| @@ -76,6 +76,16 @@ struct RoundingConverter<uint8_t> { | |||
| } | |||
| }; | |||
| template <> | |||
| struct RoundingConverter<dt_qint4> { | |||
| __host__ __device__ __forceinline__ dt_qint4 operator()(float x) const { | |||
| #if MEGDNN_CC_HOST | |||
| using std::round; | |||
| #endif | |||
| return static_cast<dt_qint4>(round(x)); | |||
| } | |||
| }; | |||
| } // namespace rounding | |||
| } // namespace megdnn | |||
| @@ -29,7 +29,8 @@ void WarpPerspectiveBase::check_layout_fwd(const TensorLayout& src, | |||
| }; | |||
| MEGDNN_MARK_USED_VAR(errmsg); | |||
| if (param().format == param::WarpPerspective::Format::NHWCD4 || | |||
| param().format == param::WarpPerspective::Format::NCHW4) { | |||
| param().format == param::WarpPerspective::Format::NCHW4 || | |||
| param().format == param::WarpPerspective::Format::NCHW64) { | |||
| megdnn_assert(src.ndim == 5_z, "%s", errmsg().c_str()); | |||
| megdnn_assert(dst.ndim == 5_z, "%s", errmsg().c_str()); | |||
| @@ -71,7 +72,8 @@ void WarpPerspectiveBase::check_layout_fwd(const TensorLayout& src, | |||
| src.dtype.enumv() == DTypeEnum::Int8 || | |||
| src.dtype.enumv() == DTypeEnum::Uint8 || | |||
| (src.dtype.enumv() == DTypeEnum::QuantizedS8 || | |||
| src.dtype.enumv() == DTypeEnum::Quantized8Asymm), | |||
| src.dtype.enumv() == DTypeEnum::Quantized8Asymm) || | |||
| src.dtype.enumv() == DTypeEnum::QuantizedS4, | |||
| "WarpPerspective NCHW input dtype should be " | |||
| "Float32/Int8/Uint8/QInt8/QUint8" DNN_FLOAT16_SELECT( | |||
| "/Float16/BFloat16", "") "."); | |||
| @@ -109,6 +111,22 @@ void WarpPerspectiveBase::check_layout_fwd(const TensorLayout& src, | |||
| megdnn_assert(src.shape[4] == 4 && dst.shape[4] == 4); | |||
| megdnn_assert(src.shape[1] == dst.shape[1], "%s", errmsg().c_str()); | |||
| megdnn_assert(param().imode == | |||
| param::WarpPerspective::InterpolationMode::LINEAR); | |||
| megdnn_assert(param().bmode != | |||
| param::WarpPerspective::BorderMode::TRANSPARENT); | |||
| megdnn_assert(param().bmode != | |||
| param::WarpPerspective::BorderMode::ISOLATED); | |||
| } else if (param().format == param::WarpPerspective::Format::NCHW64) { | |||
| megdnn_assert(src.dtype.enumv() == DTypeEnum::QuantizedS4, | |||
| "src expected QuantizedS4, but got %s", | |||
| src.dtype.name()); | |||
| megdnn_assert(mat.dtype == dtype::Float32(), | |||
| "matrix dtype expected float, got %s", | |||
| mat.dtype.name()); | |||
| megdnn_assert(src.shape[4] == 64 && dst.shape[4] == 64); | |||
| megdnn_assert(src.shape[1] == dst.shape[1], "%s", errmsg().c_str()); | |||
| megdnn_assert(param().imode == | |||
| param::WarpPerspective::InterpolationMode::LINEAR); | |||
| megdnn_assert(param().bmode != | |||
| @@ -288,7 +306,8 @@ void WarpPerspectiveForward::check_exec_allow_nhwc_mat_idx( | |||
| param().format != Param::Format::NCHW4 && | |||
| param().format != Param::Format::NHWC_NCHW && | |||
| param().format != Param::Format::NHWC_NCHW4_IC_SMALL && | |||
| param().format != Param::Format::NCHW_NCHW4_IC_SMALL) { | |||
| param().format != Param::Format::NCHW_NCHW4_IC_SMALL && | |||
| param().format != Param::Format::NCHW64) { | |||
| megdnn_assert(!mat_idx.ndim, | |||
| "mat_idx not supported for current format"); | |||
| } | |||
| @@ -35,6 +35,13 @@ void forward_proxy_nchw4(const ctype* src, const float* mat, const int* mat_idx, | |||
| megcore::AsyncErrorInfo* error_info, | |||
| void* error_tracker, cudaStream_t stream); | |||
| template <typename ctype> | |||
| void forward_proxy_nchw64(const ctype* src, const float* mat, | |||
| const int* mat_idx, ctype* dst, int N_SRC, int N_MAT, | |||
| int C, int IH, int IW, int OH, int OW, ctype bval, | |||
| BorderMode bmode, megcore::AsyncErrorInfo* error_info, | |||
| void* error_tracker, cudaStream_t stream); | |||
| template <typename src_dtype, typename src_ctype, typename dst_ctype> | |||
| void forward_proxy_quint8_dimshuffle_typecvt_nchw4( | |||
| bool is_nhwc, const src_ctype* src, const float* mat, | |||
| @@ -22,6 +22,43 @@ | |||
| namespace megdnn { | |||
| namespace cuda { | |||
| namespace { | |||
| inline void deduce_reformat_layout(std::unique_ptr<RelayoutFormat>& relayout, | |||
| const TensorLayout& src_layout, | |||
| TensorLayout& dst_layout, | |||
| RelayoutFormat::Param::Mode mode, | |||
| const int oc = 0, const int group = 1) { | |||
| if (src_layout.ndim > 0) { | |||
| RelayoutFormat::Param trans_param; | |||
| trans_param.mode = mode; | |||
| trans_param.oc = oc; | |||
| trans_param.group = group; | |||
| relayout->param() = trans_param; | |||
| relayout->deduce_layout(src_layout, dst_layout); | |||
| } else { | |||
| dst_layout = src_layout; | |||
| } | |||
| } | |||
| void get_inner_layout(const TensorLayout& src, const TensorLayout& dst, | |||
| TensorLayout& inner_src, TensorLayout& inner_dst, | |||
| Handle* handle, | |||
| WarpPerspectiveForwardImpl::Param::Format format) { | |||
| if (src.dtype.enumv() == DTypeEnum::QuantizedS4 && | |||
| dst.dtype.enumv() == DTypeEnum::QuantizedS4 && | |||
| format == param::WarpPerspective::Format::NCHW) { | |||
| auto relayout_opr = handle->create_operator<RelayoutFormat>(); | |||
| deduce_reformat_layout(relayout_opr, src, inner_src, | |||
| RelayoutFormat::Param::Mode::NCHW_NCHW64, 0, 1); | |||
| deduce_reformat_layout(relayout_opr, dst, inner_dst, | |||
| RelayoutFormat::Param::Mode::NCHW_NCHW64, 0, 1); | |||
| } else { | |||
| megdnn_assert(0, "not support"); | |||
| } | |||
| } | |||
| } // namespace | |||
| namespace warp_perspective { | |||
| void warp_perspective_cv_exec(_megdnn_tensor_in src, _megdnn_tensor_in mat, | |||
| @@ -93,15 +130,22 @@ WorkspaceBundle WarpPerspectiveForwardImpl::get_workspace_bundle( | |||
| TensorLayout fsrc = src; | |||
| TensorLayout fmat = mat; | |||
| TensorLayout fdst = dst; | |||
| auto get_workspace = [&sizes](TensorLayout& layout) { | |||
| if (layout.dtype == dtype::BFloat16()) { | |||
| layout.dtype = dtype::Float32(); | |||
| sizes.push_back(layout.span().dist_byte()); | |||
| } | |||
| }; | |||
| get_workspace(fsrc); | |||
| get_workspace(fmat); | |||
| get_workspace(fdst); | |||
| if (src.dtype.enumv() == DTypeEnum::QuantizedS4 && | |||
| param().format == param::WarpPerspective::Format::NCHW) { | |||
| get_inner_layout(src, dst, fsrc, fdst, handle(), param().format); | |||
| sizes.push_back(fsrc.span().dist_byte()); | |||
| sizes.push_back(fdst.span().dist_byte()); | |||
| } else { | |||
| auto get_workspace = [&sizes](TensorLayout& layout) { | |||
| if (layout.dtype == dtype::BFloat16()) { | |||
| layout.dtype = dtype::Float32(); | |||
| sizes.push_back(layout.span().dist_byte()); | |||
| } | |||
| }; | |||
| get_workspace(fsrc); | |||
| get_workspace(fmat); | |||
| get_workspace(fdst); | |||
| } | |||
| if (param().format == param::WarpPerspective::Format::NHWC) { | |||
| //! use double for the workspace dtype as float may cause | |||
| //! accuracy problems | |||
| @@ -123,6 +167,7 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in ssrc, | |||
| TensorND mat = smat; | |||
| TensorND mat_idx = smat_idx; | |||
| TensorND dst = sdst; | |||
| Param::Format inner_format = param().format; | |||
| auto bundle = | |||
| get_workspace_bundle(sworkspace.raw_ptr, ssrc.layout, smat.layout, | |||
| smat_idx.layout, sdst.layout); | |||
| @@ -132,11 +177,24 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in ssrc, | |||
| ctypecvt.src_to_comp_type(ssrc, src) | |||
| .src_to_comp_type(smat, mat) | |||
| .src_to_comp_type(sdst, dst); | |||
| } else if (ssrc.layout.dtype.enumv() == DTypeEnum::QuantizedS4 && | |||
| param().format == Param::Format::NCHW) { | |||
| auto handle_ptr = handle(); | |||
| get_inner_layout(ssrc.layout, sdst.layout, src.layout, dst.layout, | |||
| handle_ptr, param().format); | |||
| src.raw_ptr = bundle.get(0); | |||
| dst.raw_ptr = bundle.get(1); | |||
| auto relayout_opr = handle_ptr->create_operator<RelayoutFormat>(); | |||
| RelayoutFormat::Param trans_param; | |||
| trans_param.mode = RelayoutFormat::Param::Mode::NCHW_NCHW64; | |||
| relayout_opr->param() = trans_param; | |||
| relayout_opr->exec(ssrc, src, {}); | |||
| inner_format = Param::Format::NCHW64; | |||
| } | |||
| { | |||
| auto stream = cuda_stream(this->handle()); | |||
| bool is_nhwc = param().format == param::WarpPerspective::Format::NHWC; | |||
| bool is_nhwc = inner_format == param::WarpPerspective::Format::NHWC; | |||
| if (is_nhwc && param().imode != Param::InterpolationMode::LINEAR) { | |||
| // use opencv impl only for nhwc and non-linear interp | |||
| @@ -152,7 +210,7 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in ssrc, | |||
| } else { | |||
| megdnn_assert(warp::is_dnn_available(src.layout, mat.layout, | |||
| dst.layout, param().imode, | |||
| param().format)); | |||
| inner_format)); | |||
| size_t C, IH, IW, OH, OW; | |||
| if (is_nhwc) { | |||
| C = src.layout.shape[3]; | |||
| @@ -160,19 +218,19 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in ssrc, | |||
| IW = src.layout.shape[2]; | |||
| OH = dst.layout.shape[1]; | |||
| OW = dst.layout.shape[2]; | |||
| } else if (param().format == Param::Format::NCHW4) { | |||
| } else if (inner_format == Param::Format::NCHW4) { | |||
| C = src.layout.shape[1] * 4; | |||
| IH = src.layout.shape[2]; | |||
| IW = src.layout.shape[3]; | |||
| OH = dst.layout.shape[2]; | |||
| OW = dst.layout.shape[3]; | |||
| } else if (param().format == Param::Format::NHWC_NCHW) { | |||
| } else if (inner_format == Param::Format::NHWC_NCHW) { | |||
| C = src.layout.shape[3]; | |||
| IH = src.layout.shape[1]; | |||
| IW = src.layout.shape[2]; | |||
| OH = dst.layout.shape[2]; | |||
| OW = dst.layout.shape[3]; | |||
| } else if (param().format == Param::Format::NHWC_NCHW4_IC_SMALL) { | |||
| } else if (inner_format == Param::Format::NHWC_NCHW4_IC_SMALL) { | |||
| C = src.layout.shape[3]; | |||
| IH = src.layout.shape[1]; | |||
| IW = src.layout.shape[2]; | |||
| @@ -181,7 +239,7 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in ssrc, | |||
| megdnn_assert( | |||
| (C == 1) || (C == 3), | |||
| "NHWC_NCHW4_IC_SMALL only support C == 1 or C == 3"); | |||
| } else if (param().format == Param::Format::NCHW_NCHW4_IC_SMALL) { | |||
| } else if (inner_format == Param::Format::NCHW_NCHW4_IC_SMALL) { | |||
| C = src.layout.shape[1]; | |||
| IH = src.layout.shape[2]; | |||
| IW = src.layout.shape[3]; | |||
| @@ -190,9 +248,15 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in ssrc, | |||
| megdnn_assert( | |||
| (C == 1) || (C == 3), | |||
| "NCHW_NCHW4_IC_SMALL only support C == 1 or C == 3"); | |||
| } else if (inner_format == Param::Format::NCHW64) { | |||
| C = src.layout.shape[1] * 64; | |||
| IH = src.layout.shape[2]; | |||
| IW = src.layout.shape[3]; | |||
| OH = dst.layout.shape[2]; | |||
| OW = dst.layout.shape[3]; | |||
| } else { | |||
| megdnn_assert( | |||
| param().format == param::WarpPerspective::Format::NCHW, | |||
| inner_format == param::WarpPerspective::Format::NCHW, | |||
| "invalid warp_perspective format"); | |||
| C = src.layout.shape[1]; | |||
| IH = src.layout.shape[2]; | |||
| @@ -261,6 +325,32 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in ssrc, | |||
| mat.layout[0], C, IH, IW, OH, OW, bval, bmode, | |||
| async_error_info(handle()), m_error_tracker, | |||
| stream); | |||
| } else if (src.layout.dtype.enumv() == DTypeEnum::QuantizedS4) { | |||
| megdnn_assert( | |||
| param().format == Param::Format::NCHW64 || | |||
| param().format == Param::Format::NCHW, | |||
| "WarpPerspective on CUDA supports NCHW64 or NCHW+ " | |||
| "QuantizedS4 only"); | |||
| bval = roundf(bval); | |||
| bval = fmin(fmax(-8.f, bval), 7.f); | |||
| warp_perspective::forward_proxy_nchw64<dt_qint4>( | |||
| src.compatible_ptr<dt_qint4>(), | |||
| mat.ptr<dt_float32>(), | |||
| mat_idx.raw_ptr ? mat_idx.ptr<int>() : nullptr, | |||
| dst.compatible_ptr<dt_qint4>(), src.layout[0], | |||
| mat.layout[0], C, IH, IW, OH, OW, | |||
| static_cast<dt_qint4>(bval), bmode, | |||
| async_error_info(handle()), m_error_tracker, | |||
| stream); | |||
| if (param().format == Param::Format::NCHW) { | |||
| auto relayout_opr = | |||
| handle()->create_operator<RelayoutFormat>(); | |||
| RelayoutFormat::Param trans_param; | |||
| trans_param.mode = | |||
| RelayoutFormat::Param::Mode::NCHW64_NCHW; | |||
| relayout_opr->param() = trans_param; | |||
| relayout_opr->exec(dst, sdst, {}); | |||
| } | |||
| } | |||
| } else if ((src.layout.dtype.enumv() == | |||
| DTypeEnum::Quantized8Asymm || | |||
| @@ -142,6 +142,92 @@ __global__ void kern_general_nchw4(SrcVisitor src, const float* __restrict mat, | |||
| } | |||
| } | |||
| #define warp_perspective_transform(idx) \ | |||
| static_cast<int>(output_converter(s00[idx] * nalpha * nbeta + \ | |||
| s01[idx] * nalpha * pbeta + \ | |||
| s10[idx] * palpha * nbeta + \ | |||
| s11[idx] * palpha * pbeta) \ | |||
| .as_int8()) | |||
| #define pack_output \ | |||
| transform_int8_to_int4x8( \ | |||
| warp_perspective_transform(0), warp_perspective_transform(1), \ | |||
| warp_perspective_transform(2), warp_perspective_transform(3), \ | |||
| warp_perspective_transform(4), warp_perspective_transform(5), \ | |||
| warp_perspective_transform(6), warp_perspective_transform(7)) | |||
| template <typename ctype, typename Getter, typename SrcVisitor, | |||
| typename OutputConverter> | |||
| __global__ void kern_general_nchw64(SrcVisitor src, const float* __restrict mat, | |||
| ctype* __restrict dst, int C, int IH, | |||
| int IW, int OH, int OW) { | |||
| Getter getter; | |||
| OutputConverter output_converter; | |||
| int ow = blockIdx.x * blockDim.x + threadIdx.x; | |||
| int c1 = ow % 2; | |||
| ow = ow / 2; | |||
| int oh = blockIdx.y * blockDim.y + threadIdx.y; | |||
| const ctype* __restrict sptr = src.get(blockIdx.z, C * IH * IW / 2); | |||
| dst += blockIdx.z * C * OH * OW / 2; | |||
| mat += blockIdx.z * 3 * 3; | |||
| const int4* sptr_int4 = reinterpret_cast<const int4*>(sptr); | |||
| int4* dst_int4 = reinterpret_cast<int4*>(dst); | |||
| if (ow < OW && oh < OH) { | |||
| float denominator = mat[6] * ow + mat[7] * oh + mat[8]; | |||
| float iw = (mat[0] * ow + mat[1] * oh + mat[2]) / denominator; | |||
| float ih = (mat[3] * ow + mat[4] * oh + mat[5]) / denominator; | |||
| int iw0 = getter(floor(iw) + 0, IW); | |||
| int iw1 = getter(floor(iw) + 1, IW); | |||
| int ih0 = getter(floor(ih) + 0, IH); | |||
| int ih1 = getter(floor(ih) + 1, IH); | |||
| float palpha = ih - floor(ih); | |||
| float pbeta = iw - floor(iw); | |||
| float nalpha = 1.0f - palpha; | |||
| float nbeta = 1.0f - pbeta; | |||
| int o_coor = (oh * OW + ow) << 1; | |||
| int i_coor_00 = (ih0 * IW + iw0) << 1; | |||
| int i_coor_01 = (ih0 * IW + iw1) << 1; | |||
| int i_coor_10 = (ih1 * IW + iw0) << 1; | |||
| int i_coor_11 = (ih1 * IW + iw1) << 1; | |||
| int s00[8], s01[8], s10[8], s11[8]; | |||
| int4 s[4], d; | |||
| for (int c0 = 0, nr_chan = C / 64; c0 < nr_chan; ++c0) { | |||
| s[0] = __ldg(sptr_int4 + i_coor_00 + c1); | |||
| s[1] = __ldg(sptr_int4 + i_coor_01 + c1); | |||
| s[2] = __ldg(sptr_int4 + i_coor_10 + c1); | |||
| s[3] = __ldg(sptr_int4 + i_coor_11 + c1); | |||
| transform_int4x8_to_int8(s00, s[0].x); | |||
| transform_int4x8_to_int8(s01, s[1].x); | |||
| transform_int4x8_to_int8(s10, s[2].x); | |||
| transform_int4x8_to_int8(s11, s[3].x); | |||
| d.x = pack_output; | |||
| transform_int4x8_to_int8(s00, s[0].y); | |||
| transform_int4x8_to_int8(s01, s[1].y); | |||
| transform_int4x8_to_int8(s10, s[2].y); | |||
| transform_int4x8_to_int8(s11, s[3].y); | |||
| d.y = pack_output; | |||
| transform_int4x8_to_int8(s00, s[0].z); | |||
| transform_int4x8_to_int8(s01, s[1].z); | |||
| transform_int4x8_to_int8(s10, s[2].z); | |||
| transform_int4x8_to_int8(s11, s[3].z); | |||
| d.z = pack_output; | |||
| transform_int4x8_to_int8(s00, s[0].w); | |||
| transform_int4x8_to_int8(s01, s[1].w); | |||
| transform_int4x8_to_int8(s10, s[2].w); | |||
| transform_int4x8_to_int8(s11, s[3].w); | |||
| d.w = pack_output; | |||
| dst_int4[o_coor + c1] = d; | |||
| sptr_int4 += IH * IW * 2; | |||
| dst_int4 += OH * OW * 2; | |||
| } | |||
| } | |||
| } | |||
| template <typename ctype, typename SrcVisitor, typename OutputConverter> | |||
| __global__ void kern_const_border(SrcVisitor src, const float* __restrict mat, | |||
| ctype* __restrict dst, int C, int IH, int IW, | |||
| @@ -233,6 +319,107 @@ __global__ void kern_const_border_nchw4(SrcVisitor src, | |||
| } | |||
| } | |||
| template <typename ctype, typename SrcVisitor, typename OutputConverter> | |||
| __global__ void kern_const_border_nchw64(SrcVisitor src, | |||
| const float* __restrict mat, | |||
| ctype* __restrict dst, int C, int IH, | |||
| int IW, int OH, int OW, ctype bval) { | |||
| OutputConverter output_converter; | |||
| int ow = blockIdx.x * blockDim.x + threadIdx.x; | |||
| int c1 = ow %2; | |||
| ow = ow / 2; | |||
| int oh = blockIdx.y * blockDim.y + threadIdx.y; | |||
| const ctype* __restrict sptr = src.get(blockIdx.z, C * IH * IW / 2); | |||
| dst += blockIdx.z * C * OH * OW / 2; | |||
| mat += blockIdx.z * 3 * 3; | |||
| const int4* sptr_int4 = reinterpret_cast<const int4*>(sptr); | |||
| int4* dst_int4 = reinterpret_cast<int4*>(dst); | |||
| if (ow < OW && oh < OH) { | |||
| float denominator = mat[6] * ow + mat[7] * oh + mat[8]; | |||
| float iw = (mat[0] * ow + mat[1] * oh + mat[2]) / denominator; | |||
| float ih = (mat[3] * ow + mat[4] * oh + mat[5]) / denominator; | |||
| int iw0 = floor(iw) + 0; | |||
| int iw1 = floor(iw) + 1; | |||
| int ih0 = floor(ih) + 0; | |||
| int ih1 = floor(ih) + 1; | |||
| bool okw0 = (iw0 >= 0 && iw0 < IW); | |||
| bool okw1 = (iw1 >= 0 && iw1 < IW); | |||
| bool okh0 = (ih0 >= 0 && ih0 < IH); | |||
| bool okh1 = (ih1 >= 0 && ih1 < IH); | |||
| float palpha = ih - floor(ih); | |||
| float pbeta = iw - floor(iw); | |||
| float nalpha = 1.0f - palpha; | |||
| float nbeta = 1.0f - pbeta; | |||
| int o_coor = (oh * OW + ow) << 1; | |||
| int i_coor_00 = (ih0 * IW + iw0) << 1; | |||
| int i_coor_01 = (ih0 * IW + iw1) << 1; | |||
| int i_coor_10 = (ih1 * IW + iw0) << 1; | |||
| int i_coor_11 = (ih1 * IW + iw1) << 1; | |||
| bool flag00 = okh0 && okw0, flag01 = okh0 && okw1, | |||
| flag10 = okh1 && okw0, flag11 = okh1 && okw1; | |||
| int8_t bval_4 = bval.as_int8() & 0xF; | |||
| int bval_8 = transform_int8_to_int4x8(bval_4, bval_4, bval_4, bval_4, | |||
| bval_4, bval_4, bval_4, bval_4); | |||
| int4 bval_int4; | |||
| bval_int4.x = bval_8; | |||
| bval_int4.y = bval_8; | |||
| bval_int4.z = bval_8; | |||
| bval_int4.w = bval_8; | |||
| int s00[8], s01[8], s10[8], s11[8]; | |||
| int4 s[4], d; | |||
| for (int c0 = 0, nr_chan = C / 64; c0 < nr_chan; ++c0) { | |||
| if (flag00) { | |||
| s[0] = __ldg(sptr_int4 + i_coor_00 + c1); | |||
| } else { | |||
| s[0] = bval_int4; | |||
| } | |||
| if (flag01) { | |||
| s[1] = __ldg(sptr_int4 + i_coor_01 + c1); | |||
| } else { | |||
| s[1] = bval_int4; | |||
| } | |||
| if (flag10) { | |||
| s[2] = __ldg(sptr_int4 + i_coor_10 + c1); | |||
| } else { | |||
| s[2] = bval_int4; | |||
| } | |||
| if (flag11) { | |||
| s[3] = __ldg(sptr_int4 + i_coor_11 + c1); | |||
| } else { | |||
| s[3] = bval_int4; | |||
| } | |||
| transform_int4x8_to_int8(s00, s[0].x); | |||
| transform_int4x8_to_int8(s01, s[1].x); | |||
| transform_int4x8_to_int8(s10, s[2].x); | |||
| transform_int4x8_to_int8(s11, s[3].x); | |||
| d.x = pack_output; | |||
| transform_int4x8_to_int8(s00, s[0].y); | |||
| transform_int4x8_to_int8(s01, s[1].y); | |||
| transform_int4x8_to_int8(s10, s[2].y); | |||
| transform_int4x8_to_int8(s11, s[3].y); | |||
| d.y = pack_output; | |||
| transform_int4x8_to_int8(s00, s[0].z); | |||
| transform_int4x8_to_int8(s01, s[1].z); | |||
| transform_int4x8_to_int8(s10, s[2].z); | |||
| transform_int4x8_to_int8(s11, s[3].z); | |||
| d.z = pack_output; | |||
| transform_int4x8_to_int8(s00, s[0].w); | |||
| transform_int4x8_to_int8(s01, s[1].w); | |||
| transform_int4x8_to_int8(s10, s[2].w); | |||
| transform_int4x8_to_int8(s11, s[3].w); | |||
| d.w = pack_output; | |||
| dst_int4[o_coor + c1] = d; | |||
| sptr_int4 += IH * IW * 2; | |||
| dst_int4 += OH * OW * 2; | |||
| } | |||
| } | |||
| } | |||
| template <typename ctype, typename Getter, typename SrcVisitor, | |||
| typename OutputConverter> | |||
| __global__ void kern_general_nhwc(SrcVisitor src, const float* __restrict mat, | |||
| @@ -423,6 +610,58 @@ void dispatch_with_visitor_nchw4(SrcVisitor src, const float* mat, ctype* dst, | |||
| } | |||
| } | |||
| template <typename ctype, typename SrcVisitor> | |||
| void dispatch_with_visitor_nchw64(SrcVisitor src, const float* mat, ctype* dst, | |||
| int N, int C, int IH, int IW, int OH, int OW, | |||
| ctype bval, BorderMode bmode, | |||
| cudaStream_t stream) { | |||
| const int BY = 16, BX = 32; | |||
| #define DISPATCH(Getter) \ | |||
| do { \ | |||
| kern_general_nchw64<ctype, Getter, SrcVisitor, \ | |||
| rounding::RoundingConverter<ctype>> \ | |||
| <<<blocks, threads, 0, stream>>>(src, mat, dst, C, IH, IW, OH, \ | |||
| OW); \ | |||
| } while (0) | |||
| const int max_batch_size = 65535; | |||
| while (N) { | |||
| size_t curr_batch_size = N < max_batch_size ? N : max_batch_size; | |||
| dim3 threads(BX, BY); | |||
| dim3 blocks((OW * 2 + BX - 1) / BX, (OH + BY - 1) / BY, | |||
| curr_batch_size); | |||
| switch (bmode) { | |||
| case BORDER_REPLICATE: | |||
| DISPATCH(ReplicateGetter); | |||
| break; | |||
| case BORDER_REFLECT: | |||
| DISPATCH(ReflectGetter); | |||
| break; | |||
| case BORDER_REFLECT_101: | |||
| DISPATCH(Reflect101Getter); | |||
| break; | |||
| case BORDER_WRAP: | |||
| DISPATCH(WrapGetter); | |||
| break; | |||
| #undef DISPATCH | |||
| case BORDER_CONSTANT: | |||
| kern_const_border_nchw64<ctype, SrcVisitor, | |||
| rounding::RoundingConverter<ctype>> | |||
| <<<blocks, threads, 0, stream>>>(src, mat, dst, C, IH, | |||
| IW, OH, OW, bval); | |||
| break; | |||
| default: | |||
| break; | |||
| } | |||
| N -= curr_batch_size; | |||
| src.move_batch(curr_batch_size, C * IH * IW / 2); | |||
| mat += curr_batch_size * 3 * 3; | |||
| dst += curr_batch_size * C * OH * OW / 2; | |||
| } | |||
| } | |||
| template <typename SrcType, typename DstType> | |||
| struct CudaTypeCvt; | |||
| @@ -1154,6 +1393,30 @@ void forward_proxy_nchw4(const ctype* src, const float* mat, const int* mat_idx, | |||
| after_kernel_launch(); | |||
| } | |||
| template <typename ctype> | |||
| void forward_proxy_nchw64(const ctype* src, const float* mat, const int* mat_idx, | |||
| ctype* dst, int N_SRC, int N_MAT, int C, int IH, | |||
| int IW, int OH, int OW, ctype bval, BorderMode bmode, | |||
| megcore::AsyncErrorInfo* error_info, | |||
| void* error_tracker, cudaStream_t stream) { | |||
| if (mat_idx) { | |||
| IndexedSrcVisitor<ctype> visitor; | |||
| visitor.ptr = src; | |||
| visitor.idx = mat_idx; | |||
| visitor.N_SRC = N_SRC; | |||
| visitor.error_info = error_info; | |||
| visitor.error_tracker = error_tracker; | |||
| dispatch_with_visitor_nchw64(visitor, mat, dst, N_MAT, C, IH, IW, OH, OW, | |||
| bval, bmode, stream); | |||
| } else { | |||
| DirectSrcVisitor<ctype> visitor; | |||
| visitor.ptr = src; | |||
| dispatch_with_visitor_nchw64(visitor, mat, dst, N_MAT, C, IH, IW, OH, OW, | |||
| bval, bmode, stream); | |||
| } | |||
| after_kernel_launch(); | |||
| } | |||
| #define INST(ctype) \ | |||
| template void forward_proxy(bool, const ctype*, const float*, const int*, \ | |||
| ctype*, int, int, int, int, int, int, int, \ | |||
| @@ -1176,6 +1439,15 @@ INST(int8_t) | |||
| INST(int8_t) | |||
| #undef INST | |||
| #define INST(ctype) \ | |||
| template void forward_proxy_nchw64( \ | |||
| const ctype*, const float*, const int*, ctype*, int, int, int, \ | |||
| int, int, int, int, ctype, BorderMode, megcore::AsyncErrorInfo*, \ | |||
| void*, cudaStream_t); | |||
| INST(dt_qint4) | |||
| #undef INST | |||
| template <typename src_dtype, typename src_ctype, typename dst_ctype> | |||
| void forward_proxy_quint8_dimshuffle_typecvt_nchw4( | |||
| bool is_nhwc, const src_ctype* src, const float* mat, | |||
| @@ -249,6 +249,127 @@ void WarpPerspectiveForwardImpl::kern_naive_nhwcd4( | |||
| MIDOUT_END(); | |||
| } | |||
| template <typename ctype, typename mtype> | |||
| void WarpPerspectiveForwardImpl::kern_naive_int4( | |||
| const KernParam<ctype, mtype>& kern_param, size_t task_id) { | |||
| MEGDNN_MARK_USED_VAR(kern_param); | |||
| MIDOUT_BEGIN(megdnn_naive_warpperspective, ctype, mtype, midout_iv(0)) { | |||
| UNPACK_WARP_PERSPECTIVE_FWD_KERN_PARAM(kern_param); | |||
| MEGDNN_MARK_USED_VAR(N_MAT); | |||
| uint8_t c_shift, c_mask, iw_shift = 0, ow_shift = 0; | |||
| switch (param().format) { | |||
| case Format::NCHW: | |||
| c_shift = 0; | |||
| c_mask = 0; | |||
| iw_shift = IW % 2; | |||
| ow_shift = OW % 2; | |||
| break; | |||
| case Format::NCHW64: | |||
| c_shift = 6; | |||
| c_mask = 0x3F; | |||
| break; | |||
| default: | |||
| megdnn_throw("bad format"); | |||
| break; | |||
| } | |||
| //! strides of C, H, W on src and dst | |||
| size_t sstrd[2] = {IH * (IW + iw_shift), IW + iw_shift}, | |||
| dstrd[2] = {OH * (OW + ow_shift), OW + ow_shift}; | |||
| static constexpr uint8_t mask = (uint8_t)((1 << 4) - 1); | |||
| auto visit_src = [&sptr, sstrd, c_shift, c_mask](size_t c, int h, | |||
| int w) -> float { | |||
| size_t index = ((sstrd[0] * (c >> c_shift) + sstrd[1] * h + w) | |||
| << c_shift) + | |||
| (c & c_mask); | |||
| uint8_t result = | |||
| (sptr[index / 2].as_int8() >> (4 * (index % 2))) & 0xF; | |||
| return result & uint8_t(1 << 3) ? result | ~mask : result; | |||
| }; | |||
| auto visit_src_bd = [&sptr, sstrd, border_val, c_shift, c_mask]( | |||
| size_t c, int h, int w) -> float { | |||
| if (h != -1 && w != -1) { | |||
| size_t index = ((sstrd[0] * (c >> c_shift) + sstrd[1] * h + w) | |||
| << c_shift) + | |||
| (c & c_mask); | |||
| uint8_t result = | |||
| (sptr[index / 2].as_int8() >> (4 * (index % 2))) & 0xF; | |||
| return result & uint8_t(1 << 3) ? result | ~mask : result; | |||
| } else | |||
| return border_val; | |||
| }; | |||
| auto set_visit_dst = [&dptr, dstrd, c_shift, c_mask](size_t c, int h, | |||
| int w, ctype v) { | |||
| size_t index = ((dstrd[0] * (c >> c_shift) + dstrd[1] * h + w) | |||
| << c_shift) + | |||
| (c & c_mask); | |||
| dptr[index / 2] = | |||
| (dptr[index / 2].as_int8() & (0xF0 >> (4 * (index % 2)))) | | |||
| (v.as_int8() << (4 * (index % 2))); | |||
| }; | |||
| rounding::RoundingConverter<ctype> output_converter; | |||
| auto orig_sptr = sptr; | |||
| size_t n = task_id / OH; | |||
| size_t oh = task_id % OH; | |||
| mptr = mptr + n * 3 * 3; | |||
| dptr = dptr + n * C * OH * OW / 2; | |||
| if (midx_ptr) { | |||
| size_t idx = midx_ptr[n]; | |||
| megdnn_assert( | |||
| idx < N_SRC, | |||
| "mat_idx out of bound: mat_idx[%zu]=%zu src_batch=%zu", n, | |||
| idx, N_SRC); | |||
| sptr = orig_sptr + idx * (C * IH * IW) / 2; | |||
| } else if (n) { | |||
| sptr += n * C * IH * IW / 2; | |||
| } | |||
| rep(ow, OW) { | |||
| float numeratorw = mptr[0] * ow + mptr[1] * oh + mptr[2]; | |||
| float numeratorh = mptr[3] * ow + mptr[4] * oh + mptr[5]; | |||
| float denominator = mptr[6] * ow + mptr[7] * oh + mptr[8]; | |||
| float alphaw = numeratorw / denominator; | |||
| float alphah = numeratorh / denominator; | |||
| int iw0 = get_real_coord(std::floor(alphaw) + 0, IW); | |||
| int iw1 = get_real_coord(std::floor(alphaw) + 1, IW); | |||
| int ih0 = get_real_coord(std::floor(alphah) + 0, IH); | |||
| int ih1 = get_real_coord(std::floor(alphah) + 1, IH); | |||
| alphaw -= floor(alphaw); | |||
| alphah -= floor(alphah); | |||
| if (bmode != BorderMode::CONSTANT) { | |||
| rep(c, C) { | |||
| set_visit_dst( | |||
| c, oh, ow, | |||
| output_converter( | |||
| visit_src(c, ih0, iw0) * (1.0f - alphaw) * | |||
| (1.0f - alphah) + | |||
| visit_src(c, ih0, iw1) * alphaw * | |||
| (1.0f - alphah) + | |||
| visit_src(c, ih1, iw0) * (1.0f - alphaw) * | |||
| alphah + | |||
| visit_src(c, ih1, iw1) * alphaw * alphah)); | |||
| } | |||
| } else { | |||
| rep(c, C) { | |||
| auto val = visit_src_bd(c, ih0, iw0) * (1.0f - alphaw) * | |||
| (1.0f - alphah) + | |||
| visit_src_bd(c, ih0, iw1) * alphaw * | |||
| (1.0f - alphah) + | |||
| visit_src_bd(c, ih1, iw0) * (1.0f - alphaw) * | |||
| alphah + | |||
| visit_src_bd(c, ih1, iw1) * alphaw * alphah; | |||
| set_visit_dst( | |||
| c, oh, ow, | |||
| output_converter(std::isfinite(val) ? val | |||
| : border_val)); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| MIDOUT_END(); | |||
| } | |||
| template <typename ctype, typename dst_ctype, typename mtype> | |||
| void WarpPerspectiveForwardImpl::kern_naive_dimshuffle_typecvt( | |||
| const KernParam<ctype, mtype>& kern_param, size_t task_id) { | |||
| @@ -444,6 +565,15 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in src, | |||
| }; \ | |||
| MEGDNN_DISPATCH_MULTI_THREAD_CPU_KERN_OPR(run, kparam.oh* batch); | |||
| #define KERN_INT4(ct, mct) \ | |||
| auto kparam = KernParam<ct, mct>::from_tensors( \ | |||
| param().format, param().bmode, param().border_val, src, mat, \ | |||
| mat_idx, dst, workspace); \ | |||
| auto run = [kparam, this](size_t index, size_t) { \ | |||
| kern_naive_int4(kparam, index); \ | |||
| }; \ | |||
| MEGDNN_DISPATCH_MULTI_THREAD_CPU_KERN_OPR(run, kparam.oh* batch); | |||
| #define DISPATCH_ST(dt, ct, mct, kern) \ | |||
| if (src.layout.dtype.enumv() == DTypeTrait<dt>::enumv) { \ | |||
| kern(ct, mct); \ | |||
| @@ -477,6 +607,14 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in src, | |||
| .c_str()); | |||
| } | |||
| if (src.layout.dtype.enumv() == DTypeTrait<dtype::QuantizedS4>::enumv) { | |||
| DISPATCH_ST(dtype::QuantizedS4, dt_qint4, float, KERN_INT4); | |||
| megdnn_throw(ssprintf("Unsupported input DType in " | |||
| "WarpPerspective: %s", | |||
| src.layout.dtype.name()) | |||
| .c_str()); | |||
| } | |||
| bool is_fusion_dtype = src.layout.dtype.enumv() != dst.layout.dtype.enumv(); | |||
| bool is_u8_or_qu8_in = | |||
| src.layout.dtype.enumv() == DTypeTrait<dtype::Uint8>::enumv || | |||
| @@ -79,6 +79,12 @@ protected: | |||
| ret.iw = src.layout.shape[3]; | |||
| ret.oh = dst.layout.shape[2]; | |||
| ret.ow = dst.layout.shape[3]; | |||
| } else if (format == Format::NCHW64) { | |||
| ret.c = src.layout.shape[1] * 64; | |||
| ret.ih = src.layout.shape[2]; | |||
| ret.iw = src.layout.shape[3]; | |||
| ret.oh = dst.layout.shape[2]; | |||
| ret.ow = dst.layout.shape[3]; | |||
| } else { | |||
| megdnn_assert(format == Format::NHWCD4); | |||
| ret.c = src.layout.shape[2] * 4; | |||
| @@ -100,7 +106,8 @@ protected: | |||
| ret.sptr = src.compatible_ptr<ctype>(); | |||
| ret.mptr = mat.ptr<mtype>(); | |||
| ret.dptr = dst.compatible_ptr<ctype>(); | |||
| } else if (src.layout.dtype.enumv() == DTypeEnum::QuantizedS8) { | |||
| } else if (src.layout.dtype.enumv() == DTypeEnum::QuantizedS8 || | |||
| src.layout.dtype.enumv() == DTypeEnum::QuantizedS4) { | |||
| ret.sptr = src.compatible_ptr<ctype>(); | |||
| ret.mptr = mat.ptr<mtype>(); | |||
| ret.dptr = dst.compatible_ptr<ctype>(); | |||
| @@ -141,6 +148,9 @@ private: | |||
| template <typename ctype, typename mtype> | |||
| void kern_naive_nhwcd4(const KernParam<ctype, mtype>& kern_param, | |||
| size_t task_id); | |||
| template <typename ctype, typename mtype> | |||
| void kern_naive_int4(const KernParam<ctype, mtype>& kern_param, | |||
| size_t task_id); | |||
| template <typename ctype, typename dst_ctype, typename mtype> | |||
| void kern_naive_dimshuffle_typecvt( | |||
| const KernParam<ctype, mtype>& kern_param, size_t task_id); | |||
| @@ -55,6 +55,65 @@ private: | |||
| size_t idx; | |||
| }; | |||
| class WarpPerspectiveMatRNG_V2 final : public IIDRNG { | |||
| public: | |||
| WarpPerspectiveMatRNG_V2() : idx(0) {} | |||
| void set_hw(size_t h, size_t w) { | |||
| ih = h; | |||
| iw = w; | |||
| idx = 0; | |||
| rng.seed(time(NULL)); | |||
| } | |||
| dt_float32 gen_single_val() override { | |||
| auto rand_real = [&](double lo, double hi) { | |||
| return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo; | |||
| }; | |||
| auto rand_real2 = [&](double range) { | |||
| return rand_real(-range, range); | |||
| }; | |||
| dt_float32 res; | |||
| switch (idx) { | |||
| case 0: | |||
| rot = rand_real(0, M_PI * 2); | |||
| scale = rand_real(0.8, 1.2); | |||
| sheer = rand_real(0.9, 1.1); | |||
| res = cos(rot) * scale; | |||
| break; | |||
| case 1: | |||
| res = -sin(rot) * scale; | |||
| break; | |||
| case 2: | |||
| res = rand_real2(iw * 0.5); | |||
| break; | |||
| case 3: | |||
| res = sin(rot) * scale * sheer; | |||
| break; | |||
| case 4: | |||
| res = cos(rot) * scale * sheer; | |||
| break; | |||
| case 5: | |||
| res = rand_real2(ih * 0.5); | |||
| break; | |||
| case 6: | |||
| res = rand_real2(0.1 / iw); | |||
| break; | |||
| case 7: | |||
| res = rand_real2(0.1 / ih); | |||
| break; | |||
| case 8: | |||
| res = rand_real2(0.1) + 1; | |||
| break; | |||
| } | |||
| idx = (idx + 1) % 9; | |||
| return res; | |||
| } | |||
| private: | |||
| size_t idx, ih, iw; | |||
| float rot, scale, sheer; | |||
| std::mt19937 rng; | |||
| }; | |||
| namespace warp_perspective { | |||
| struct TestArg { | |||
| @@ -622,6 +622,31 @@ TEST_F(CUDA, WARP_PERSPECTIVE_FORWARD_BFLOAT16) { | |||
| } | |||
| } | |||
| TEST_F(CUDA, WARP_PERSPECTIVE_FORWARD_QINT4) { | |||
| using Param = WarpPerspective::Param; | |||
| Checker<WarpPerspectiveForward> checker(handle_cuda()); | |||
| WarpPerspectiveMatRNG rng; | |||
| checker.set_rng(1, &rng); | |||
| checker.set_dtype(0, dtype::QuantizedS4(0.1f)) | |||
| .set_dtype(1, dtype::Float32()) | |||
| .set_dtype(2, dtype::QuantizedS4(0.1f)); | |||
| for (auto bmode : {WarpPerspective::BorderMode::WRAP, | |||
| WarpPerspective::BorderMode::REFLECT, | |||
| WarpPerspective::BorderMode::REPLICATE, | |||
| WarpPerspective::BorderMode::CONSTANT}) { | |||
| WarpPerspective::Param param; | |||
| param.border_val = 0.3f; | |||
| param.bmode = bmode; | |||
| param.imode = Param::InterpolationMode::LINEAR; | |||
| param.format = Param::Format::NCHW; | |||
| checker.set_param(param); | |||
| checker.set_epsilon(1 + 1e-3); | |||
| checker.execs({{1, 64, 11, 11}, {1, 3, 3}, {1, 64, 11, 11}}); | |||
| checker.execs({{20, 640, 11, 12}, {20, 3, 3}, {20, 640, 11, 12}}); | |||
| } | |||
| } | |||
| TEST_F(CUDA, WARP_PERSPECTIVE_BACKWARD_DATA_BFLOAT16) { | |||
| Checker<WarpPerspectiveBackwardData> checker(handle_cuda()); | |||
| WarpPerspectiveMatRNG rng; | |||
| @@ -676,6 +701,72 @@ TEST_F(CUDA, WARP_PERSPECTIVE_MAT_IDX) { | |||
| warp_perspective::run_mat_idx_test(handle_cuda()); | |||
| } | |||
| TEST_F(CUDA, WARP_PERSPECTIVE_NCHW64) { | |||
| using Param = WarpPerspective::Param; | |||
| WarpPerspective::Param param; | |||
| Checker<WarpPerspectiveForward> checker(handle_cuda()); | |||
| WarpPerspectiveMatRNG_V2 rng; | |||
| checker.set_dtype(0, dtype::QuantizedS4(0.1f)); | |||
| checker.set_dtype(2, dtype::QuantizedS4(0.1f)); | |||
| for (auto bmode : {WarpPerspective::BorderMode::WRAP, | |||
| WarpPerspective::BorderMode::REFLECT, | |||
| WarpPerspective::BorderMode::REPLICATE, | |||
| WarpPerspective::BorderMode::CONSTANT}) { | |||
| param.border_val = 0.3f; | |||
| param.bmode = bmode; | |||
| param.imode = Param::InterpolationMode::LINEAR; | |||
| param.format = Param::Format::NCHW64; | |||
| checker.set_param(param); | |||
| checker.set_epsilon(1 + 1e-3); | |||
| rng.set_hw(10, 11); | |||
| checker.set_rng(1, &rng); | |||
| checker.execs({{2, 1, 10, 11, 64}, {2, 3, 3}, {2, 1, 11, 12, 64}}); | |||
| checker.execs( | |||
| {{20, 300, 10, 11, 64}, {20, 3, 3}, {20, 300, 11, 12, 64}}); | |||
| checker.execs( | |||
| {{2200, 3, 10, 11, 64}, {2200, 3, 3}, {2200, 3, 11, 12, 64}}); | |||
| rng.set_hw(25, 25); | |||
| checker.set_rng(1, &rng); | |||
| checker.execs({{1, 25, 25, 25, 64}, {1, 3, 3}, {1, 25, 25, 51, 64}}); | |||
| rng.set_hw(25, 510); | |||
| checker.set_rng(1, &rng); | |||
| checker.execs({{1, 1, 25, 510, 64}, {1, 3, 3}, {1, 1, 25, 25, 64}}); | |||
| rng.set_hw(25, 25); | |||
| checker.set_rng(1, &rng); | |||
| checker.execs({{1, 1, 25, 25, 64}, {1, 3, 3}, {1, 1, 51, 51, 64}}); | |||
| rng.set_hw(51, 51); | |||
| checker.set_rng(1, &rng); | |||
| checker.execs({{1, 1, 51, 51, 64}, {1, 3, 3}, {1, 1, 25, 25, 64}}); | |||
| } | |||
| { | |||
| Checker<WarpPerspective, WarpPerspectiveMatIdxProxy> checker( | |||
| handle_cuda()); | |||
| constexpr int N_SRC = 5; | |||
| UniformIntRNG mat_idx_rng{0, N_SRC - 1}; | |||
| checker.set_dtype(0, dtype::QuantizedS4(0.1f)); | |||
| checker.set_rng(1, &rng); | |||
| checker.set_dtype(2, dtype::Int32()); | |||
| checker.set_rng(2, &mat_idx_rng); | |||
| checker.set_dtype(3, dtype::QuantizedS4(0.1f)); | |||
| param.bmode = WarpPerspective::Param::BorderMode::REFLECT; | |||
| param.imode = param::WarpPerspective::InterpolationMode::LINEAR; | |||
| checker.set_param(param); | |||
| checker.set_epsilon(1 + 1e-3); | |||
| rng.set_hw(10, 11); | |||
| checker.set_rng(1, &rng); | |||
| checker.execs( | |||
| {{N_SRC, 3, 10, 11, 64}, {2, 3, 3}, {2}, {2, 3, 11, 12, 64}}); | |||
| rng.set_hw(17, 13); | |||
| checker.set_rng(1, &rng); | |||
| checker.execs({{N_SRC, 14, 17, 13, 64}, | |||
| {123, 3, 3}, | |||
| {123}, | |||
| {123, 14, 16, 15, 64}}); | |||
| } | |||
| } | |||
| #if MEGDNN_WITH_BENCHMARK | |||
| TEST_F(CUDA, BENCHMARK_WARP_PERSPECTIVE_NCHW4) { | |||
| @@ -189,6 +189,29 @@ TEST_F(NAIVE, WARP_PERSPECTIVE) { | |||
| {156, 183, 181, 195})}); | |||
| } | |||
| TEST_F(NAIVE, WARP_PERSPECTIVE_NCHW_QINT4) { | |||
| Checker<WarpPerspective> checker(handle(), false); | |||
| WarpPerspective::Param param; | |||
| param.bmode = WarpPerspective::Param::BorderMode::BORDER_REFLECT; | |||
| param.imode = WarpPerspective::Param::InterpolationMode::LINEAR; | |||
| param.format = WarpPerspective::Param::Format::NCHW; | |||
| std::vector<int> input_values = {1, 3, 2, 2, 0, 0, 0, 0, 2}, | |||
| output_values = {1, 2, 2, 2}; | |||
| checker.set_param(param).exect( | |||
| Testcase{TensorValueLowbit4({1, 1, 3, 3}, dtype::QuantizedS4(0.1), | |||
| input_values), | |||
| TensorValue({1, 3, 3}, dtype::Float32{}, | |||
| {1.2f, 1.2f, 0.6f, -1.05f, -2.0f, -0.7f, 1.3f, | |||
| 1.5f, 3.0f}), | |||
| {}}, | |||
| Testcase{{}, | |||
| {}, | |||
| TensorValueLowbit4({1, 1, 2, 2}, dtype::QuantizedS4(0.1), | |||
| output_values)}); | |||
| } | |||
| TEST_F(NAIVE_MULTI_THREADS, WARP_PERSPECTIVE_NCHW4) { | |||
| using Param = WarpPerspective::Param; | |||
| @@ -518,4 +541,89 @@ TEST_F(NAIVE, WARP_PERSPECTIVE_BACKWARD_MAT_BFLOAT16) { | |||
| {1000, 3, 3}}); | |||
| } | |||
| TEST_F(NAIVE, WARP_PERSPECTIVE_NCHW64) { | |||
| using Param = WarpPerspective::Param; | |||
| auto convert_true_format = [](const TensorLayout& layout) { | |||
| if (layout.ndim == 4) | |||
| return layout | |||
| .reshape({layout[0], layout[1] / 64, layout[2], layout[3], | |||
| 64}) | |||
| .dimshuffle({0, 1, 4, 2, 3}); | |||
| else | |||
| return layout; | |||
| }; | |||
| WarpPerspective::Param param; | |||
| auto extra_impl = [¶m, this, | |||
| convert_true_format](const TensorNDArray& tensors) { | |||
| auto warp_perspective = handle()->create_operator<WarpPerspective>(); | |||
| warp_perspective->param() = param; | |||
| warp_perspective->param().format = Param::Format::NCHW; | |||
| TensorNDArray nchw_tensors; | |||
| for (size_t i = 0; i < tensors.size(); ++i) { | |||
| auto layout = tensors[i].layout; | |||
| if (layout.dtype.enumv() == DTypeEnum::QuantizedS4) | |||
| layout.dtype = dtype::QuantizedS4(); | |||
| if (layout.ndim == 5) { | |||
| layout = layout.reshape({layout[0], layout[1] * layout[4], | |||
| layout[2], layout[3]}); | |||
| } | |||
| nchw_tensors.emplace_back(malloc(layout.span().dist_byte()), | |||
| layout); | |||
| } | |||
| TensorNDArray nchw64_tensors; | |||
| for (size_t i = 0; i < tensors.size(); ++i) { | |||
| auto layout = convert_true_format(nchw_tensors[i].layout); | |||
| nchw64_tensors.emplace_back(tensors[i].raw_ptr, std::move(layout)); | |||
| } | |||
| auto workspace_size = warp_perspective->get_workspace_in_bytes( | |||
| tensors[0].layout, tensors[1].layout, tensors[2].layout); | |||
| dt_byte* workspace_ptr = static_cast<dt_byte*>(malloc(workspace_size)); | |||
| Workspace workspace{workspace_ptr, workspace_size}; | |||
| auto relayout = handle()->create_operator<RelayoutForward>(); | |||
| relayout->exec(nchw64_tensors[0], nchw_tensors[0]); | |||
| relayout->exec(nchw64_tensors[1], nchw_tensors[1]); | |||
| warp_perspective->exec(nchw_tensors[0], nchw_tensors[1], | |||
| nchw_tensors[2], workspace); | |||
| relayout->exec(nchw_tensors[2], nchw64_tensors[2]); | |||
| free(workspace_ptr); | |||
| for (auto&& tensor : nchw_tensors) { | |||
| free(tensor.raw_ptr); | |||
| } | |||
| }; | |||
| Checker<WarpPerspectiveForward> checker(handle()); | |||
| WarpPerspectiveMatRNG rng; | |||
| checker.set_rng(1, &rng); | |||
| checker.set_dtype(0, dtype::QuantizedS4(0.1f)); | |||
| checker.set_dtype(2, dtype::QuantizedS4(0.1f)); | |||
| checker.set_extra_opr_impl(extra_impl); | |||
| for (auto bmode : {WarpPerspective::BorderMode::WRAP, | |||
| WarpPerspective::BorderMode::REFLECT, | |||
| WarpPerspective::BorderMode::REPLICATE, | |||
| WarpPerspective::BorderMode::CONSTANT}) { | |||
| param.border_val = 0.3f; | |||
| param.bmode = bmode; | |||
| param.imode = Param::InterpolationMode::LINEAR; | |||
| param.format = Param::Format::NCHW64; | |||
| checker.set_param(param); | |||
| checker.execs({{2, 1, 10, 10, 64}, {2, 3, 3}, {2, 1, 10, 12, 64}}); | |||
| checker.execs( | |||
| {{20, 30, 10, 12, 64}, {20, 3, 3}, {20, 30, 11, 12, 64}}); | |||
| checker.execs( | |||
| {{220, 3, 10, 10, 64}, {220, 3, 3}, {220, 3, 10, 12, 64}}); | |||
| checker.execs({{1, 25, 25, 24, 64}, {1, 3, 3}, {1, 25, 25, 510, 64}}); | |||
| checker.execs({{1, 25, 25, 510, 64}, {1, 3, 3}, {1, 25, 25, 24, 64}}); | |||
| checker.execs({{1, 25, 25, 24, 64}, {1, 3, 3}, {1, 25, 51, 50, 64}}); | |||
| checker.execs({{1, 25, 51, 50, 64}, {1, 3, 3}, {1, 25, 25, 24, 64}}); | |||
| } | |||
| } | |||
| // vim: syntax=cpp.doxygen | |||