|
|
|
@@ -0,0 +1,648 @@ |
|
|
|
#include <cuda_runtime.h> |
|
|
|
|
|
|
|
#include "./imma8832_128x256.cuh" |
|
|
|
#include "./macro.cuh" |
|
|
|
#include "./tools.cuh" |
|
|
|
|
|
|
|
using namespace convolution; |
|
|
|
extern "C" __global__ void __launch_bounds__(256) |
|
|
|
ampere_conv_bias_uint4_int4_fuse_z_imma8832_ldg16_128x256_relu( |
|
|
|
const int8_t* __restrict__ src, const int8_t* __restrict__ filter, |
|
|
|
const float* __restrict__ bias, const int8_t* __restrict__ z, |
|
|
|
int8_t* __restrict__ dst, float alpha, float beta, float gamma, |
|
|
|
uint32_t pk_src_zero_point, int32_t z_zero_point, float dst_zero_point, |
|
|
|
uint32_t relu, Conv2dInt4Param param, |
|
|
|
Conv2dConstantOffset conv2d_constant) { |
|
|
|
#ifdef SM80_ENABLED |
|
|
|
const uint32_t tid = threadIdx.x; |
|
|
|
const uint32_t bidx = blockIdx.x; |
|
|
|
const uint32_t bidy = blockIdx.y; |
|
|
|
__shared__ int32_t smem[12288]; // (128+256)*128/8*2 |
|
|
|
int2 reg_acc[reg_m][reg_n]; |
|
|
|
int4 reg_src[2][reg_nd4]; |
|
|
|
int4 reg_flt[2][reg_md4]; |
|
|
|
// use in other way, maybe use reg_ser/flt |
|
|
|
int4 reg_src_cache[2]; |
|
|
|
int4 reg_filter_cache[4]; |
|
|
|
|
|
|
|
uint32_t gtid = (tid >> 7); |
|
|
|
uint32_t tid127 = (tid & 127); |
|
|
|
uint32_t section = (tid127 >> 1); |
|
|
|
uint32_t residue = ((tid127 << 5) & 63); |
|
|
|
uint32_t nhw = bidx * BN + section; |
|
|
|
|
|
|
|
uint32_t tn, hw, toh, tow; |
|
|
|
int tih, tiw; |
|
|
|
int h_start[2]; |
|
|
|
int h_end[2]; |
|
|
|
int w_start[2]; |
|
|
|
int w_end[2]; |
|
|
|
bool g[2]; |
|
|
|
const int8_t* __restrict__ g_src_ptr[2]; |
|
|
|
for (int i = 0; i < 2; i++) { |
|
|
|
if (i != 0) { |
|
|
|
nhw += 64; |
|
|
|
} |
|
|
|
tn = nhw / param.div_ohow; |
|
|
|
hw = nhw % param.div_ohow; |
|
|
|
toh = hw / param.div_ow; |
|
|
|
tow = hw % param.div_ow; |
|
|
|
tih = toh * param.sh - param.ph; |
|
|
|
tiw = tow * param.sw - param.pw; |
|
|
|
g[i] = tn < param.n; |
|
|
|
h_start[i] = -tih; |
|
|
|
h_end[i] = param.ih - tih; |
|
|
|
w_start[i] = -tiw; |
|
|
|
w_end[i] = param.iw - tiw; |
|
|
|
// param's members have been converted to byte offset and int4 offset need to |
|
|
|
// div 2 |
|
|
|
int src_offset = tn * param.ibs + tih * param.ihs + |
|
|
|
((int)(tiw * packed_channel + residue) >> 1); |
|
|
|
g_src_ptr[i] = src + src_offset; |
|
|
|
} |
|
|
|
|
|
|
|
const uint32_t section_section = (section >> 2); |
|
|
|
const uint32_t section_residue = (section & 3); |
|
|
|
const uint32_t section_factor = ((section & 15) >> 2); |
|
|
|
const uint32_t crosswise_offset = |
|
|
|
((section_residue >> 1) << 4) + |
|
|
|
(((section_residue & 1) ^ (section_factor >> 1)) << 3); |
|
|
|
const uint32_t residue_offset = ((residue >> 5) ^ (section_factor & 1)) << 2; |
|
|
|
|
|
|
|
// next + 64 * BK / 8 |
|
|
|
int32_t* write_src_s = smem + section_section * BK / 2 + crosswise_offset + |
|
|
|
residue_offset + (gtid << 5); |
|
|
|
|
|
|
|
int iter = (param.icfhfw >> 6); |
|
|
|
|
|
|
|
uint32_t tid31 = (tid & 31); |
|
|
|
uint32_t warp_idx = (tid >> 5); |
|
|
|
uint32_t warp_strided = (warp_idx << 2); |
|
|
|
uint32_t htid = (tid31 >> 4); |
|
|
|
const uint32_t flt_strided = bidy * BM / 8 + warp_strided; |
|
|
|
bool guard = flt_strided * 8 < param.oc && iter > htid; |
|
|
|
// icfhfw * 8/2 is a stride |
|
|
|
const int8_t* __restrict__ g_filter_ptr0 = |
|
|
|
filter + flt_strided * (param.icfhfw * 4) + (tid31 << 4); |
|
|
|
const int8_t* __restrict__ g_filter_ptr1 = g_filter_ptr0 + (param.icfhfw * 4); |
|
|
|
const int8_t* __restrict__ g_filter_ptr2 = g_filter_ptr0 + (param.icfhfw * 8); |
|
|
|
const int8_t* __restrict__ g_filter_ptr3 = g_filter_ptr0 + (param.icfhfw * 12); |
|
|
|
|
|
|
|
// next + BK * 8 / (INT32/INT4) |
|
|
|
uint32_t q = (tid31 >> 3); |
|
|
|
uint32_t r = (tid31 & 7); |
|
|
|
int32_t* write_flt_s = smem + BN * BK / 8 + warp_strided * BK + ((q & 1) << 6) + |
|
|
|
((q >> 1) << 5) + (r << 2); |
|
|
|
uint32_t quad_idx = (tid31 >> 2); |
|
|
|
uint32_t idx_in_quad = (tid & 3); |
|
|
|
uint32_t quad_factor = ((tid & 15) >> 2); |
|
|
|
uint32_t crosswise = |
|
|
|
((idx_in_quad >> 1) << 4) + (((idx_in_quad & 1) ^ (quad_factor >> 1)) << 3); |
|
|
|
uint32_t warp_x = (warp_idx >> 2); |
|
|
|
uint32_t warp_y = (warp_idx & 3); |
|
|
|
|
|
|
|
int32_t* read_src_s_0 = smem + (warp_x * 8 * BK) + (quad_idx * BK / 2) + crosswise + |
|
|
|
((0 ^ (quad_factor & 1)) << 2); |
|
|
|
int32_t* read_src_s_1 = smem + (warp_x * 8 * BK) + (quad_idx * BK / 2) + crosswise + |
|
|
|
((1 ^ (quad_factor & 1)) << 2); |
|
|
|
int32_t* read_flt_s_0 = smem + BN * BK / 8 + (warp_y * 8 * BK) + |
|
|
|
(quad_idx * BK / 2) + crosswise + |
|
|
|
((0 ^ (quad_factor & 1)) << 2); |
|
|
|
int32_t* read_flt_s_1 = smem + BN * BK / 8 + (warp_y * 8 * BK) + |
|
|
|
(quad_idx * BK / 2) + crosswise + |
|
|
|
((1 ^ (quad_factor & 1)) << 2); |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for (int i = 0; i < reg_m; i++) { |
|
|
|
#pragma unroll |
|
|
|
for (int j = 0; j < reg_n; j++) { |
|
|
|
reg_acc[i][j] = make_int2(0, 0); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
int32_t smem_switch = 6144; |
|
|
|
uint32_t offset = gtid * 2; |
|
|
|
int src_step = conv2d_constant.c_offset[offset]; |
|
|
|
uint32_t spatial = *( |
|
|
|
reinterpret_cast<const uint32_t*>(&(conv2d_constant.c_offset[offset + 1]))); |
|
|
|
int x = (spatial & 0xff); |
|
|
|
int y = ((spatial >> 8) & 0xff); |
|
|
|
if (offset < conv2d_constant.c_offset_param.max) { |
|
|
|
offset += 4; |
|
|
|
} else { |
|
|
|
offset += conv2d_constant.c_offset_param.rewind; |
|
|
|
} |
|
|
|
|
|
|
|
bool guard0 = g[0] && x >= h_start[0] && x < h_end[0] && y >= w_start[0] && |
|
|
|
y < w_end[0] && iter > gtid; |
|
|
|
bool guard1 = g[1] && x >= h_start[1] && x < h_end[1] && y >= w_start[1] && |
|
|
|
y < w_end[1] && iter > gtid; |
|
|
|
g_src_ptr[0] += src_step; |
|
|
|
g_src_ptr[1] += src_step; |
|
|
|
|
|
|
|
if (guard0) { |
|
|
|
reg_src_cache[0] = *(reinterpret_cast<const int4*>(g_src_ptr[0])); |
|
|
|
} else { |
|
|
|
reg_src_cache[0] = make_int4( |
|
|
|
pk_src_zero_point, pk_src_zero_point, pk_src_zero_point, |
|
|
|
pk_src_zero_point); |
|
|
|
} |
|
|
|
if (guard1) { |
|
|
|
reg_src_cache[1] = *(reinterpret_cast<const int4*>(g_src_ptr[1])); |
|
|
|
} else { |
|
|
|
reg_src_cache[1] = make_int4( |
|
|
|
pk_src_zero_point, pk_src_zero_point, pk_src_zero_point, |
|
|
|
pk_src_zero_point); |
|
|
|
} |
|
|
|
|
|
|
|
if (guard) { |
|
|
|
reg_filter_cache[0] = *(reinterpret_cast<const int4*>(g_filter_ptr0)); |
|
|
|
reg_filter_cache[1] = *(reinterpret_cast<const int4*>(g_filter_ptr1)); |
|
|
|
reg_filter_cache[2] = *(reinterpret_cast<const int4*>(g_filter_ptr2)); |
|
|
|
reg_filter_cache[3] = *(reinterpret_cast<const int4*>(g_filter_ptr3)); |
|
|
|
} else { |
|
|
|
reg_filter_cache[0] = make_int4(0, 0, 0, 0); |
|
|
|
reg_filter_cache[1] = make_int4(0, 0, 0, 0); |
|
|
|
reg_filter_cache[2] = make_int4(0, 0, 0, 0); |
|
|
|
reg_filter_cache[3] = make_int4(0, 0, 0, 0); |
|
|
|
} |
|
|
|
|
|
|
|
*(reinterpret_cast<int4*>(write_src_s)) = reg_src_cache[0]; |
|
|
|
*(reinterpret_cast<int4*>(write_src_s + 8 * BK)) = reg_src_cache[1]; |
|
|
|
*(reinterpret_cast<int4*>(write_flt_s)) = reg_filter_cache[0]; |
|
|
|
*(reinterpret_cast<int4*>(write_flt_s + BK)) = reg_filter_cache[1]; |
|
|
|
*(reinterpret_cast<int4*>(write_flt_s + 2 * BK)) = reg_filter_cache[2]; |
|
|
|
*(reinterpret_cast<int4*>(write_flt_s + 3 * BK)) = reg_filter_cache[3]; |
|
|
|
|
|
|
|
__syncthreads(); |
|
|
|
|
|
|
|
iter -= 2; |
|
|
|
|
|
|
|
src_step = conv2d_constant.c_offset[offset]; |
|
|
|
spatial = *( |
|
|
|
reinterpret_cast<const uint32_t*>(&(conv2d_constant.c_offset[offset + 1]))); |
|
|
|
x = (spatial & 0xff); |
|
|
|
y = ((spatial >> 8) & 0xff); |
|
|
|
if (offset < conv2d_constant.c_offset_param.max) { |
|
|
|
offset += 4; |
|
|
|
} else { |
|
|
|
offset += conv2d_constant.c_offset_param.rewind; |
|
|
|
} |
|
|
|
|
|
|
|
guard0 = g[0] && x >= h_start[0] && x < h_end[0] && y >= w_start[0] && y < w_end[0]; |
|
|
|
guard1 = g[1] && x >= h_start[1] && x < h_end[1] && y >= w_start[1] && y < w_end[1]; |
|
|
|
|
|
|
|
g_src_ptr[0] += src_step; |
|
|
|
g_src_ptr[1] += src_step; |
|
|
|
g_filter_ptr0 += 8 * 64; |
|
|
|
g_filter_ptr1 += 8 * 64; |
|
|
|
g_filter_ptr2 += 8 * 64; |
|
|
|
g_filter_ptr3 += 8 * 64; |
|
|
|
|
|
|
|
write_src_s += smem_switch; |
|
|
|
write_flt_s += smem_switch; |
|
|
|
|
|
|
|
for (; iter >= 2; iter -= 2) { |
|
|
|
if (guard0) { |
|
|
|
reg_src_cache[0] = *(reinterpret_cast<const int4*>(g_src_ptr[0])); |
|
|
|
} else { |
|
|
|
reg_src_cache[0] = make_int4( |
|
|
|
pk_src_zero_point, pk_src_zero_point, pk_src_zero_point, |
|
|
|
pk_src_zero_point); |
|
|
|
} |
|
|
|
if (guard1) { |
|
|
|
reg_src_cache[1] = *(reinterpret_cast<const int4*>(g_src_ptr[1])); |
|
|
|
} else { |
|
|
|
reg_src_cache[1] = make_int4( |
|
|
|
pk_src_zero_point, pk_src_zero_point, pk_src_zero_point, |
|
|
|
pk_src_zero_point); |
|
|
|
} |
|
|
|
|
|
|
|
if (guard) { |
|
|
|
reg_filter_cache[0] = *(reinterpret_cast<const int4*>(g_filter_ptr0)); |
|
|
|
reg_filter_cache[1] = *(reinterpret_cast<const int4*>(g_filter_ptr1)); |
|
|
|
reg_filter_cache[2] = *(reinterpret_cast<const int4*>(g_filter_ptr2)); |
|
|
|
reg_filter_cache[3] = *(reinterpret_cast<const int4*>(g_filter_ptr3)); |
|
|
|
} else { |
|
|
|
reg_filter_cache[0] = make_int4(0, 0, 0, 0); |
|
|
|
reg_filter_cache[1] = make_int4(0, 0, 0, 0); |
|
|
|
reg_filter_cache[2] = make_int4(0, 0, 0, 0); |
|
|
|
reg_filter_cache[3] = make_int4(0, 0, 0, 0); |
|
|
|
} |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for (int i = 0; i < reg_nd4; ++i) { |
|
|
|
int x, y, z, w; |
|
|
|
unsigned addr = get_smem_pointer(read_src_s_0 + i * 4 * BK); // BK*32/8 |
|
|
|
asm volatile( |
|
|
|
"ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, %3}, " |
|
|
|
"[%4];" |
|
|
|
: "=r"(x), "=r"(y), "=r"(z), "=r"(w) |
|
|
|
: "r"(addr)); |
|
|
|
reg_src[0][i] = make_int4(x, y, z, w); |
|
|
|
} |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for (int j = 0; j < reg_md4; ++j) { |
|
|
|
int x, y, z, w; |
|
|
|
unsigned addr = get_smem_pointer(read_flt_s_0 + 4 * j * BK); |
|
|
|
asm volatile( |
|
|
|
"ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, %3}, " |
|
|
|
"[%4];" |
|
|
|
: "=r"(x), "=r"(y), "=r"(z), "=r"(w) |
|
|
|
: "r"(addr)); |
|
|
|
reg_flt[0][j] = make_int4(x, y, z, w); |
|
|
|
} |
|
|
|
|
|
|
|
smem_switch = -smem_switch; |
|
|
|
#pragma unroll |
|
|
|
for (int k_inner = 0; k_inner < BKd32; k_inner++) { |
|
|
|
int comp = (k_inner & 0x1); |
|
|
|
int load = 1 - comp; |
|
|
|
if (k_inner < BKd32 - 1) { |
|
|
|
int32_t* read_src_s = (k_inner & 1) ? read_src_s_0 : read_src_s_1; |
|
|
|
int32_t* read_flt_s = (k_inner & 1) ? read_flt_s_0 : read_flt_s_1; |
|
|
|
read_src_s += 32 * ((k_inner + 1) >> 1); |
|
|
|
read_flt_s += 32 * ((k_inner + 1) >> 1); |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for (int i = 0; i < reg_nd4; ++i) { |
|
|
|
int x, y, z, w; |
|
|
|
unsigned addr = |
|
|
|
get_smem_pointer(read_src_s + i * 4 * BK); // BK*32/8 |
|
|
|
asm volatile( |
|
|
|
"ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, " |
|
|
|
"%3}, " |
|
|
|
"[%4];" |
|
|
|
: "=r"(x), "=r"(y), "=r"(z), "=r"(w) |
|
|
|
: "r"(addr)); |
|
|
|
reg_src[load][i] = make_int4(x, y, z, w); |
|
|
|
} |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for (int j = 0; j < reg_md4; ++j) { |
|
|
|
int x, y, z, w; |
|
|
|
unsigned addr = get_smem_pointer(read_flt_s + 4 * j * BK); |
|
|
|
asm volatile( |
|
|
|
"ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, " |
|
|
|
"%3}, " |
|
|
|
"[%4];" |
|
|
|
: "=r"(x), "=r"(y), "=r"(z), "=r"(w) |
|
|
|
: "r"(addr)); |
|
|
|
reg_flt[load][j] = make_int4(x, y, z, w); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
int* A = reinterpret_cast<int*>(®_flt[comp][0]); |
|
|
|
int* B = reinterpret_cast<int*>(®_src[comp][0]); |
|
|
|
#pragma unroll |
|
|
|
for (int x = 0; x < reg_n; x++) { |
|
|
|
#pragma unroll |
|
|
|
for (int y = 0; y < reg_m; y++) { |
|
|
|
int* D = reinterpret_cast<int*>(®_acc[y][x]); |
|
|
|
int* C = reinterpret_cast<int*>(®_acc[y][x]); |
|
|
|
asm volatile( |
|
|
|
"mma.sync.aligned.m8n8k32.row.col.satfinite.s32.u4.s4." |
|
|
|
"s32 " |
|
|
|
"{%0,%1}, {%2}, {%3}, " |
|
|
|
"{%4,%5};\n" |
|
|
|
: "=r"(D[0]), "=r"(D[1]) |
|
|
|
: "r"(B[y]), "r"(A[x]), "r"(C[0]), "r"(C[1])); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
*(reinterpret_cast<int4*>(write_src_s)) = reg_src_cache[0]; |
|
|
|
*(reinterpret_cast<int4*>(write_src_s + 8 * BK)) = reg_src_cache[1]; |
|
|
|
*(reinterpret_cast<int4*>(write_flt_s)) = reg_filter_cache[0]; |
|
|
|
*(reinterpret_cast<int4*>(write_flt_s + BK)) = reg_filter_cache[1]; |
|
|
|
*(reinterpret_cast<int4*>(write_flt_s + 2 * BK)) = reg_filter_cache[2]; |
|
|
|
*(reinterpret_cast<int4*>(write_flt_s + 3 * BK)) = reg_filter_cache[3]; |
|
|
|
|
|
|
|
write_src_s += smem_switch; |
|
|
|
write_flt_s += smem_switch; |
|
|
|
read_src_s_0 -= smem_switch; |
|
|
|
read_src_s_1 -= smem_switch; |
|
|
|
read_flt_s_0 -= smem_switch; |
|
|
|
read_flt_s_1 -= smem_switch; |
|
|
|
__syncthreads(); |
|
|
|
|
|
|
|
int src_step = conv2d_constant.c_offset[offset]; |
|
|
|
uint32_t spatial = *(reinterpret_cast<const uint32_t*>( |
|
|
|
&(conv2d_constant.c_offset[offset + 1]))); |
|
|
|
x = (spatial & 0xff); |
|
|
|
y = ((spatial >> 8) & 0xff); |
|
|
|
if (offset < conv2d_constant.c_offset_param.max) { |
|
|
|
offset += 4; |
|
|
|
} else { |
|
|
|
offset += conv2d_constant.c_offset_param.rewind; |
|
|
|
} |
|
|
|
|
|
|
|
guard0 = g[0] && x >= h_start[0] && x < h_end[0] && y >= w_start[0] && |
|
|
|
y < w_end[0]; |
|
|
|
guard1 = g[1] && x >= h_start[1] && x < h_end[1] && y >= w_start[1] && |
|
|
|
y < w_end[1]; |
|
|
|
|
|
|
|
g_src_ptr[0] += src_step; |
|
|
|
g_src_ptr[1] += src_step; |
|
|
|
|
|
|
|
g_filter_ptr0 += 8 * 64; |
|
|
|
g_filter_ptr1 += 8 * 64; |
|
|
|
g_filter_ptr2 += 8 * 64; |
|
|
|
g_filter_ptr3 += 8 * 64; |
|
|
|
} |
|
|
|
|
|
|
|
if (iter > 0) { |
|
|
|
if (guard0 && iter > gtid) { |
|
|
|
reg_src_cache[0] = *(reinterpret_cast<const int4*>(g_src_ptr[0])); |
|
|
|
} else { |
|
|
|
reg_src_cache[0] = make_int4( |
|
|
|
pk_src_zero_point, pk_src_zero_point, pk_src_zero_point, |
|
|
|
pk_src_zero_point); |
|
|
|
} |
|
|
|
if (guard1 && iter > gtid) { |
|
|
|
reg_src_cache[1] = *(reinterpret_cast<const int4*>(g_src_ptr[1])); |
|
|
|
} else { |
|
|
|
reg_src_cache[1] = make_int4( |
|
|
|
pk_src_zero_point, pk_src_zero_point, pk_src_zero_point, |
|
|
|
pk_src_zero_point); |
|
|
|
} |
|
|
|
|
|
|
|
if (guard && iter > htid) { |
|
|
|
reg_filter_cache[0] = *(reinterpret_cast<const int4*>(g_filter_ptr0)); |
|
|
|
reg_filter_cache[1] = *(reinterpret_cast<const int4*>(g_filter_ptr1)); |
|
|
|
reg_filter_cache[2] = *(reinterpret_cast<const int4*>(g_filter_ptr2)); |
|
|
|
reg_filter_cache[3] = *(reinterpret_cast<const int4*>(g_filter_ptr3)); |
|
|
|
} else { |
|
|
|
reg_filter_cache[0] = make_int4(0, 0, 0, 0); |
|
|
|
reg_filter_cache[1] = make_int4(0, 0, 0, 0); |
|
|
|
reg_filter_cache[2] = make_int4(0, 0, 0, 0); |
|
|
|
reg_filter_cache[3] = make_int4(0, 0, 0, 0); |
|
|
|
} |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for (int i = 0; i < reg_nd4; ++i) { |
|
|
|
int x, y, z, w; |
|
|
|
unsigned addr = get_smem_pointer(read_src_s_0 + i * 4 * BK); // BK*32/8 |
|
|
|
asm volatile( |
|
|
|
"ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, %3}, " |
|
|
|
"[%4];" |
|
|
|
: "=r"(x), "=r"(y), "=r"(z), "=r"(w) |
|
|
|
: "r"(addr)); |
|
|
|
reg_src[0][i] = make_int4(x, y, z, w); |
|
|
|
} |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for (int j = 0; j < reg_md4; ++j) { |
|
|
|
int x, y, z, w; |
|
|
|
unsigned addr = get_smem_pointer(read_flt_s_0 + 4 * j * BK); |
|
|
|
asm volatile( |
|
|
|
"ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, %3}, " |
|
|
|
"[%4];" |
|
|
|
: "=r"(x), "=r"(y), "=r"(z), "=r"(w) |
|
|
|
: "r"(addr)); |
|
|
|
reg_flt[0][j] = make_int4(x, y, z, w); |
|
|
|
} |
|
|
|
|
|
|
|
smem_switch = -smem_switch; |
|
|
|
#pragma unroll |
|
|
|
for (int k_inner = 0; k_inner < BKd32; k_inner++) { |
|
|
|
int comp = (k_inner & 0x1); |
|
|
|
int load = 1 - comp; |
|
|
|
if (k_inner < BKd32 - 1) { |
|
|
|
int32_t* read_src_s = (k_inner & 1) ? read_src_s_0 : read_src_s_1; |
|
|
|
int32_t* read_flt_s = (k_inner & 1) ? read_flt_s_0 : read_flt_s_1; |
|
|
|
read_src_s += 32 * ((k_inner + 1) >> 1); |
|
|
|
read_flt_s += 32 * ((k_inner + 1) >> 1); |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for (int i = 0; i < reg_nd4; ++i) { |
|
|
|
int x, y, z, w; |
|
|
|
unsigned addr = |
|
|
|
get_smem_pointer(read_src_s + i * 4 * BK); // BK*32/8 |
|
|
|
asm volatile( |
|
|
|
"ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, " |
|
|
|
"%3}, " |
|
|
|
"[%4];" |
|
|
|
: "=r"(x), "=r"(y), "=r"(z), "=r"(w) |
|
|
|
: "r"(addr)); |
|
|
|
reg_src[load][i] = make_int4(x, y, z, w); |
|
|
|
} |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for (int j = 0; j < reg_md4; ++j) { |
|
|
|
int x, y, z, w; |
|
|
|
unsigned addr = get_smem_pointer(read_flt_s + 4 * j * BK); |
|
|
|
asm volatile( |
|
|
|
"ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, " |
|
|
|
"%3}, " |
|
|
|
"[%4];" |
|
|
|
: "=r"(x), "=r"(y), "=r"(z), "=r"(w) |
|
|
|
: "r"(addr)); |
|
|
|
reg_flt[load][j] = make_int4(x, y, z, w); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
int* A = reinterpret_cast<int*>(®_flt[comp][0]); |
|
|
|
int* B = reinterpret_cast<int*>(®_src[comp][0]); |
|
|
|
#pragma unroll |
|
|
|
for (int x = 0; x < reg_n; x++) { |
|
|
|
#pragma unroll |
|
|
|
for (int y = 0; y < reg_m; y++) { |
|
|
|
int* D = reinterpret_cast<int*>(®_acc[y][x]); |
|
|
|
int* C = reinterpret_cast<int*>(®_acc[y][x]); |
|
|
|
asm volatile( |
|
|
|
"mma.sync.aligned.m8n8k32.row.col.satfinite.s32.u4.s4." |
|
|
|
"s32 " |
|
|
|
"{%0,%1}, {%2}, {%3}, " |
|
|
|
"{%4,%5};\n" |
|
|
|
: "=r"(D[0]), "=r"(D[1]) |
|
|
|
: "r"(B[y]), "r"(A[x]), "r"(C[0]), "r"(C[1])); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
*(reinterpret_cast<int4*>(write_src_s)) = reg_src_cache[0]; |
|
|
|
*(reinterpret_cast<int4*>(write_src_s + 8 * BK)) = reg_src_cache[1]; |
|
|
|
*(reinterpret_cast<int4*>(write_flt_s)) = reg_filter_cache[0]; |
|
|
|
*(reinterpret_cast<int4*>(write_flt_s + BK)) = reg_filter_cache[1]; |
|
|
|
*(reinterpret_cast<int4*>(write_flt_s + 2 * BK)) = reg_filter_cache[2]; |
|
|
|
*(reinterpret_cast<int4*>(write_flt_s + 3 * BK)) = reg_filter_cache[3]; |
|
|
|
|
|
|
|
read_src_s_0 -= smem_switch; |
|
|
|
read_src_s_1 -= smem_switch; |
|
|
|
read_flt_s_0 -= smem_switch; |
|
|
|
read_flt_s_1 -= smem_switch; |
|
|
|
|
|
|
|
__syncthreads(); |
|
|
|
} |
|
|
|
|
|
|
|
// read fuse_z |
|
|
|
int2 reg_fuse_z[reg_m] = {make_int2(z_zero_point, z_zero_point), |
|
|
|
make_int2(z_zero_point, z_zero_point), |
|
|
|
make_int2(z_zero_point, z_zero_point), |
|
|
|
make_int2(z_zero_point, z_zero_point), |
|
|
|
make_int2(z_zero_point, z_zero_point), |
|
|
|
make_int2(z_zero_point, z_zero_point), |
|
|
|
make_int2(z_zero_point, z_zero_point), |
|
|
|
make_int2(z_zero_point, z_zero_point)}; |
|
|
|
int d_offset = (bidy * (BM >> 6) + warp_y) * param.ocs + (idx_in_quad << 3); |
|
|
|
const int8_t* __restrict__ g_z_ptr = z + d_offset; |
|
|
|
section = tid31 >> 2; |
|
|
|
size_t nhw_post0 = bidx * BN + warp_x * 64 + section; |
|
|
|
size_t nhw_post1 = nhw_post0 + 8; |
|
|
|
size_t nhw_post2 = nhw_post0 + 16; |
|
|
|
size_t nhw_post3 = nhw_post0 + 24; |
|
|
|
size_t stg_oc = bidy * BM + (warp_y << 6); |
|
|
|
int* g_offset = ((int*)®_filter_cache); |
|
|
|
bool stg_guard[8]; |
|
|
|
#pragma unroll |
|
|
|
for (int y = 0; y < reg_m; y += 4) { |
|
|
|
LDG_4x1(reg_fuse_z, g_offset, y) |
|
|
|
|
|
|
|
nhw_post0 += 32; |
|
|
|
nhw_post1 += 32; |
|
|
|
nhw_post2 += 32; |
|
|
|
nhw_post3 += 32; |
|
|
|
} |
|
|
|
|
|
|
|
guard = iter < 0; |
|
|
|
#pragma unroll |
|
|
|
for (int i = 0; i < reg_nd4; ++i) { |
|
|
|
int x, y, z, w; |
|
|
|
unsigned addr = get_smem_pointer(read_src_s_0 + i * 4 * BK); // BK*32/8 |
|
|
|
asm volatile( |
|
|
|
"ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, " |
|
|
|
"%3}, " |
|
|
|
"[%4];" |
|
|
|
: "=r"(x), "=r"(y), "=r"(z), "=r"(w) |
|
|
|
: "r"(addr)); |
|
|
|
reg_src[0][i] = make_int4(x, y, z, w); |
|
|
|
} |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for (int j = 0; j < reg_md4; ++j) { |
|
|
|
int x, y, z, w; |
|
|
|
unsigned addr = get_smem_pointer(read_flt_s_0 + 4 * j * BK); |
|
|
|
asm volatile( |
|
|
|
"ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, " |
|
|
|
"%3}, " |
|
|
|
"[%4];" |
|
|
|
: "=r"(x), "=r"(y), "=r"(z), "=r"(w) |
|
|
|
: "r"(addr)); |
|
|
|
reg_flt[0][j] = make_int4(x, y, z, w); |
|
|
|
} |
|
|
|
|
|
|
|
// compute |
|
|
|
#pragma unroll |
|
|
|
for (int k_inner = 0; k_inner < BKd32; k_inner++) { |
|
|
|
int comp = (k_inner & 0x1); |
|
|
|
int load = 1 - comp; |
|
|
|
if (k_inner < BKd32 - 1 && !(k_inner == 1 && guard)) { |
|
|
|
int32_t* read_src_s = (k_inner & 1) ? read_src_s_0 : read_src_s_1; |
|
|
|
int32_t* read_flt_s = (k_inner & 1) ? read_flt_s_0 : read_flt_s_1; |
|
|
|
read_src_s += 32 * ((k_inner + 1) >> 1); |
|
|
|
read_flt_s += 32 * ((k_inner + 1) >> 1); |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for (int i = 0; i < reg_nd4; ++i) { |
|
|
|
int x, y, z, w; |
|
|
|
unsigned addr = get_smem_pointer(read_src_s + i * 4 * BK); // BK*32/8 |
|
|
|
asm volatile( |
|
|
|
"ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, " |
|
|
|
"%3}, " |
|
|
|
"[%4];" |
|
|
|
: "=r"(x), "=r"(y), "=r"(z), "=r"(w) |
|
|
|
: "r"(addr)); |
|
|
|
reg_src[load][i] = make_int4(x, y, z, w); |
|
|
|
} |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for (int j = 0; j < reg_md4; ++j) { |
|
|
|
int x, y, z, w; |
|
|
|
unsigned addr = get_smem_pointer(read_flt_s + 4 * j * BK); |
|
|
|
asm volatile( |
|
|
|
"ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, " |
|
|
|
"%3}, " |
|
|
|
"[%4];" |
|
|
|
: "=r"(x), "=r"(y), "=r"(z), "=r"(w) |
|
|
|
: "r"(addr)); |
|
|
|
reg_flt[load][j] = make_int4(x, y, z, w); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
int* A = reinterpret_cast<int*>(®_flt[comp][0]); |
|
|
|
int* B = reinterpret_cast<int*>(®_src[comp][0]); |
|
|
|
#pragma unroll |
|
|
|
for (int x = 0; x < reg_n; x++) { |
|
|
|
#pragma unroll |
|
|
|
for (int y = 0; y < reg_m; y++) { |
|
|
|
int* D = reinterpret_cast<int*>(®_acc[y][x]); |
|
|
|
int* C = reinterpret_cast<int*>(®_acc[y][x]); |
|
|
|
asm volatile( |
|
|
|
"mma.sync.aligned.m8n8k32.row.col.satfinite.s32.u4.s4." |
|
|
|
"s32 " |
|
|
|
"{%0,%1}, {%2}, {%3}, " |
|
|
|
"{%4,%5};\n" |
|
|
|
: "=r"(D[0]), "=r"(D[1]) |
|
|
|
: "r"(B[y]), "r"(A[x]), "r"(C[0]), "r"(C[1])); |
|
|
|
} |
|
|
|
} |
|
|
|
if (k_inner == 1 && guard) { |
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
__syncthreads(); |
|
|
|
|
|
|
|
/// output |
|
|
|
size_t oc = bidy * BM + (warp_y << 6) + 16 * idx_in_quad; |
|
|
|
const float* bias_ptr = bias + oc; |
|
|
|
|
|
|
|
int4 load_bias0 = make_int4(0, 0, 0, 0); |
|
|
|
int4 load_bias1 = make_int4(0, 0, 0, 0); |
|
|
|
int4 load_bias2 = make_int4(0, 0, 0, 0); |
|
|
|
int4 load_bias3 = make_int4(0, 0, 0, 0); |
|
|
|
if (oc < param.oc) { |
|
|
|
load_bias0 = *(reinterpret_cast<const int4*>(bias_ptr)); |
|
|
|
load_bias1 = *(reinterpret_cast<const int4*>(bias_ptr + 4)); |
|
|
|
load_bias2 = *(reinterpret_cast<const int4*>(bias_ptr + 8)); |
|
|
|
load_bias3 = *(reinterpret_cast<const int4*>(bias_ptr + 12)); |
|
|
|
mul_v4(load_bias0, load_bias0, beta); |
|
|
|
mul_v4(load_bias1, load_bias1, beta); |
|
|
|
mul_v4(load_bias2, load_bias2, beta); |
|
|
|
mul_v4(load_bias3, load_bias3, beta); |
|
|
|
} |
|
|
|
|
|
|
|
int8_t* __restrict__ g_dst_ptr = dst + d_offset; |
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
for (int y = 0; y < reg_m; y += 4) { |
|
|
|
I2F_4x8(reg_acc, y, 0); |
|
|
|
FMA_4x8(reg_acc, y, 0, alpha, load_bias0, load_bias1, load_bias2, load_bias3); |
|
|
|
FUSE_Z_4x8(reg_acc, y, 0, reg_fuse_z, gamma, z_zero_point); |
|
|
|
PACK_F2I_WITH_RELU_4x8(reg_acc, y, 0, relu, dst_zero_point); |
|
|
|
STG_AFTER_LDG_4x1(g_offset, reg_acc, y, 0); |
|
|
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
namespace megdnn { |
|
|
|
namespace cuda { |
|
|
|
namespace ptx { |
|
|
|
void run_ampere_conv_bias_uint4_int4_fuse_z_imma8832_ldg16_128x256_relu( |
|
|
|
const dim3 grid, const dim3 block, cudaStream_t stream, void** params) { |
|
|
|
#ifdef SM80_SUPPORTED |
|
|
|
ampere_conv_bias_uint4_int4_fuse_z_imma8832_ldg16_128x256_relu<<< |
|
|
|
grid, block, 0, stream>>>( |
|
|
|
*((int8_t**)params[0]), *((int8_t**)params[1]), *((float**)params[2]), |
|
|
|
*((int8_t**)params[3]), *((int8_t**)params[4]), *((float*)params[5]), |
|
|
|
*((float*)params[6]), *((float*)params[7]), *((uint32_t*)params[8]), |
|
|
|
*((uint32_t*)params[9]), *((float*)params[10]), *((uint32_t*)params[11]), |
|
|
|
*((Conv2dInt4Param*)params[12]), *((Conv2dConstantOffset*)params[13])); |
|
|
|
#endif |
|
|
|
} |
|
|
|
} // namespace ptx |
|
|
|
} // namespace cuda |
|
|
|
} // namespace megdnn |
|
|
|
|
|
|
|
// vim: syntax=cpp.doxygen |