:X86_INT8X8X32_AVX2_4X16X2"); | |||
| cb2("IM2COLMATMUL:X86_INT8X8X16_AVX2"); | |||
| } | |||
| if (::megdnn::x86::is_supported(::megdnn::x86::SIMDType::SSE4_2)) { | |||
| cb("IM2COLMATMUL:X86_INT8X8X32_SSE_4X8X2"); | |||
| cb2("IM2COLMATMUL:X86_INT8X8X16_SSE"); | |||
| } | |||
| #undef cb | |||
| #undef cb2 | |||
| } | |||
| TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP32) { | |||
| using namespace conv_bias; | |||
| std::vector<TestArg> args; | |||
| @@ -950,6 +1042,61 @@ TEST_F(X86, CONV_BIAS_IM2COLMATMUL_FP32) { | |||
| #undef cb | |||
| } | |||
| TEST_F(X86, CONV_BIAS_IM2COLMATMUL_FP32_NOPACK_PREPROCESS) { | |||
| using namespace conv_bias; | |||
| std::vector<TestArg> args; | |||
| auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, | |||
| size_t p, NonlineMode nonline_mode) { | |||
| if (w + 2 * p < kernel || h + 2 * p < kernel) | |||
| return; | |||
| param::ConvBias param; | |||
| param.stride_h = 1; | |||
| param.stride_w = 1; | |||
| param.pad_h = p; | |||
| param.pad_w = p; | |||
| param.nonlineMode = nonline_mode; | |||
| //! no bias | |||
| args.emplace_back(param, TensorShape{1, ic, h, w}, | |||
| TensorShape{oc, ic, kernel, kernel}, TensorShape{}); | |||
| args.emplace_back(param, TensorShape{1, ic, h, w}, | |||
| TensorShape{oc, ic, kernel, kernel}, | |||
| TensorShape{1, oc, 1, 1}); | |||
| args.emplace_back( | |||
| param, TensorShape{1, ic, h, w}, | |||
| TensorShape{oc, ic, kernel, kernel}, | |||
| TensorShape{1, oc, (h + 2 * p - kernel) / param.stride_h + 1, | |||
| (w + 2 * p - kernel) / param.stride_w + 1}); | |||
| }; | |||
| for (size_t kernel : {2, 3, 4, 5, 6, 7}) | |||
| for (size_t ic : {1, 4, 8, 16}) | |||
| for (size_t oc : {1, 4, 8, 16, 300}) | |||
| for (size_t p : {0, 2}) | |||
| for (size_t size : {8, 24}) | |||
| for (NonlineMode nonline_mode : | |||
| {NonlineMode::IDENTITY, NonlineMode::RELU}) { | |||
| run(oc, ic, size, size, kernel, p, nonline_mode); | |||
| } | |||
| run(2046, 8, 20, 20, 3, 1, NonlineMode::IDENTITY); | |||
| Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
| handle()); | |||
| #define cb(algo_name) \ | |||
| checker.set_before_exec_callback( \ | |||
| conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \ | |||
| for (auto&& arg : args) { \ | |||
| checker.set_param(arg.param).execs( \ | |||
| {arg.src, arg.filter, arg.bias, {}, {}}); \ | |||
| } | |||
| cb("IM2COLMATMUL:X86_F32_BLAS"); | |||
| #undef cb | |||
| } | |||
| #endif | |||
| @@ -1020,6 +1167,73 @@ TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP32_PACKA) { | |||
| #undef cb | |||
| } | |||
| TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP32_PACKA_FILTER_PREPROCESS) { | |||
| using namespace conv_bias; | |||
| std::vector<TestArg> args; | |||
| auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, | |||
| size_t p, NonlineMode nonline_mode) { | |||
| if (w + 2 * p < kernel || h + 2 * p < kernel) | |||
| return; | |||
| param::ConvBias param; | |||
| param.stride_h = 1; | |||
| param.stride_w = 1; | |||
| param.pad_h = p; | |||
| param.pad_w = p; | |||
| param.nonlineMode = nonline_mode; | |||
| //! no bias | |||
| args.emplace_back(param, TensorShape{1, ic, h, w}, | |||
| TensorShape{oc, ic, kernel, kernel}, TensorShape{}); | |||
| args.emplace_back(param, TensorShape{1, ic, h, w}, | |||
| TensorShape{oc, ic, kernel, kernel}, | |||
| TensorShape{1, oc, 1, 1}); | |||
| args.emplace_back( | |||
| param, TensorShape{1, ic, h, w}, | |||
| TensorShape{oc, ic, kernel, kernel}, | |||
| TensorShape{1, oc, (h + 2 * p - kernel) / param.stride_h + 1, | |||
| (w + 2 * p - kernel) / param.stride_w + 1}); | |||
| param.sparse = param::ConvBias::Sparse::GROUP; | |||
| args.emplace_back(param, TensorShape{1, 2 * ic, h, w}, | |||
| TensorShape{2, oc, ic, kernel, kernel}, | |||
| TensorShape{}); | |||
| args.emplace_back(param, TensorShape{1, 2 * ic, h, w}, | |||
| TensorShape{2, oc, ic, kernel, kernel}, | |||
| TensorShape{1, oc * 2, 1, 1}); | |||
| args.emplace_back( | |||
| param, TensorShape{1, 2 * ic, h, w}, | |||
| TensorShape{2, oc, ic, kernel, kernel}, | |||
| TensorShape{1, 2 * oc, (h + 2 * param.pad_h - kernel) / 1 + 1, | |||
| (w + 2 * param.pad_w - kernel) / 1 + 1}); | |||
| }; | |||
| for (size_t kernel : {2, 3, 4, 5, 6, 7}) | |||
| for (size_t ic : {1, 4, 8, 16}) | |||
| for (size_t oc : {1, 4, 8, 16}) | |||
| for (size_t p : {0, 1}) | |||
| for (size_t size : {8, 24}) | |||
| for (NonlineMode nonline_mode : | |||
| {NonlineMode::IDENTITY, NonlineMode::RELU}) { | |||
| run(oc, ic, size, size, kernel, p, nonline_mode); | |||
| } | |||
| run(2046, 8, 20, 20, 3, 1, NonlineMode::IDENTITY); | |||
| Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
| handle()); | |||
| #define cb(algo_name) \ | |||
| checker.set_before_exec_callback( \ | |||
| conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \ | |||
| for (auto&& arg : args) { \ | |||
| checker.set_param(arg.param).execs( \ | |||
| {arg.src, arg.filter, arg.bias, {}, {}}); \ | |||
| } | |||
| cb("IM2COLMATMUL:X86_F32_MKL_PACKA:192"); | |||
| #undef cb | |||
| } | |||
| /**************************** Conv1x1 PackA *************************/ | |||
| namespace { | |||
| void checker_conv_bias(std::vector<conv_bias::TestArg> args, Handle* handle, | |||
| @@ -1169,6 +1383,77 @@ TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QINT8) { | |||
| #undef cb | |||
| } | |||
| TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QINT8_FILTER_PREPROCESS) { | |||
| using namespace conv_bias; | |||
| std::vector<TestArg> args; | |||
| auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, | |||
| size_t p, NonlineMode nonline_mode) { | |||
| if (w + 2 * p < kernel || h + 2 * p < kernel) | |||
| return; | |||
| param::ConvBias param; | |||
| param.stride_h = 1; | |||
| param.stride_w = 1; | |||
| param.pad_h = p; | |||
| param.pad_w = p; | |||
| param.nonlineMode = nonline_mode; | |||
| //! no bias | |||
| args.emplace_back(param, TensorShape{1, ic, h, w}, | |||
| TensorShape{oc, ic, kernel, kernel}, TensorShape{}); | |||
| //! bias channel | |||
| args.emplace_back(param, TensorShape{2, ic, h, w}, | |||
| TensorShape{oc, ic, kernel, kernel}, | |||
| TensorShape{1, oc, 1, 1}); | |||
| }; | |||
| for (size_t kernel : {2, 3, 4, 5, 6, 7}) | |||
| for (size_t ic : {1, 4, 8, 16}) | |||
| for (size_t oc : {1, 4, 8}) | |||
| for (size_t p : {0, 2}) | |||
| for (size_t size : {20, 21, 24}) | |||
| for (NonlineMode nonline_mode : | |||
| {NonlineMode::IDENTITY, NonlineMode::RELU, | |||
| NonlineMode::H_SWISH}) { | |||
| run(oc, ic, size, size, kernel, p, nonline_mode); | |||
| } | |||
| run(2046, 8, 20, 20, 3, 1, NonlineMode::IDENTITY); | |||
| Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
| handle()); | |||
| #define cb(algo_name) \ | |||
| checker.set_before_exec_callback( \ | |||
| conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \ | |||
| UniformIntRNG rng{-50, 50}; \ | |||
| for (auto&& arg : args) { \ | |||
| checker.set_dtype(0, dtype::QuantizedS8(2.5f)) \ | |||
| .set_dtype(1, dtype::QuantizedS8(2.5f)) \ | |||
| .set_dtype(2, dtype::QuantizedS32(6.25f)) \ | |||
| .set_dtype(4, dtype::QuantizedS8(60.25)) \ | |||
| .set_rng(0, &rng) \ | |||
| .set_rng(1, &rng) \ | |||
| .set_rng(2, &rng) \ | |||
| .set_param(arg.param) \ | |||
| .execs({arg.src, arg.filter, {}, {}, {}}); \ | |||
| } | |||
| #if MEGDNN_X86_WITH_MKL_DNN | |||
| if (x86::is_supported(x86::SIMDType::VNNI)) { | |||
| cb("IM2COLMATMUL:X86_INT8X8X32_MKLDNN"); | |||
| } | |||
| #endif | |||
| #if MEGDNN_X86_WITH_VNNI | |||
| if (x86::is_supported(x86::SIMDType::VNNI)) { | |||
| cb("IM2COLMATMUL:X86_INT8X8X32_VNNI"); | |||
| } | |||
| #endif | |||
| if (x86::is_supported(x86::SIMDType::AVX2)) { | |||
| cb("IM2COLMATMUL:X86_INT8X8X32_AVX2_2X4X16"); | |||
| } | |||
| #undef cb | |||
| } | |||
| TEST_F(X86, CONV_BIAS_MATMUL) { | |||
| using namespace conv_bias; | |||
| std::vector<TestArg> args; | |||