| @@ -19,7 +19,7 @@ from megengine.device import get_default_device, get_device_count | |||
| from ..core._imperative_rt.core2 import apply | |||
| from ..core.ops.builtin import ParamPackConcat, ParamPackSplit | |||
| from ..functional.utils import copy | |||
| from ..functional.tensor import copy | |||
| from ..tensor import Tensor | |||
| from ..utils.future import Future | |||
| from .functional import all_reduce_sum, broadcast | |||
| @@ -7,12 +7,11 @@ | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # pylint: disable=redefined-builtin | |||
| from . import metric, vision | |||
| from .elemwise import * | |||
| from .img_proc import * | |||
| from .math import * | |||
| from .nn import * | |||
| from .tensor import * | |||
| from .utils import * | |||
| from . import distributed # isort:skip | |||
| @@ -7,8 +7,6 @@ | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # pylint: disable=unused-argument,invalid-name,redefined-builtin,arguments-out-of-order | |||
| import functools | |||
| import numpy as np | |||
| from ..core._imperative_rt.core2 import apply | |||
| @@ -17,7 +15,7 @@ from ..core.ops import builtin | |||
| from ..core.ops.builtin import Elemwise | |||
| from ..core.tensor import utils | |||
| from ..core.tensor.array_method import _elwise_apply | |||
| from ..core.tensor.utils import astype, isscalar, setscalar | |||
| from ..core.tensor.utils import astype | |||
| from ..device import get_default_device | |||
| from ..jit.tracing import is_tracing | |||
| from ..tensor import Tensor | |||
| @@ -44,8 +42,6 @@ __all__ = [ | |||
| "floor_div", | |||
| "greater", | |||
| "greater_equal", | |||
| "hswish", | |||
| "hsigmoid", | |||
| "left_shift", | |||
| "less", | |||
| "less_equal", | |||
| @@ -62,11 +58,8 @@ __all__ = [ | |||
| "neg", | |||
| "not_equal", | |||
| "pow", | |||
| "relu", | |||
| "relu6", | |||
| "right_shift", | |||
| "round", | |||
| "sigmoid", | |||
| "sin", | |||
| "sinh", | |||
| "sqrt", | |||
| @@ -523,53 +516,6 @@ def greater_equal(x, y): | |||
| # other functions | |||
| def hswish(x): | |||
| """ | |||
| Element-wise `x * relu6(x + 3) / 6`. | |||
| :param x: input tensor. | |||
| :return: computed tensor. | |||
| Example: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| x = tensor(np.arange(5).astype(np.float32)) | |||
| out = F.hswish(x) | |||
| print(out.numpy().round(decimals=4)) | |||
| .. testoutput:: | |||
| [0. 0.6667 1.6667 3. 4. ] | |||
| """ | |||
| return _elwise(x, mode=Elemwise.Mode.H_SWISH) | |||
| def hsigmoid(x): | |||
| """Element-wise `relu6(x + 3) / 6`.""" | |||
| return relu6(x + 3) / 6 | |||
| def relu(x): | |||
| """Element-wise `max(x, 0)`.""" | |||
| return _elwise(x, mode=Elemwise.Mode.RELU) | |||
| def relu6(x): | |||
| """Element-wise `min(max(x, 0), 6)`.""" | |||
| return minimum(maximum(x, 0), 6) | |||
| def sigmoid(x): | |||
| """Element-wise `1 / ( 1 + exp( -x ) )`.""" | |||
| return _elwise(x, mode=Elemwise.Mode.SIGMOID) | |||
| def clip(x: Tensor, lower=None, upper=None) -> Tensor: | |||
| r""" | |||
| Clamps all elements in input tensor into the range `[` :attr:`lower`, :attr:`upper` `]` and returns | |||
| @@ -1,50 +0,0 @@ | |||
| # -*- coding: utf-8 -*- | |||
| # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| # | |||
| # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| from ..core._imperative_rt.core2 import apply | |||
| from ..core.ops import builtin | |||
| from ..tensor import Tensor | |||
| __all__ = [ | |||
| "cvt_color", | |||
| ] | |||
| def cvt_color(inp: Tensor, mode: str = ""): | |||
| r""" | |||
| Convert images from one format to another | |||
| :param inp: input images. | |||
| :param mode: format mode. | |||
| :return: convert result. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| import megengine as mge | |||
| import megengine.functional as F | |||
| x = mge.tensor(np.array([[[[-0.58675045, 1.7526233, 0.10702174]]]]).astype(np.float32)) | |||
| y = F.img_proc.cvt_color(x, mode="RGB2GRAY") | |||
| print(y.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[[[0.86555195]]]] | |||
| """ | |||
| assert mode in builtin.CvtColor.Mode.__dict__, "unspport mode for cvt_color" | |||
| mode = getattr(builtin.CvtColor.Mode, mode) | |||
| assert isinstance(mode, builtin.CvtColor.Mode) | |||
| op = builtin.CvtColor(mode=mode) | |||
| (out,) = apply(op, inp) | |||
| return out | |||
| @@ -8,10 +8,9 @@ | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| import numpy as np | |||
| from ..core.tensor.utils import make_shape_tuple | |||
| from ..tensor import Tensor | |||
| from .elemwise import abs, equal, exp, log, maximum, pow, relu | |||
| from .nn import indexing_one_hot, logsigmoid, logsumexp | |||
| from .elemwise import abs, log | |||
| from .nn import indexing_one_hot, logsigmoid, logsumexp, relu | |||
| from .tensor import where | |||
| __all__ = [ | |||
| @@ -7,9 +7,7 @@ | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| import collections | |||
| import functools | |||
| import math | |||
| import numbers | |||
| from typing import Optional, Sequence, Tuple, Union | |||
| from ..core._imperative_rt.core2 import apply | |||
| @@ -6,23 +6,14 @@ | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| import collections | |||
| from typing import Iterable, Union | |||
| import numpy as np | |||
| from ..core._imperative_rt.core2 import apply | |||
| from ..core._wrap import device as as_device | |||
| from ..core.ops.builtin import Copy, Identity | |||
| from ..tensor import Tensor | |||
| from .math import topk as _topk | |||
| from .tensor import broadcast_to, transpose | |||
| __all__ = [ | |||
| "topk_accuracy", | |||
| "copy", | |||
| ] | |||
| def topk_accuracy( | |||
| logits: Tensor, target: Tensor, topk: Union[int, Iterable[int]] = 1 | |||
| @@ -46,7 +37,7 @@ def topk_accuracy( | |||
| logits = tensor(np.arange(80, dtype=np.int32).reshape(8,10)) | |||
| target = tensor(np.arange(8, dtype=np.int32)) | |||
| top1, top5 = F.topk_accuracy(logits, target, (1, 5)) | |||
| top1, top5 = F.metric.topk_accuracy(logits, target, (1, 5)) | |||
| print(top1.numpy(), top5.numpy()) | |||
| Outputs: | |||
| @@ -67,33 +58,3 @@ def topk_accuracy( | |||
| if len(topk) == 1: # type: ignore[arg-type] | |||
| accs = accs[0] | |||
| return accs | |||
| def copy(inp, device=None): | |||
| r""" | |||
| Copies tensor to another device. | |||
| :param inp: input tensor. | |||
| :param device: destination device. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| x = tensor([1, 2, 3], np.int32) | |||
| y = F.copy(x, "xpu1") | |||
| print(y.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [1 2 3] | |||
| """ | |||
| if device is None: | |||
| return apply(Identity(), inp)[0] | |||
| return apply(Copy(comp_node=as_device(device).to_c()), inp)[0] | |||
| @@ -7,24 +7,25 @@ | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # pylint: disable=too-many-lines | |||
| from typing import Iterable, Optional, Sequence, Tuple, Union | |||
| from typing import Optional, Sequence, Tuple, Union | |||
| from ..core._imperative_rt import CompNode | |||
| from ..core._imperative_rt.core2 import apply | |||
| from ..core._imperative_rt.graph import VarNode | |||
| from ..core._trace_option import use_symbolic_shape | |||
| from ..core.ops import builtin | |||
| from ..core.ops.builtin import BatchNorm | |||
| from ..core.ops.builtin import BatchNorm, Elemwise | |||
| from ..core.ops.special import Const | |||
| from ..core.tensor import utils | |||
| from ..core.tensor.utils import astensor1d, setscalar | |||
| from ..core.tensor import megbrain_graph, utils | |||
| from ..core.tensor.array_method import _elwise_apply | |||
| from ..core.tensor.utils import astensor1d, astype, setscalar | |||
| from ..device import get_default_device | |||
| from ..distributed import WORLD, is_distributed | |||
| from ..jit.tracing import is_tracing | |||
| from ..random import uniform | |||
| from ..tensor import Tensor | |||
| from ..utils.tuple_function import _pair, _pair_nonzero | |||
| from .debug_param import get_execution_strategy | |||
| from .debug_param import get_conv_execution_strategy, get_execution_strategy | |||
| from .distributed import all_reduce_sum | |||
| from .elemwise import exp, floor, log, log1p, maximum, minimum, relu | |||
| from .elemwise import exp, floor, log, log1p, maximum, minimum | |||
| from .math import argsort, matmul, max, prod, sum | |||
| from .tensor import ( | |||
| broadcast_to, | |||
| @@ -47,8 +48,10 @@ __all__ = [ | |||
| "deformable_conv2d", | |||
| "deformable_psroi_pooling", | |||
| "dropout", | |||
| "embedding", | |||
| "indexing_one_hot", | |||
| "leaky_relu", | |||
| "linear", | |||
| "local_conv2d", | |||
| "logsigmoid", | |||
| "logsumexp", | |||
| @@ -56,12 +59,16 @@ __all__ = [ | |||
| "max_pool2d", | |||
| "one_hot", | |||
| "prelu", | |||
| "remap", | |||
| "softmax", | |||
| "softplus", | |||
| "warp_affine", | |||
| "warp_perspective", | |||
| "svd", | |||
| "sync_batch_norm", | |||
| "conv1d", | |||
| "sigmoid", | |||
| "hsigmoid", | |||
| "relu", | |||
| "relu6", | |||
| "hswish", | |||
| ] | |||
| @@ -983,79 +990,32 @@ def one_hot(inp: Tensor, num_classes: int) -> Tensor: | |||
| return result | |||
| def warp_affine( | |||
| inp: Tensor, | |||
| weight: Tensor, | |||
| out_shape, | |||
| border_mode="REPLICATE", | |||
| border_val=0, | |||
| format="NHWC", | |||
| imode="LINEAR", | |||
| ): | |||
| """ | |||
| Batched affine transform on 2D images. | |||
| :param inp: input image. | |||
| :param weight: weight tensor. | |||
| :param out_shape: output tensor shape. | |||
| :param border_mode: pixel extrapolation method. | |||
| Default: "WRAP". Currently "CONSTANT", "REFLECT", | |||
| "REFLECT_101", "ISOLATED", "WRAP", "REPLICATE", "TRANSPARENT" are supported. | |||
| :param border_val: value used in case of a constant border. Default: 0 | |||
| :param format: "NHWC" as default based on historical concerns, | |||
| "NCHW" is also supported. Default: "NCHW". | |||
| :param imode: interpolation methods. Could be "LINEAR", "NEAREST", "CUBIC", "AREA". | |||
| Default: "LINEAR". | |||
| :return: output tensor. | |||
| .. note:: | |||
| Here all available options for params are listed, | |||
| however it does not mean that you can use all the combinations. | |||
| On different platforms, different combinations are supported. | |||
| def matmul( | |||
| inp1: Tensor, | |||
| inp2: Tensor, | |||
| transpose_a=False, | |||
| transpose_b=False, | |||
| compute_mode="DEFAULT", | |||
| format="DEFAULT", | |||
| ) -> Tensor: | |||
| """ | |||
| op = builtin.WarpAffine( | |||
| border_mode=border_mode, border_val=border_val, format=format, imode=imode | |||
| ) | |||
| out_shape = utils.astensor1d(out_shape, inp, dtype="int32", device=inp.device) | |||
| (result,) = apply(op, inp, weight, out_shape) | |||
| return result | |||
| Performs a matrix multiplication of the matrices ``inp1`` and ``inp2``. | |||
| With different inputs dim, this function behaves differently: | |||
| def warp_perspective( | |||
| inp: Tensor, | |||
| M: Tensor, | |||
| dsize: Union[Tuple[int, int], int, Tensor], | |||
| border_mode: str = "REPLICATE", | |||
| border_val: float = 0.0, | |||
| interp_mode: str = "LINEAR", | |||
| ) -> Tensor: | |||
| r""" | |||
| Applies perspective transformation to batched 2D images. | |||
| - Both 1-D tensor, simply forward to ``dot``. | |||
| - Both 2-D tensor, normal matrix multiplication. | |||
| - If one input tensor is 1-D, matrix vector multiplication. | |||
| - If at least one tensor are 3-dimensional or >3-dimensional, the other tensor should have dim >= 2, the batched matrix-matrix is returned, and the tensor with smaller dimension will | |||
| be broadcasted. For example: | |||
| - inp1: `(n, k, m)`, inp2: `(n, m, p)`, return: `(n, k, p)` | |||
| - inp1: `(n, k, m)`, inp2: `(m, p)`, return: `(n, k, p)` | |||
| - inp1: `(n, j, k, m)`, inp2: `(n, j, m, p)`, return: `(n, j, k, p)` | |||
| The input images are transformed to the output images by the transformation matrix: | |||
| .. math:: | |||
| \text{output}(n, c, h, w) = \text{input} \left( n, c, | |||
| \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, | |||
| \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} | |||
| \right) | |||
| :param inp: input image. | |||
| :param M: `(batch, 3, 3)` transformation matrix. | |||
| :param dsize: `(h, w)` size of the output image. | |||
| :param border_mode: pixel extrapolation method. | |||
| Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT", | |||
| "REFLECT_101", "WRAP". | |||
| :param border_val: value used in case of a constant border. Default: 0 | |||
| :param interp_mode: interpolation methods. | |||
| Default: "LINEAR". Currently only support "LINEAR" mode. | |||
| :param inp1: first matrix to be multiplied. | |||
| :param inp2: second matrix to be multiplied. | |||
| :return: output tensor. | |||
| .. note:: | |||
| The transformation matrix is the inverse of that used by `cv2.warpPerspective`. | |||
| Examples: | |||
| .. testcode:: | |||
| @@ -1064,55 +1024,111 @@ def warp_perspective( | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| inp_shape = (1, 1, 4, 4) | |||
| x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) | |||
| M_shape = (1, 3, 3) | |||
| # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) | |||
| M = tensor(np.array([[1., 0., 1.], | |||
| [0., 1., 1.], | |||
| [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) | |||
| out = F.warp_perspective(x, M, (2, 2)) | |||
| data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) | |||
| data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) | |||
| out = F.matmul(data1, data2) | |||
| print(out.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[[[ 5. 6.] | |||
| [ 9. 10.]]]] | |||
| [[10. 13.] | |||
| [28. 40.]] | |||
| """ | |||
| op = builtin.WarpPerspective( | |||
| imode=interp_mode, bmode=border_mode, format="NCHW", border_val=border_val | |||
| ) | |||
| inp, M = utils.convert_inputs(inp, M) | |||
| dsize = astensor1d(dsize, inp, dtype="int32", device=inp.device) | |||
| (result,) = apply(op, inp, M, dsize) | |||
| remove_row, remove_col = False, False | |||
| inp1, inp2 = utils.convert_inputs(inp1, inp2) | |||
| dim1, dim2 = inp1.ndim, inp2.ndim | |||
| # handle dim=1 cases, dot and matrix-vector multiplication | |||
| if dim1 == 1 and dim2 == 1: | |||
| return dot(inp1, inp2) | |||
| # the underlying matmul op requires input dims to be at least 2 | |||
| if dim1 == 1: | |||
| inp1 = expand_dims(inp1, 0) | |||
| dim1 = 2 | |||
| remove_row = True | |||
| if dim2 == 1: | |||
| inp2 = expand_dims(inp2, 1) | |||
| dim2 = 2 | |||
| remove_col = True | |||
| batch_shape = None | |||
| shape1 = inp1.shape | |||
| shape2 = inp2.shape | |||
| maxdim = dim1 if dim1 > dim2 else dim2 | |||
| if dim1 >= 3 or dim2 >= 3: | |||
| if use_symbolic_shape(): | |||
| if dim1 > dim2: | |||
| shape2 = concat([shape1[:-2], shape2[-2:]]) | |||
| inp2 = broadcast_to(inp2, shape2) | |||
| if dim1 < dim2: | |||
| shape1 = concat([shape2[:-2], shape1[-2:]]) | |||
| inp1 = broadcast_to(inp1, shape1) | |||
| if maxdim > 3: | |||
| batch_shape = shape1[:-2] | |||
| # compress inputs to 3d | |||
| (inp1,) = apply( | |||
| builtin.Reshape(), inp1, concat([prod(shape1[:-2]), shape1[-2:]]) | |||
| ) | |||
| (inp2,) = apply( | |||
| builtin.Reshape(), inp2, concat([prod(shape2[:-2]), shape2[-2:]]) | |||
| ) | |||
| else: | |||
| if dim1 > dim2: | |||
| shape2 = shape1[:-2] + shape2[-2:] | |||
| inp2 = broadcast_to(inp2, shape2) | |||
| if dim1 < dim2: | |||
| shape1 = shape2[:-2] + shape1[-2:] | |||
| inp1 = broadcast_to(inp1, shape1) | |||
| if maxdim > 3: | |||
| batch_shape = shape1[:-2] | |||
| # compress inputs to 3d | |||
| inp1 = inp1.reshape((-1, shape1[-2], shape1[-1])) | |||
| inp2 = inp2.reshape((-1, shape2[-2], shape2[-1])) | |||
| op = builtin.BatchedMatrixMul( | |||
| transposeA=transpose_a, | |||
| transposeB=transpose_b, | |||
| compute_mode=compute_mode, | |||
| format=format, | |||
| strategy=get_conv_execution_strategy(), | |||
| ) | |||
| else: | |||
| op = builtin.MatrixMul( | |||
| transposeA=transpose_a, | |||
| transposeB=transpose_b, | |||
| compute_mode=compute_mode, | |||
| format=format, | |||
| strategy=get_conv_execution_strategy(), | |||
| ) | |||
| (result,) = apply(op, inp1, inp2) | |||
| if maxdim > 3: | |||
| if use_symbolic_shape(): | |||
| (result,) = apply( | |||
| builtin.Reshape(), result, concat([batch_shape, result.shape[-2:]]) | |||
| ) | |||
| else: | |||
| result = result.reshape(batch_shape + result.shape[-2:]) | |||
| if remove_row: | |||
| result = squeeze(result, axis=-2) | |||
| if remove_col: | |||
| result = squeeze(result, axis=-1) | |||
| return result | |||
| def remap( | |||
| inp: Tensor, | |||
| map_xy: Tensor, | |||
| border_mode: str = "REPLICATE", | |||
| scalar: float = 0.0, | |||
| interp_mode: str = "LINEAR", | |||
| ) -> Tensor: | |||
| r""" | |||
| Applies remap transformation to batched 2D images. | |||
| The input images are transformed to the output images by the tensor map_xy. | |||
| The output's H and W are same as map_xy's H and W. | |||
| :param inp: input image | |||
| :param map_xy: (batch, oh, ow, 2) transformation matrix | |||
| :param border_mode: pixel extrapolation method. | |||
| Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT", | |||
| "REFLECT_101", "WRAP". | |||
| :param scalar: value used in case of a constant border. Default: 0 | |||
| :param interp_mode: interpolation methods. | |||
| Default: "LINEAR". Currently only support "LINEAR" mode. | |||
| :return: output tensor. | |||
| def dot(inp1: Tensor, inp2: Tensor) -> Tensor: | |||
| """ | |||
| Computes dot-product of two vectors ``inp1`` and ``inp2``. | |||
| inputs must be 1-dimensional or scalar. A scalar input is automatically broadcasted. | |||
| Refer to :func:`~.matmul` for more general usage. | |||
| :param inp1: first vector. | |||
| :param inp2: second vector. | |||
| :return: output value. | |||
| Examples: | |||
| @@ -1121,56 +1137,35 @@ def remap( | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| inp_shape = (1, 1, 4, 4) | |||
| inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) | |||
| map_xy_shape = (1, 2, 2, 2) | |||
| map_xy = tensor(np.array([[[1., 0.],[0., 1.]], | |||
| [[0., 1.],[0., 1.]]], | |||
| dtype=np.float32).reshape(map_xy_shape)) | |||
| out = F.remap(inp, map_xy) | |||
| data1 = tensor(np.arange(0, 6, dtype=np.float32)) | |||
| data2 = tensor(np.arange(0, 6, dtype=np.float32)) | |||
| out = F.dot(data1, data2) | |||
| print(out.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[[[1. 4.] | |||
| [4. 4.]]]] | |||
| 55. | |||
| """ | |||
| op = builtin.Remap( | |||
| imode=interp_mode, border_type=border_mode, format="NCHW", scalar=scalar | |||
| ) | |||
| (result,) = apply(op, inp, map_xy) | |||
| op = builtin.Dot() | |||
| inp1, inp2 = utils.convert_inputs(inp1, inp2) | |||
| assert ( | |||
| inp1.ndim <= 1 and inp2.ndim <= 1 | |||
| ), "Input tensors for dot must be 1-dimensional or scalar" | |||
| (result,) = apply(op, inp1, inp2) | |||
| setscalar(result) | |||
| return result | |||
| def interpolate( | |||
| inp: Tensor, | |||
| size: Optional[Union[int, Tuple[int, int]]] = None, | |||
| scale_factor: Optional[Union[float, Tuple[float, float]]] = None, | |||
| mode: str = "BILINEAR", | |||
| align_corners: Optional[bool] = None, | |||
| ) -> Tensor: | |||
| r""" | |||
| Down/up samples the input tensor to either the given size or with the given scale_factor. ``size`` can not coexist with ``scale_factor``. | |||
| def svd(inp: Tensor, full_matrices=False, compute_uv=True) -> Tensor: | |||
| """ | |||
| Computes the singular value decompositions of input matrix. | |||
| :param inp: input tensor. | |||
| :param size: size of the output tensor. Default: None | |||
| :param scale_factor: scaling factor of the output tensor. Default: None | |||
| :param mode: interpolation methods, acceptable values are: | |||
| "BILINEAR", "LINEAR". Default: "BILINEAR" | |||
| :param align_corners: This only has an effect when `mode` | |||
| is "BILINEAR" or "LINEAR". Geometrically, we consider the pixels of the input | |||
| and output as squares rather than points. If set to ``True``, the input | |||
| and output tensors are aligned by the center points of their corner | |||
| pixels, preserving the values at the corner pixels. If set to ``False``, | |||
| the input and output tensors are aligned by the corner points of their | |||
| corner pixels, and the interpolation uses edge value padding for | |||
| out-of-boundary values, making this operation *independent* of input size | |||
| when `scale_factor` is kept the same. Default: None | |||
| :return: output tensor. | |||
| :param inp: input matrix, must has shape `[..., M, N]`. | |||
| :return: output matrices, `(U, sigma, V)`. | |||
| Examples: | |||
| @@ -1180,141 +1175,20 @@ def interpolate( | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| x = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) | |||
| out = F.nn.interpolate(x, [4, 4], align_corners=False) | |||
| print(out.numpy()) | |||
| out2 = F.nn.interpolate(x, scale_factor=2.) | |||
| np.testing.assert_allclose(out.numpy(), out2.numpy()) | |||
| x = tensor(np.arange(0, 6, dtype=np.float32).reshape(2,3)) | |||
| _, y, _ = F.svd(x) | |||
| print(y.numpy().round(decimals=3)) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[[[1. 1.25 1.75 2. ] | |||
| [1.5 1.75 2.25 2.5 ] | |||
| [2.5 2.75 3.25 3.5 ] | |||
| [3. 3.25 3.75 4. ]]]] | |||
| [7.348 1. ] | |||
| """ | |||
| mode = mode.upper() | |||
| if mode not in ["BILINEAR", "LINEAR"]: | |||
| raise ValueError("interpolate only support linear or bilinear mode") | |||
| if mode not in ["BILINEAR", "LINEAR"]: | |||
| if align_corners is not None: | |||
| raise ValueError( | |||
| "align_corners option can only be set in the bilinear/linear interpolating mode" | |||
| ) | |||
| else: | |||
| if align_corners is None: | |||
| align_corners = False | |||
| if ( | |||
| size is not None | |||
| and scale_factor is None | |||
| and not align_corners | |||
| and mode == "BILINEAR" | |||
| and inp.ndim in [4, 5] | |||
| ): | |||
| # fastpath for interpolate | |||
| op = builtin.Resize(imode="LINEAR", format="NCHW") | |||
| shape = astensor1d(size, inp, dtype="int32", device=inp.device) | |||
| (result,) = apply(op, inp, shape) | |||
| return result | |||
| if mode == "LINEAR": | |||
| inp = expand_dims(inp, 3) | |||
| if inp.ndim != 4: | |||
| raise ValueError("shape of input tensor must correspond to the operartion mode") | |||
| if size is None: | |||
| if scale_factor is None: | |||
| raise ValueError("scale_factor must not be None when size is None") | |||
| if isinstance(scale_factor, (float, int)): | |||
| scale_factor = float(scale_factor) | |||
| if mode == "LINEAR": | |||
| scale_factor = (scale_factor, float(1)) | |||
| else: | |||
| scale_factor = (scale_factor, scale_factor) | |||
| else: | |||
| if mode == "LINEAR": | |||
| raise ValueError( | |||
| "under LINEAR mode, scale_factor can only be single value" | |||
| ) | |||
| assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" | |||
| assert isinstance(scale_factor[0], float) and isinstance( | |||
| scale_factor[1], float | |||
| ), "scale_factor must be float type" | |||
| dsize = tuple( | |||
| floor( | |||
| Tensor( | |||
| inp.shape[i + 2] * scale_factor[i], | |||
| dtype="float32", | |||
| device=inp.device, | |||
| ) | |||
| ) | |||
| for i in range(2) | |||
| ) | |||
| dsize = concat([dsize[0], dsize[1]], axis=0) | |||
| else: | |||
| if scale_factor is not None: | |||
| raise ValueError("scale_factor must be None when size is provided") | |||
| if isinstance(size, int): | |||
| size = (size, 1) | |||
| else: | |||
| if mode == "LINEAR": | |||
| raise ValueError("under LINEAR mode, size can only be single value") | |||
| dsize = size | |||
| oh, ow = dsize[0], dsize[1] | |||
| ih, iw = inp.shape[2], inp.shape[3] | |||
| if align_corners: | |||
| hscale = (ih - 1.0) / (oh - 1.0) | |||
| wscale = 1.0 * iw / ow | |||
| if mode != "LINEAR": | |||
| wscale = (iw - 1.0) / (ow - 1.0) | |||
| row0 = concat( | |||
| [wscale, Tensor([0, 0], dtype="float32", device=inp.device)], axis=0 | |||
| ).reshape(1, 3) | |||
| row1 = concat( | |||
| [ | |||
| Tensor(0, dtype="float32", device=inp.device), | |||
| hscale, | |||
| Tensor(0, dtype="float32", device=inp.device), | |||
| ], | |||
| axis=0, | |||
| ).reshape(1, 3) | |||
| weight = concat( | |||
| [row0, row1, Tensor([[0, 0, 1]], dtype="float32", device=inp.device)], | |||
| axis=0, | |||
| ).reshape(1, 3, 3) | |||
| weight = broadcast_to(weight, (inp.shape[0], 3, 3)) | |||
| else: | |||
| hscale = 1.0 * ih / oh | |||
| wscale = 1.0 * iw / ow | |||
| row0 = concat( | |||
| [wscale, Tensor(0, dtype="float32", device=inp.device), 0.5 * wscale - 0.5], | |||
| axis=0, | |||
| ).reshape(1, 3) | |||
| row1 = concat( | |||
| [Tensor(0, dtype="float32", device=inp.device), hscale, 0.5 * hscale - 0.5], | |||
| axis=0, | |||
| ).reshape(1, 3) | |||
| weight = concat( | |||
| [row0, row1, Tensor([[0, 0, 1]], dtype="float32", device=inp.device)], | |||
| axis=0, | |||
| ).reshape(1, 3, 3) | |||
| weight = broadcast_to(weight, (inp.shape[0], 3, 3)) | |||
| weight = weight.astype("float32") | |||
| ret = warp_perspective(inp, weight, dsize, interp_mode="LINEAR") | |||
| if mode == "LINEAR": | |||
| ret = reshape(ret, ret.shape[0:3]) | |||
| return ret | |||
| op = builtin.SVD(full_matrices=full_matrices, compute_uv=compute_uv) | |||
| U, sigma, V = apply(op, inp) | |||
| return U, sigma, V | |||
| def dropout(inp: Tensor, drop_prob: float, training: bool = True) -> Tensor: | |||
| @@ -1385,127 +1259,6 @@ def embedding( | |||
| return weight[inp.reshape(-1)].reshape(dest_shp) | |||
| def roi_pooling( | |||
| inp: Tensor, | |||
| rois: Tensor, | |||
| output_shape: Union[int, tuple, list], | |||
| mode: str = "max", | |||
| scale: float = 1.0, | |||
| ) -> Tensor: | |||
| """ | |||
| Applies roi pooling on input feature. | |||
| :param inp: tensor that represents the input feature, `(N, C, H, W)` images. | |||
| :param rois: `(K, 5)` boxes. First column is the index into N. The other 4 columns are xyxy. | |||
| :param output_shape: `(height, width)` of output rois feature. | |||
| :param mode: "max" or "average", use max/average align just like max/average pooling. Default: "max" | |||
| :param scale: scale the input boxes by this number. Default: 1.0 | |||
| :return: `(K, C, output_shape[0], output_shape[1])` feature of rois. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| np.random.seed(42) | |||
| inp = tensor(np.random.randn(1, 1, 128, 128)) | |||
| rois = tensor(np.random.random((4, 5))) | |||
| y = F.nn.roi_pooling(inp, rois, (2, 2)) | |||
| print(y.numpy()[0].round(decimals=4)) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[[-0.1383 -0.1383] | |||
| [-0.5035 -0.5035]]] | |||
| """ | |||
| assert mode in ["max", "average"], "only max/average mode is supported" | |||
| if isinstance(output_shape, int): | |||
| output_shape = (output_shape, output_shape) | |||
| op = builtin.ROIPooling(mode=mode, scale=scale) | |||
| inp, rois = utils.convert_inputs(inp, rois) | |||
| result, _ = apply( | |||
| op, inp, rois, Tensor(output_shape, dtype="int32", device=inp.device) | |||
| ) | |||
| return result | |||
| def roi_align( | |||
| inp: Tensor, | |||
| rois: Tensor, | |||
| output_shape: Union[int, tuple, list], | |||
| mode: str = "average", | |||
| spatial_scale: float = 1.0, | |||
| sample_points: Union[int, tuple, list] = 2, | |||
| aligned: bool = True, | |||
| ) -> Tensor: | |||
| """ | |||
| Applies roi align on input feature. | |||
| :param inp: tensor that represents the input feature, shape is `(N, C, H, W)`. | |||
| :param rois: `(N, 5)` boxes. First column is the box index. The other 4 columns are ``xyxy``. | |||
| :param output_shape: `(height, width)` shape of output rois feature. | |||
| :param mode: "max" or "average", use max/average align just like max/average pooling. Default: "average" | |||
| :param spatial_scale: scale the input boxes by this number. Default: 1.0 | |||
| :param sample_points: number of inputs samples to take for each output sample. | |||
| 0 to take samples densely. Default: 2 | |||
| :param aligned: wheather to align the input feature, with `aligned=True`, | |||
| we first appropriately scale the ROI and then shift it by -0.5. Default: True | |||
| :return: output tensor. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| np.random.seed(42) | |||
| inp = tensor(np.random.randn(1, 1, 128, 128)) | |||
| rois = tensor(np.random.random((4, 5))) | |||
| y = F.nn.roi_align(inp, rois, (2, 2)) | |||
| print(y.numpy()[0].round(decimals=4)) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[[0.175 0.175 ] | |||
| [0.1359 0.1359]]] | |||
| """ | |||
| assert mode in ["max", "average"], "only max/average mode is supported" | |||
| if isinstance(output_shape, int): | |||
| output_shape = (output_shape, output_shape) | |||
| pooled_height, pooled_width = output_shape | |||
| if isinstance(sample_points, int): | |||
| sample_points = (sample_points, sample_points) | |||
| sample_height, sample_width = sample_points | |||
| offset = 0.5 if aligned else 0.0 | |||
| op = builtin.ROIAlign( | |||
| mode=mode, | |||
| format="NCHW", | |||
| spatial_scale=spatial_scale, | |||
| offset=offset, | |||
| pooled_height=pooled_height, | |||
| pooled_width=pooled_width, | |||
| sample_height=sample_height, | |||
| sample_width=sample_width, | |||
| ) | |||
| inp, rois = utils.convert_inputs(inp, rois) | |||
| result, *_ = apply(op, inp, rois) | |||
| return result | |||
| def indexing_one_hot( | |||
| src: Tensor, index: Tensor, axis: int = 1, keepdims=False | |||
| ) -> Tensor: | |||
| @@ -1621,72 +1374,6 @@ def conv1d( | |||
| return output | |||
| def nms( | |||
| boxes: Tensor, scores: Tensor, iou_thresh: float, max_output: Optional[int] = None | |||
| ) -> Tensor: | |||
| r""" | |||
| Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union(IoU). | |||
| :param boxes: tensor of shape `(N, 4)`; the boxes to perform nms on; each box is expected to be in `(x1, y1, x2, y2)` format. | |||
| :param iou_thresh: IoU threshold for overlapping. | |||
| :param scores: tensor of shape `(N,)`, the score of boxes. | |||
| :param max_output: the maximum number of boxes to keep; it is optional if this operator is not traced | |||
| otherwise it required to be specified; if it is not specified, all boxes are kept. | |||
| :return: indices of the elements that have been kept by NMS. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| x = np.zeros((100,4)) | |||
| np.random.seed(42) | |||
| x[:,:2] = np.random.rand(100,2)*20 | |||
| x[:,2:] = np.random.rand(100,2)*20 + 100 | |||
| scores = tensor(np.random.rand(100)) | |||
| inp = tensor(x) | |||
| result = F.nn.nms(inp, scores, iou_thresh=0.7) | |||
| print(result.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [75 69] | |||
| """ | |||
| assert ( | |||
| boxes.ndim == 2 and boxes.shape[1] == 4 | |||
| ), "the expected shape of boxes is (N, 4)" | |||
| assert scores.ndim == 1, "the expected shape of scores is (N,)" | |||
| assert ( | |||
| boxes.shape[0] == scores.shape[0] | |||
| ), "number of boxes and scores are not matched" | |||
| boxes = boxes.detach() | |||
| scores = scores.detach() | |||
| sorted_idx = argsort(scores, descending=True) | |||
| boxes = boxes[sorted_idx] | |||
| if is_tracing(): | |||
| assert ( | |||
| max_output is not None and max_output > 0 | |||
| ), "max_output should be specified under tracing" | |||
| if max_output is None: | |||
| max_output = boxes.shape[0] | |||
| op = builtin.NMSKeep(iou_thresh, max_output) | |||
| inp = utils.convert_inputs(boxes.reshape(1, -1, 4)) | |||
| indices, count = apply(op, *inp) | |||
| indices = indices[0][: count[0]] | |||
| keep_inds = sorted_idx[indices] | |||
| return keep_inds | |||
| def nvof(src: Tensor, precision: int = 1) -> Tensor: | |||
| r""" | |||
| Implements NVIDIA Optical Flow SDK. | |||
| @@ -1717,5 +1404,89 @@ def nvof(src: Tensor, precision: int = 1) -> Tensor: | |||
| return apply(op, src)[0] | |||
| def _elwise(*args, mode): | |||
| tensor_args = list(filter(lambda x: isinstance(x, (Tensor, VarNode)), args)) | |||
| if len(tensor_args) == 0: | |||
| dtype = utils.dtype_promotion(args) | |||
| first_arg = Tensor(args[0], dtype=dtype, device=get_default_device()) | |||
| args = utils.convert_inputs(first_arg, *args[1:]) | |||
| else: | |||
| args = utils.convert_inputs(*args) | |||
| if mode in ( | |||
| Elemwise.Mode.TRUE_DIV, | |||
| Elemwise.Mode.EXP, | |||
| Elemwise.Mode.POW, | |||
| Elemwise.Mode.LOG, | |||
| Elemwise.Mode.EXPM1, | |||
| Elemwise.Mode.LOG1P, | |||
| Elemwise.Mode.TANH, | |||
| Elemwise.Mode.ACOS, | |||
| Elemwise.Mode.ASIN, | |||
| Elemwise.Mode.ATAN2, | |||
| Elemwise.Mode.CEIL, | |||
| Elemwise.Mode.COS, | |||
| Elemwise.Mode.FLOOR, | |||
| Elemwise.Mode.H_SWISH, | |||
| Elemwise.Mode.ROUND, | |||
| Elemwise.Mode.SIGMOID, | |||
| Elemwise.Mode.SIN, | |||
| ): | |||
| if mode in ( | |||
| Elemwise.Mode.CEIL, | |||
| Elemwise.Mode.FLOOR, | |||
| Elemwise.Mode.ROUND, | |||
| ) and np.issubdtype(args[0].dtype, np.integer): | |||
| return args[0] | |||
| args = tuple(map(lambda x: astype(x, "float32"), args)) | |||
| return _elwise_apply(args, mode) | |||
| def hswish(x): | |||
| """ | |||
| Element-wise `x * relu6(x + 3) / 6`. | |||
| :param x: input tensor. | |||
| :return: computed tensor. | |||
| Example: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| x = tensor(np.arange(5).astype(np.float32)) | |||
| out = F.hswish(x) | |||
| print(out.numpy().round(decimals=4)) | |||
| .. testoutput:: | |||
| [0. 0.6667 1.6667 3. 4. ] | |||
| """ | |||
| return _elwise(x, mode=Elemwise.Mode.H_SWISH) | |||
| def sigmoid(x): | |||
| """Element-wise `1 / ( 1 + exp( -x ) )`.""" | |||
| return _elwise(x, mode=Elemwise.Mode.SIGMOID) | |||
| def hsigmoid(x): | |||
| """Element-wise `relu6(x + 3) / 6`.""" | |||
| return relu6(x + 3) / 6 | |||
| def relu(x): | |||
| """Element-wise `max(x, 0)`.""" | |||
| return _elwise(x, mode=Elemwise.Mode.RELU) | |||
| def relu6(x): | |||
| """Element-wise `min(max(x, 0), 6)`.""" | |||
| return minimum(maximum(x, 0), 6) | |||
| from .loss import * # isort:skip | |||
| from .quantized import conv_bias_activation # isort:skip | |||
| @@ -6,10 +6,8 @@ | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| import functools | |||
| import math | |||
| from itertools import accumulate | |||
| from typing import Iterable, List, Optional, Sequence, Tuple, Union | |||
| from typing import Iterable, Optional, Sequence, Union | |||
| import numpy as np | |||
| @@ -17,6 +15,7 @@ from ..core._imperative_rt import CompNode | |||
| from ..core._imperative_rt.core2 import apply | |||
| from ..core._wrap import device as as_device | |||
| from ..core.ops import builtin | |||
| from ..core.ops.builtin import Copy, Identity | |||
| from ..core.ops.special import Const | |||
| from ..core.tensor.array_method import _broadcast, _remove_axis | |||
| from ..core.tensor.utils import ( | |||
| @@ -51,6 +50,7 @@ __all__ = [ | |||
| "stack", | |||
| "scatter", | |||
| "tile", | |||
| "copy", | |||
| "transpose", | |||
| "where", | |||
| "zeros", | |||
| @@ -1130,3 +1130,33 @@ def tile(inp: Tensor, reps: Iterable[int]): | |||
| inp = broadcast_to(inp.reshape(base_shape), bcast_shape).reshape(target_shape) | |||
| return inp | |||
| def copy(inp, device=None): | |||
| r""" | |||
| Copies tensor to another device. | |||
| :param inp: input tensor. | |||
| :param device: destination device. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| x = tensor([1, 2, 3], np.int32) | |||
| y = F.copy(x, "xpu1") | |||
| print(y.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [1 2 3] | |||
| """ | |||
| if device is None: | |||
| return apply(Identity(), inp)[0] | |||
| return apply(Copy(comp_node=as_device(device).to_c()), inp)[0] | |||
| @@ -0,0 +1,576 @@ | |||
| # -*- coding: utf-8 -*- | |||
| # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| # | |||
| # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| from typing import Iterable, Optional, Tuple, Union | |||
| from ..core._imperative_rt.core2 import apply | |||
| from ..core.ops import builtin | |||
| from ..core.tensor import megbrain_graph, utils | |||
| from ..core.tensor.utils import astensor1d | |||
| from ..jit.tracing import is_tracing | |||
| from ..tensor import Tensor | |||
| from .elemwise import floor | |||
| from .math import argsort | |||
| from .tensor import broadcast_to, concat, expand_dims, reshape | |||
| def cvt_color(inp: Tensor, mode: str = ""): | |||
| r""" | |||
| Convert images from one format to another | |||
| :param inp: input images. | |||
| :param mode: format mode. | |||
| :return: convert result. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| import megengine as mge | |||
| import megengine.functional as F | |||
| x = mge.tensor(np.array([[[[-0.58675045, 1.7526233, 0.10702174]]]]).astype(np.float32)) | |||
| y = F.vision.cvt_color(x, mode="RGB2GRAY") | |||
| print(y.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[[[0.86555195]]]] | |||
| """ | |||
| assert mode in builtin.CvtColor.Mode.__dict__, "unspport mode for cvt_color" | |||
| mode = getattr(builtin.CvtColor.Mode, mode) | |||
| assert isinstance(mode, builtin.CvtColor.Mode) | |||
| op = builtin.CvtColor(mode=mode) | |||
| (out,) = apply(op, inp) | |||
| return out | |||
| def roi_pooling( | |||
| inp: Tensor, | |||
| rois: Tensor, | |||
| output_shape: Union[int, tuple, list], | |||
| mode: str = "max", | |||
| scale: float = 1.0, | |||
| ) -> Tensor: | |||
| """ | |||
| Applies roi pooling on input feature. | |||
| :param inp: tensor that represents the input feature, `(N, C, H, W)` images. | |||
| :param rois: `(K, 5)` boxes. First column is the index into N. The other 4 columns are xyxy. | |||
| :param output_shape: `(height, width)` of output rois feature. | |||
| :param mode: "max" or "average", use max/average align just like max/average pooling. Default: "max" | |||
| :param scale: scale the input boxes by this number. Default: 1.0 | |||
| :return: `(K, C, output_shape[0], output_shape[1])` feature of rois. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| np.random.seed(42) | |||
| inp = tensor(np.random.randn(1, 1, 128, 128)) | |||
| rois = tensor(np.random.random((4, 5))) | |||
| y = F.vision.roi_pooling(inp, rois, (2, 2)) | |||
| print(y.numpy()[0].round(decimals=4)) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[[-0.1383 -0.1383] | |||
| [-0.5035 -0.5035]]] | |||
| """ | |||
| assert mode in ["max", "average"], "only max/average mode is supported" | |||
| if isinstance(output_shape, int): | |||
| output_shape = (output_shape, output_shape) | |||
| op = builtin.ROIPooling(mode=mode, scale=scale) | |||
| inp, rois = utils.convert_inputs(inp, rois) | |||
| result, _ = apply( | |||
| op, inp, rois, Tensor(output_shape, dtype="int32", device=inp.device) | |||
| ) | |||
| return result | |||
| def roi_align( | |||
| inp: Tensor, | |||
| rois: Tensor, | |||
| output_shape: Union[int, tuple, list], | |||
| mode: str = "average", | |||
| spatial_scale: float = 1.0, | |||
| sample_points: Union[int, tuple, list] = 2, | |||
| aligned: bool = True, | |||
| ) -> Tensor: | |||
| """ | |||
| Applies roi align on input feature. | |||
| :param inp: tensor that represents the input feature, shape is `(N, C, H, W)`. | |||
| :param rois: `(N, 5)` boxes. First column is the box index. The other 4 columns are ``xyxy``. | |||
| :param output_shape: `(height, width)` shape of output rois feature. | |||
| :param mode: "max" or "average", use max/average align just like max/average pooling. Default: "average" | |||
| :param spatial_scale: scale the input boxes by this number. Default: 1.0 | |||
| :param sample_points: number of inputs samples to take for each output sample. | |||
| 0 to take samples densely. Default: 2 | |||
| :param aligned: wheather to align the input feature, with `aligned=True`, | |||
| we first appropriately scale the ROI and then shift it by -0.5. Default: True | |||
| :return: output tensor. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| np.random.seed(42) | |||
| inp = tensor(np.random.randn(1, 1, 128, 128)) | |||
| rois = tensor(np.random.random((4, 5))) | |||
| y = F.vision.roi_align(inp, rois, (2, 2)) | |||
| print(y.numpy()[0].round(decimals=4)) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[[0.175 0.175 ] | |||
| [0.1359 0.1359]]] | |||
| """ | |||
| assert mode in ["max", "average"], "only max/average mode is supported" | |||
| if isinstance(output_shape, int): | |||
| output_shape = (output_shape, output_shape) | |||
| pooled_height, pooled_width = output_shape | |||
| if isinstance(sample_points, int): | |||
| sample_points = (sample_points, sample_points) | |||
| sample_height, sample_width = sample_points | |||
| offset = 0.5 if aligned else 0.0 | |||
| op = builtin.ROIAlign( | |||
| mode=mode, | |||
| format="NCHW", | |||
| spatial_scale=spatial_scale, | |||
| offset=offset, | |||
| pooled_height=pooled_height, | |||
| pooled_width=pooled_width, | |||
| sample_height=sample_height, | |||
| sample_width=sample_width, | |||
| ) | |||
| inp, rois = utils.convert_inputs(inp, rois) | |||
| result, *_ = apply(op, inp, rois) | |||
| return result | |||
| def nms( | |||
| boxes: Tensor, scores: Tensor, iou_thresh: float, max_output: Optional[int] = None | |||
| ) -> Tensor: | |||
| r""" | |||
| Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union(IoU). | |||
| :param boxes: tensor of shape `(N, 4)`; the boxes to perform nms on; each box is expected to be in `(x1, y1, x2, y2)` format. | |||
| :param iou_thresh: IoU threshold for overlapping. | |||
| :param scores: tensor of shape `(N,)`, the score of boxes. | |||
| :param max_output: the maximum number of boxes to keep; it is optional if this operator is not traced | |||
| otherwise it required to be specified; if it is not specified, all boxes are kept. | |||
| :return: indices of the elements that have been kept by NMS. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| x = np.zeros((100,4)) | |||
| np.random.seed(42) | |||
| x[:,:2] = np.random.rand(100,2)*20 | |||
| x[:,2:] = np.random.rand(100,2)*20 + 100 | |||
| scores = tensor(np.random.rand(100)) | |||
| inp = tensor(x) | |||
| result = F.vision.nms(inp, scores, iou_thresh=0.7) | |||
| print(result.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [75 69] | |||
| """ | |||
| assert ( | |||
| boxes.ndim == 2 and boxes.shape[1] == 4 | |||
| ), "the expected shape of boxes is (N, 4)" | |||
| assert scores.ndim == 1, "the expected shape of scores is (N,)" | |||
| assert ( | |||
| boxes.shape[0] == scores.shape[0] | |||
| ), "number of boxes and scores are not matched" | |||
| boxes = boxes.detach() | |||
| scores = scores.detach() | |||
| sorted_idx = argsort(scores, descending=True) | |||
| boxes = boxes[sorted_idx] | |||
| if is_tracing(): | |||
| assert ( | |||
| max_output is not None and max_output > 0 | |||
| ), "max_output should be specified under tracing" | |||
| if max_output is None: | |||
| max_output = boxes.shape[0] | |||
| op = builtin.NMSKeep(iou_thresh, max_output) | |||
| inp = utils.convert_inputs(boxes.reshape(1, -1, 4)) | |||
| indices, count = apply(op, *inp) | |||
| indices = indices[0][: count[0]] | |||
| keep_inds = sorted_idx[indices] | |||
| return keep_inds | |||
| def remap( | |||
| inp: Tensor, | |||
| map_xy: Tensor, | |||
| border_mode: str = "REPLICATE", | |||
| scalar: float = 0.0, | |||
| interp_mode: str = "LINEAR", | |||
| ) -> Tensor: | |||
| r""" | |||
| Applies remap transformation to batched 2D images. | |||
| The input images are transformed to the output images by the tensor map_xy. | |||
| The output's H and W are same as map_xy's H and W. | |||
| :param inp: input image | |||
| :param map_xy: (batch, oh, ow, 2) transformation matrix | |||
| :param border_mode: pixel extrapolation method. | |||
| Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT", | |||
| "REFLECT_101", "WRAP". | |||
| :param scalar: value used in case of a constant border. Default: 0 | |||
| :param interp_mode: interpolation methods. | |||
| Default: "LINEAR". Currently only support "LINEAR" mode. | |||
| :return: output tensor. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| inp_shape = (1, 1, 4, 4) | |||
| inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) | |||
| map_xy_shape = (1, 2, 2, 2) | |||
| map_xy = tensor(np.array([[[1., 0.],[0., 1.]], | |||
| [[0., 1.],[0., 1.]]], | |||
| dtype=np.float32).reshape(map_xy_shape)) | |||
| out = F.vision.remap(inp, map_xy) | |||
| print(out.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[[[1. 4.] | |||
| [4. 4.]]]] | |||
| """ | |||
| op = builtin.Remap( | |||
| imode=interp_mode, border_type=border_mode, format="NCHW", scalar=scalar | |||
| ) | |||
| assert isinstance(inp, (Tensor, megbrain_graph.VarNode)), "inp must be Tensor type" | |||
| (result,) = apply(op, inp, map_xy) | |||
| return result | |||
| def warp_affine( | |||
| inp: Tensor, | |||
| weight: Tensor, | |||
| out_shape, | |||
| border_mode="REPLICATE", | |||
| border_val=0, | |||
| format="NHWC", | |||
| imode="LINEAR", | |||
| ): | |||
| """ | |||
| Batched affine transform on 2D images. | |||
| :param inp: input image. | |||
| :param weight: weight tensor. | |||
| :param out_shape: output tensor shape. | |||
| :param border_mode: pixel extrapolation method. | |||
| Default: "WRAP". Currently "CONSTANT", "REFLECT", | |||
| "REFLECT_101", "ISOLATED", "WRAP", "REPLICATE", "TRANSPARENT" are supported. | |||
| :param border_val: value used in case of a constant border. Default: 0 | |||
| :param format: "NHWC" as default based on historical concerns, | |||
| "NCHW" is also supported. Default: "NCHW". | |||
| :param imode: interpolation methods. Could be "LINEAR", "NEAREST", "CUBIC", "AREA". | |||
| Default: "LINEAR". | |||
| :return: output tensor. | |||
| .. note:: | |||
| Here all available options for params are listed, | |||
| however it does not mean that you can use all the combinations. | |||
| On different platforms, different combinations are supported. | |||
| """ | |||
| op = builtin.WarpAffine( | |||
| border_mode=border_mode, border_val=border_val, format=format, imode=imode | |||
| ) | |||
| out_shape = utils.astensor1d(out_shape, inp, dtype="int32", device=inp.device) | |||
| (result,) = apply(op, inp, weight, out_shape) | |||
| return result | |||
| def warp_perspective( | |||
| inp: Tensor, | |||
| M: Tensor, | |||
| dsize: Union[Tuple[int, int], int, Tensor], | |||
| border_mode: str = "REPLICATE", | |||
| border_val: float = 0.0, | |||
| interp_mode: str = "LINEAR", | |||
| ) -> Tensor: | |||
| r""" | |||
| Applies perspective transformation to batched 2D images. | |||
| The input images are transformed to the output images by the transformation matrix: | |||
| .. math:: | |||
| \text{output}(n, c, h, w) = \text{input} \left( n, c, | |||
| \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, | |||
| \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} | |||
| \right) | |||
| :param inp: input image. | |||
| :param M: `(batch, 3, 3)` transformation matrix. | |||
| :param dsize: `(h, w)` size of the output image. | |||
| :param border_mode: pixel extrapolation method. | |||
| Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT", | |||
| "REFLECT_101", "WRAP". | |||
| :param border_val: value used in case of a constant border. Default: 0 | |||
| :param interp_mode: interpolation methods. | |||
| Default: "LINEAR". Currently only support "LINEAR" mode. | |||
| :return: output tensor. | |||
| Note: | |||
| The transformation matrix is the inverse of that used by `cv2.warpPerspective`. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| inp_shape = (1, 1, 4, 4) | |||
| x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) | |||
| M_shape = (1, 3, 3) | |||
| # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) | |||
| M = tensor(np.array([[1., 0., 1.], | |||
| [0., 1., 1.], | |||
| [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) | |||
| out = F.vision.warp_perspective(x, M, (2, 2)) | |||
| print(out.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[[[ 5. 6.] | |||
| [ 9. 10.]]]] | |||
| """ | |||
| op = builtin.WarpPerspective( | |||
| imode=interp_mode, bmode=border_mode, format="NCHW", border_val=border_val | |||
| ) | |||
| inp, M = utils.convert_inputs(inp, M) | |||
| dsize = astensor1d(dsize, inp, dtype="int32", device=inp.device) | |||
| (result,) = apply(op, inp, M, dsize) | |||
| return result | |||
| def interpolate( | |||
| inp: Tensor, | |||
| size: Optional[Union[int, Tuple[int, int]]] = None, | |||
| scale_factor: Optional[Union[float, Tuple[float, float]]] = None, | |||
| mode: str = "BILINEAR", | |||
| align_corners: Optional[bool] = None, | |||
| ) -> Tensor: | |||
| r""" | |||
| Down/up samples the input tensor to either the given size or with the given scale_factor. ``size`` can not coexist with ``scale_factor``. | |||
| :param inp: input tensor. | |||
| :param size: size of the output tensor. Default: None | |||
| :param scale_factor: scaling factor of the output tensor. Default: None | |||
| :param mode: interpolation methods, acceptable values are: | |||
| "BILINEAR", "LINEAR". Default: "BILINEAR" | |||
| :param align_corners: This only has an effect when `mode` | |||
| is "BILINEAR" or "LINEAR". Geometrically, we consider the pixels of the input | |||
| and output as squares rather than points. If set to ``True``, the input | |||
| and output tensors are aligned by the center points of their corner | |||
| pixels, preserving the values at the corner pixels. If set to ``False``, | |||
| the input and output tensors are aligned by the corner points of their | |||
| corner pixels, and the interpolation uses edge value padding for | |||
| out-of-boundary values, making this operation *independent* of input size | |||
| :return: output tensor. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| x = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) | |||
| out = F.vision.interpolate(x, [4, 4], align_corners=False) | |||
| print(out.numpy()) | |||
| out2 = F.vision.interpolate(x, scale_factor=2.) | |||
| np.testing.assert_allclose(out.numpy(), out2.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[[[1. 1.25 1.75 2. ] | |||
| [1.5 1.75 2.25 2.5 ] | |||
| [2.5 2.75 3.25 3.5 ] | |||
| [3. 3.25 3.75 4. ]]]] | |||
| """ | |||
| mode = mode.upper() | |||
| if mode not in ["BILINEAR", "LINEAR"]: | |||
| raise ValueError("interpolate only support linear or bilinear mode") | |||
| if mode not in ["BILINEAR", "LINEAR"]: | |||
| if align_corners is not None: | |||
| raise ValueError( | |||
| "align_corners option can only be set in the bilinear/linear interpolating mode" | |||
| ) | |||
| else: | |||
| if align_corners is None: | |||
| align_corners = False | |||
| if ( | |||
| size is not None | |||
| and scale_factor is None | |||
| and not align_corners | |||
| and mode == "BILINEAR" | |||
| and inp.ndim in [4, 5] | |||
| ): | |||
| # fastpath for interpolate | |||
| op = builtin.Resize(imode="LINEAR", format="NCHW") | |||
| shape = astensor1d(size, inp, dtype="int32", device=inp.device) | |||
| (result,) = apply(op, inp, shape) | |||
| return result | |||
| if mode == "LINEAR": | |||
| inp = expand_dims(inp, 3) | |||
| if inp.ndim != 4: | |||
| raise ValueError("shape of input tensor must correspond to the operartion mode") | |||
| if size is None: | |||
| if scale_factor is None: | |||
| raise ValueError("scale_factor must not be None when size is None") | |||
| if isinstance(scale_factor, (float, int)): | |||
| scale_factor = float(scale_factor) | |||
| if mode == "LINEAR": | |||
| scale_factor = (scale_factor, float(1)) | |||
| else: | |||
| scale_factor = (scale_factor, scale_factor) | |||
| else: | |||
| if mode == "LINEAR": | |||
| raise ValueError( | |||
| "under LINEAR mode, scale_factor can only be single value" | |||
| ) | |||
| assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" | |||
| assert isinstance(scale_factor[0], float) and isinstance( | |||
| scale_factor[1], float | |||
| ), "scale_factor must be float type" | |||
| dsize = tuple( | |||
| floor( | |||
| Tensor( | |||
| inp.shape[i + 2] * scale_factor[i], | |||
| dtype="float32", | |||
| device=inp.device, | |||
| ) | |||
| ) | |||
| for i in range(2) | |||
| ) | |||
| dsize = concat([dsize[0], dsize[1]], axis=0) | |||
| else: | |||
| if scale_factor is not None: | |||
| raise ValueError("scale_factor must be None when size is provided") | |||
| if isinstance(size, int): | |||
| size = (size, 1) | |||
| else: | |||
| if mode == "LINEAR": | |||
| raise ValueError("under LINEAR mode, size can only be single value") | |||
| dsize = size | |||
| oh, ow = dsize[0], dsize[1] | |||
| ih, iw = inp.shape[2], inp.shape[3] | |||
| if align_corners: | |||
| hscale = (ih - 1.0) / (oh - 1.0) | |||
| wscale = 1.0 * iw / ow | |||
| if mode != "LINEAR": | |||
| wscale = (iw - 1.0) / (ow - 1.0) | |||
| row0 = concat( | |||
| [wscale, Tensor([0, 0], dtype="float32", device=inp.device)], axis=0 | |||
| ).reshape(1, 3) | |||
| row1 = concat( | |||
| [ | |||
| Tensor(0, dtype="float32", device=inp.device), | |||
| hscale, | |||
| Tensor(0, dtype="float32", device=inp.device), | |||
| ], | |||
| axis=0, | |||
| ).reshape(1, 3) | |||
| weight = concat( | |||
| [row0, row1, Tensor([[0, 0, 1]], dtype="float32", device=inp.device)], | |||
| axis=0, | |||
| ).reshape(1, 3, 3) | |||
| weight = broadcast_to(weight, (inp.shape[0], 3, 3)) | |||
| else: | |||
| hscale = 1.0 * ih / oh | |||
| wscale = 1.0 * iw / ow | |||
| row0 = concat( | |||
| [wscale, Tensor(0, dtype="float32", device=inp.device), 0.5 * wscale - 0.5], | |||
| axis=0, | |||
| ).reshape(1, 3) | |||
| row1 = concat( | |||
| [Tensor(0, dtype="float32", device=inp.device), hscale, 0.5 * hscale - 0.5], | |||
| axis=0, | |||
| ).reshape(1, 3) | |||
| weight = concat( | |||
| [row0, row1, Tensor([[0, 0, 1]], dtype="float32", device=inp.device)], | |||
| axis=0, | |||
| ).reshape(1, 3, 3) | |||
| weight = broadcast_to(weight, (inp.shape[0], 3, 3)) | |||
| weight = weight.astype("float32") | |||
| ret = warp_perspective(inp, weight, dsize, interp_mode="LINEAR") | |||
| if mode == "LINEAR": | |||
| ret = reshape(ret, ret.shape[0:3]) | |||
| return ret | |||
| @@ -6,7 +6,7 @@ | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| from ..functional import copy | |||
| from ..functional.tensor import copy | |||
| from .module import Module | |||
| @@ -372,7 +372,7 @@ def test_interpolate_fastpath(): | |||
| x = mge.Tensor(x_np) | |||
| grad = Grad().wrt(x, callback=save_to(x)) | |||
| y = F.nn.interpolate(x, size=(16, 16), mode="BILINEAR") | |||
| y = F.vision.interpolate(x, size=(16, 16), mode="BILINEAR") | |||
| grad(y, F.ones_like(y)) | |||
| np.testing.assert_equal(np.ones(x_np.shape, dtype=np.float32) / 4, x.grad.numpy()) | |||
| @@ -136,8 +136,8 @@ def test_interpolate(): | |||
| def linear_interpolate(): | |||
| inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) | |||
| out = F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR") | |||
| out2 = F.nn.interpolate(inp, 4, mode="LINEAR") | |||
| out = F.vision.interpolate(inp, scale_factor=2.0, mode="LINEAR") | |||
| out2 = F.vision.interpolate(inp, 4, mode="LINEAR") | |||
| np.testing.assert_allclose( | |||
| out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32) | |||
| @@ -149,16 +149,16 @@ def test_interpolate(): | |||
| def many_batch_interpolate(): | |||
| inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2)) | |||
| out = F.nn.interpolate(inp, [4, 4]) | |||
| out2 = F.nn.interpolate(inp, scale_factor=2.0) | |||
| out = F.vision.interpolate(inp, [4, 4]) | |||
| out2 = F.vision.interpolate(inp, scale_factor=2.0) | |||
| np.testing.assert_allclose(out.numpy(), out2.numpy()) | |||
| def assign_corner_interpolate(): | |||
| inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) | |||
| out = F.nn.interpolate(inp, [4, 4], align_corners=True) | |||
| out2 = F.nn.interpolate(inp, scale_factor=2.0, align_corners=True) | |||
| out = F.vision.interpolate(inp, [4, 4], align_corners=True) | |||
| out2 = F.vision.interpolate(inp, scale_factor=2.0, align_corners=True) | |||
| np.testing.assert_allclose(out.numpy(), out2.numpy()) | |||
| @@ -166,13 +166,13 @@ def test_interpolate(): | |||
| inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) | |||
| with pytest.raises(ValueError): | |||
| F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR") | |||
| F.vision.interpolate(inp, scale_factor=2.0, mode="LINEAR") | |||
| def inappropriate_scale_linear_interpolate(): | |||
| inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) | |||
| with pytest.raises(ValueError): | |||
| F.nn.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR") | |||
| F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR") | |||
| linear_interpolate() | |||
| many_batch_interpolate() | |||
| @@ -205,7 +205,7 @@ def test_roi_align(): | |||
| grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat)) | |||
| output_shape = (7, 7) | |||
| out_feat = F.nn.roi_align( | |||
| out_feat = F.vision.roi_align( | |||
| inp_feat, | |||
| rois, | |||
| output_shape=output_shape, | |||
| @@ -228,7 +228,7 @@ def test_roi_pooling(): | |||
| inp_feat, rois = _gen_roi_inp() | |||
| grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat)) | |||
| output_shape = (7, 7) | |||
| out_feat = F.nn.roi_pooling( | |||
| out_feat = F.vision.roi_pooling( | |||
| inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4, | |||
| ) | |||
| assert make_shape_tuple(out_feat.shape) == ( | |||
| @@ -335,18 +335,18 @@ def test_interpolate_fastpath(): | |||
| ] | |||
| for inp_shape, target_shape in test_cases: | |||
| x = tensor(np.random.randn(*inp_shape), dtype=np.float32) | |||
| out = F.nn.interpolate(x, target_shape, mode="BILINEAR") | |||
| out = F.vision.interpolate(x, target_shape, mode="BILINEAR") | |||
| assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1] | |||
| assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1] | |||
| # check value | |||
| x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32) | |||
| out = F.nn.interpolate(x, (15, 5), mode="BILINEAR") | |||
| out = F.vision.interpolate(x, (15, 5), mode="BILINEAR") | |||
| np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32)) | |||
| np_x = np.arange(32) | |||
| x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1) | |||
| out = F.nn.interpolate(x, (1, 1), mode="BILINEAR") | |||
| out = F.vision.interpolate(x, (1, 1), mode="BILINEAR") | |||
| np.testing.assert_equal(out.item(), np_x.mean()) | |||
| @@ -360,7 +360,7 @@ def test_warp_perspective(): | |||
| [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 | |||
| ).reshape(M_shape) | |||
| ) | |||
| outp = F.warp_perspective(x, M, (2, 2)) | |||
| outp = F.vision.warp_perspective(x, M, (2, 2)) | |||
| np.testing.assert_equal( | |||
| outp.numpy(), np.array([[[[5.0, 6.0], [9.0, 10.0]]]], dtype=np.float32) | |||
| ) | |||
| @@ -370,7 +370,7 @@ def test_warp_affine(): | |||
| inp_shape = (1, 3, 3, 3) | |||
| x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape)) | |||
| weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]] | |||
| outp = F.warp_affine(x, tensor(weightv), (2, 2), border_mode="WRAP") | |||
| outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="WRAP") | |||
| res = np.array( | |||
| [ | |||
| [ | |||
| @@ -393,7 +393,7 @@ def test_remap(): | |||
| [[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32 | |||
| ).reshape(map_xy_shape) | |||
| ) | |||
| outp = F.remap(inp, map_xy) | |||
| outp = F.vision.remap(inp, map_xy) | |||
| np.testing.assert_equal( | |||
| outp.numpy(), np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32) | |||
| ) | |||
| @@ -476,7 +476,7 @@ def test_nms(): | |||
| ) | |||
| inp = tensor(x) | |||
| scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32) | |||
| result = F.nn.nms(inp, scores=scores, iou_thresh=0.5) | |||
| result = F.vision.nms(inp, scores=scores, iou_thresh=0.5) | |||
| np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32)) | |||
| @@ -737,7 +737,7 @@ def test_cvt_color(): | |||
| inp = np.random.randn(3, 3, 3, 3).astype(np.float32) | |||
| out = np.expand_dims(rgb2gray(inp), 3).astype(np.float32) | |||
| x = tensor(inp) | |||
| y = F.img_proc.cvt_color(x, mode="RGB2GRAY") | |||
| y = F.vision.cvt_color(x, mode="RGB2GRAY") | |||
| np.testing.assert_allclose(y.numpy(), out, atol=1e-5) | |||
| @@ -360,7 +360,7 @@ def test_trace_warp_perspective(): | |||
| @trace(symbolic=True) | |||
| def f(x, M): | |||
| out = F.warp_perspective(x, M, (2, 2)) | |||
| out = F.vision.warp_perspective(x, M, (2, 2)) | |||
| np.testing.assert_equal(out.shape.numpy(), np.array([1, 1, 2, 2])) | |||
| return out | |||
| @@ -429,10 +429,10 @@ def test_trace_nms(): | |||
| @trace(symbolic=False) | |||
| def f(boxes, scores): | |||
| # with tracing, max_output must be specified | |||
| results = F.nn.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20) | |||
| results = F.vision.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20) | |||
| # without tracing, max output can be inferred inside nms | |||
| with exclude_from_trace(): | |||
| _ = F.nn.nms(boxes, scores=scores, iou_thresh=0.5) | |||
| _ = F.vision.nms(boxes, scores=scores, iou_thresh=0.5) | |||
| return results | |||
| f(*make_inputs(10)) | |||
| @@ -226,7 +226,7 @@ def test_roipooling(): | |||
| @trace(symbolic=True, capture_as_const=True) | |||
| def fwd(inp, rois): | |||
| return F.nn.roi_pooling(inp, rois, (2, 2), scale=2.0) | |||
| return F.vision.roi_pooling(inp, rois, (2, 2), scale=2.0) | |||
| output = fwd(inp, rois) | |||
| check_pygraph_dump(fwd, [inp, rois], [output]) | |||
| @@ -315,7 +315,7 @@ def test_roialign(): | |||
| @trace(symbolic=True, capture_as_const=True) | |||
| def fwd(inp, rois): | |||
| return F.nn.roi_align(inp, rois, (2, 2)) | |||
| return F.vision.roi_align(inp, rois, (2, 2)) | |||
| output = fwd(inp, rois) | |||
| check_pygraph_dump(fwd, [inp, rois], [output]) | |||
| @@ -334,7 +334,7 @@ def test_warpperspective(): | |||
| @trace(symbolic=True, capture_as_const=True) | |||
| def fwd(x, M): | |||
| return F.warp_perspective(x, M, (2, 2)) | |||
| return F.vision.warp_perspective(x, M, (2, 2)) | |||
| result = fwd(x, M) | |||
| check_pygraph_dump(fwd, [x, M], [result]) | |||
| @@ -347,7 +347,7 @@ def test_warpaffine(): | |||
| @trace(symbolic=True, capture_as_const=True) | |||
| def fwd(x, weightv): | |||
| return F.warp_affine(x, weightv, (2, 2), border_mode="WRAP") | |||
| return F.vision.warp_affine(x, weightv, (2, 2), border_mode="WRAP") | |||
| outp = fwd(x, weightv) | |||
| check_pygraph_dump(fwd, [x, weightv], [outp]) | |||
| @@ -365,7 +365,7 @@ def test_remap(): | |||
| @trace(symbolic=True, capture_as_const=True) | |||
| def fwd(inp, map_xy): | |||
| return F.remap(inp, map_xy) | |||
| return F.vision.remap(inp, map_xy) | |||
| out = fwd(inp, map_xy) | |||
| check_pygraph_dump(fwd, [inp, map_xy], [out]) | |||
| @@ -376,7 +376,7 @@ def test_resize(): | |||
| @trace(symbolic=True, capture_as_const=True) | |||
| def fwd(x): | |||
| return F.nn.interpolate(x, size=(16, 16), mode="BILINEAR") | |||
| return F.vision.interpolate(x, size=(16, 16), mode="BILINEAR") | |||
| out = fwd(x) | |||
| check_pygraph_dump(fwd, [x], [out]) | |||
| @@ -706,7 +706,7 @@ def test_cvtcolor(): | |||
| @trace(symbolic=True, capture_as_const=True) | |||
| def fwd(inp): | |||
| return F.img_proc.cvt_color(inp, mode="RGB2GRAY") | |||
| return F.vision.cvt_color(inp, mode="RGB2GRAY") | |||
| result = fwd(x) | |||
| check_pygraph_dump(fwd, [x], [result]) | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * \file imperative/src/impl/ops/img_proc.cpp | |||
| * \file imperative/src/impl/ops/vision.cpp | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
| @@ -31,4 +31,4 @@ OP_TRAIT_REG(CvtColor, CvtColor) | |||
| .fallback(); | |||
| } | |||
| } | |||
| } | |||
| } | |||