GitOrigin-RevId: 66e5db5c89
tags/v0.3.2
| @@ -741,11 +741,11 @@ def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor: | |||||
| .. testcode:: | .. testcode:: | ||||
| import numpy as np | import numpy as np | ||||
| from megengine import tensor | |||||
| import megengine as mge | |||||
| import megengine.functional as F | import megengine.functional as F | ||||
| from megengine.random import manual_seed | |||||
| from megengine import tensor | |||||
| manual_seed(0) | |||||
| data = tensor(np.ones(10, dtype=np.float32)) | data = tensor(np.ones(10, dtype=np.float32)) | ||||
| out = F.dropout(data, 1./3.) | out = F.dropout(data, 1./3.) | ||||
| print(out.numpy()) | print(out.numpy()) | ||||
| @@ -753,6 +753,7 @@ def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor: | |||||
| Outputs: | Outputs: | ||||
| .. testoutput:: | .. testoutput:: | ||||
| :options: +SKIP | |||||
| [1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5] | [1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5] | ||||
| @@ -249,6 +249,7 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: | |||||
| import numpy as np | import numpy as np | ||||
| import megengine.functional as F | import megengine.functional as F | ||||
| from megengine.core import tensor | from megengine.core import tensor | ||||
| inp = tensor(np.zeros(shape=(3,5),dtype=np.float32)) | inp = tensor(np.zeros(shape=(3,5),dtype=np.float32)) | ||||
| source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]]) | source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]]) | ||||
| index = tensor([[0,2,0,2,1],[2,0,0,1,2]]) | index = tensor([[0,2,0,2,1],[2,0,0,1,2]]) | ||||
| @@ -258,6 +259,7 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: | |||||
| Outputs: | Outputs: | ||||
| .. testoutput:: | .. testoutput:: | ||||
| :options: +SKIP | |||||
| [[0.9935 0.0718 0.5939 0. 0. ] | [[0.9935 0.0718 0.5939 0. 0. ] | ||||
| [0. 0. 0. 0.357 0.4396] | [0. 0. 0. 0.357 0.4396] | ||||
| @@ -314,9 +316,9 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: | |||||
| def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: | def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: | ||||
| r""" | r""" | ||||
| Select elements either from Tensor x or Tensor y, according to mask. | Select elements either from Tensor x or Tensor y, according to mask. | ||||
| .. math:: | .. math:: | ||||
| \textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i | \textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i | ||||
| :param mask: a mask used for choosing x or y | :param mask: a mask used for choosing x or y | ||||
| @@ -115,7 +115,7 @@ class Conv2d(_ConvNd): | |||||
| and there would be an extra dimension at the beginning of the weight's | and there would be an extra dimension at the beginning of the weight's | ||||
| shape. Specifically, the shape of weight would be ``(groups, | shape. Specifically, the shape of weight would be ``(groups, | ||||
| out_channel // groups, in_channels // groups, *kernel_size)``. | out_channel // groups, in_channels // groups, *kernel_size)``. | ||||
| :param bias: wether to add a bias onto the result of convolution. Default: | |||||
| :param bias: whether to add a bias onto the result of convolution. Default: | |||||
| True | True | ||||
| :param conv_mode: Supports `CROSS_CORRELATION` or `CONVOLUTION`. Default: | :param conv_mode: Supports `CROSS_CORRELATION` or `CONVOLUTION`. Default: | ||||
| `CROSS_CORRELATION`. | `CROSS_CORRELATION`. | ||||
| @@ -42,11 +42,11 @@ def gaussian( | |||||
| import megengine as mge | import megengine as mge | ||||
| import megengine.random as rand | import megengine.random as rand | ||||
| rand.manual_seed(0) | |||||
| x = rand.gaussian((2, 2), mean=0, std=1) | x = rand.gaussian((2, 2), mean=0, std=1) | ||||
| print(x.numpy()) | print(x.numpy()) | ||||
| .. testoutput:: | .. testoutput:: | ||||
| :options: +SKIP | |||||
| [[-0.20235455 -0.6959438 ] | [[-0.20235455 -0.6959438 ] | ||||
| [-1.4939808 -1.5824696 ]] | [-1.4939808 -1.5824696 ]] | ||||
| @@ -79,11 +79,11 @@ def uniform( | |||||
| import megengine as mge | import megengine as mge | ||||
| import megengine.random as rand | import megengine.random as rand | ||||
| rand.manual_seed(0) | |||||
| x = rand.uniform((2, 2)) | x = rand.uniform((2, 2)) | ||||
| print(x.numpy()) | print(x.numpy()) | ||||
| .. testoutput:: | .. testoutput:: | ||||
| :options: +SKIP | |||||
| [[0.76901674 0.70496535] | [[0.76901674 0.70496535] | ||||
| [0.09365904 0.62957656]] | [0.09365904 0.62957656]] | ||||