| @@ -23,12 +23,13 @@ jobs: | |||
| runs-on: self-hosted | |||
| needs: [check-commit] | |||
| container: | |||
| image: localhost:5000/megengine-ci:latest | |||
| image: localhost:5000/megengine-ci:v1 | |||
| steps: | |||
| - name: Checkout MegEngine | |||
| uses: actions/checkout@v2 | |||
| - name: Checkout submodules | |||
| run: | | |||
| apt update&&apt install ninja-build | |||
| ./third_party/prepare.sh | |||
| ./third_party/install-mkl.sh | |||
| - name: Build MegEngine | |||
| @@ -46,9 +47,9 @@ jobs: | |||
| runs-on: self-hosted | |||
| needs: [check-commit] | |||
| container: | |||
| image: localhost:5000/megengine-ci:latest | |||
| image: localhost:5000/megengine-ci:v1 | |||
| volumes: | |||
| - /usr/local/cuda-10.1-libs:/usr/local/cuda-10.1-libs | |||
| - /usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs | |||
| options: --gpus all --shm-size 1g | |||
| env: | |||
| NCCL_LAUNCH_MODE: PARALLEL | |||
| @@ -57,6 +58,7 @@ jobs: | |||
| uses: actions/checkout@v2 | |||
| - name: Checkout submodules | |||
| run: | | |||
| apt update&&apt install ninja-build | |||
| ./third_party/prepare.sh | |||
| ./third_party/install-mkl.sh | |||
| - name: Build MegEngine | |||
| @@ -72,8 +74,10 @@ jobs: | |||
| run: ./ci/run_cpp_test.sh cuda | |||
| auto-merge: | |||
| if: ${{ github.ref == 'refs/heads/try-import' }} | |||
| runs-on: ubuntu-latest | |||
| runs-on: self-hosted | |||
| needs: [cpu-test, gpu-test] | |||
| container: | |||
| image: localhost:5000/megengine-ci:v1 | |||
| steps: | |||
| - name: Checkout MegEngine | |||
| uses: actions/checkout@v2 | |||
| @@ -12,7 +12,7 @@ MegEngine is a fast, scalable and easy-to-use deep learning framework, with auto | |||
| ## Installation | |||
| **NOTE:** MegEngine now supports Python installation on Linux-64bit/Windows-64bit/MacOS(CPU-Only)-10.14+ platforms with Python from 3.5 to 3.8. On Windows 10 you can either install the Linux distribution through [Windows Subsystem for Linux (WSL)](https://docs.microsoft.com/en-us/windows/wsl) or install the Windows distribution directly. Many other platforms are supported for inference. | |||
| **NOTE:** MegEngine now supports Python installation on Linux-64bit/Windows-64bit/MacOS(CPU-Only)-10.14+/Android 7+(CPU-Only) platforms with Python from 3.5 to 3.8. On Windows 10 you can either install the Linux distribution through [Windows Subsystem for Linux (WSL)](https://docs.microsoft.com/en-us/windows/wsl) or install the Windows distribution directly. Many other platforms are supported for inference. | |||
| ### Binaries | |||
| @@ -13,7 +13,7 @@ MegEngine 是一个快速、可拓展、易于使用且支持自动求导的深 | |||
| ## 安装说明 | |||
| **注意:** MegEngine 现在支持在 Linux-64bit/Windows-64bit/macos-10.14及其以上 (MacOS只支持cpu) 等平台上安装 Python 包,支持Python3.5 到 Python3.8。对于 Windows 10 用户,可以通过安装 [Windows Subsystem for Linux (WSL)](https://docs.microsoft.com/en-us/windows/wsl) 进行体验,同时我们也原生支持Windows。MegEngine 也支持在很多其它平台上进行推理运算。 | |||
| **注意:** MegEngine 现在支持在 Linux-64bit/Windows-64bit/macos-10.14/Android 7+ 及其以上 (MacOS/Android只支持cpu) 等平台上安装 Python 包,支持Python3.5 到 Python3.8。对于 Windows 10 用户,可以通过安装 [Windows Subsystem for Linux (WSL)](https://docs.microsoft.com/en-us/windows/wsl) 进行体验,同时我们也原生支持Windows。MegEngine 也支持在很多其它平台上进行推理运算。 | |||
| ### 通过包管理器安装 | |||
| @@ -26,8 +26,8 @@ python3 -m pip install megengine -f https://megengine.org.cn/whl/mge.html | |||
| ## 通过源码编译安装 | |||
| * CMake编译细节请参考 [BUILD_README.md](scripts/cmake-build/BUILD_README.md) | |||
| * Python绑定编译细节请参考 [BUILD_PYTHON_WHL_README.md](scripts/whl/BUILD_PYTHON_WHL_README.md) | |||
| * CMake 编译细节请参考 [BUILD_README.md](scripts/cmake-build/BUILD_README.md) | |||
| * Python 绑定编译细节请参考 [BUILD_PYTHON_WHL_README.md](scripts/whl/BUILD_PYTHON_WHL_README.md) | |||
| ## 如何参与贡献 | |||
| @@ -27,7 +27,8 @@ function build() { | |||
| -DMGE_WITH_DISTRIBUTED=${DMGE_WITH_DISTRIBUTED} \ | |||
| -DMGE_WITH_CUDA=${DMGE_WITH_CUDA} \ | |||
| -DMGE_WITH_TEST=ON \ | |||
| -DCMAKE_BUILD_TYPE=RelWithDebInfo | |||
| -DCMAKE_BUILD_TYPE=RelWithDebInfo \ | |||
| -DMGE_WITH_CUSTOM_OP=ON | |||
| make -j$(($(nproc) * 2)) -I ${build_dir} | |||
| make develop | |||
| popd >/dev/null | |||
| @@ -24,17 +24,27 @@ RUN apt-get update && apt-get install -y --no-install-recommends \ | |||
| swig \ | |||
| vim \ | |||
| wget \ | |||
| libgl1-mesa-glx \ | |||
| libsm6 \ | |||
| libxext6 \ | |||
| zlib1g-dev \ | |||
| # GitLab Runner need Git 2.18 or higher to create a local Git repository | |||
| && add-apt-repository ppa:git-core/ppa -y && apt-get install --no-install-recommends -y git \ | |||
| && rm -rf /var/lib/apt/lists/* | |||
| RUN cd /tmp ; wget https://cmake.org/files/v3.14/cmake-3.14.4.tar.gz;tar -xzvf cmake-3.14.4.tar.gz;cd cmake-3.14.4;./configure; make -j32; make install | |||
| RUN cd /tmp ; wget https://cmake.org/files/v3.15/cmake-3.15.2.tar.gz;tar -xzvf cmake-3.15.2.tar.gz;cd cmake-3.15.2;./configure; make -j32; make install | |||
| RUN git lfs install | |||
| ENV PATH=${PATH}:/usr/local/cuda/bin \ | |||
| LIBRARY_PATH=${LIBRARY_PATH}:/usr/local/cuda/lib:/usr/local/cuda/lib64:/usr/local/cuda/lib/stubs:/usr/local/cuda/lib64/stubs:/usr/local/cuda-10.1-libs/cudnn-v7.6.0/lib:/usr/local/cuda-10.1-libs/cudnn-v7.6.0/lib64:/usr/local/cuda-10.1-libs/TensorRT-5.1.5.0/lib:/usr/local/cuda-10.1-libs/TensorRT-5.1.5.0/lib64 \ | |||
| LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda-10.1-libs/cudnn-v7.6.0/lib:/usr/local/cuda-10.1-libs/cudnn-v7.6.0/lib64:/usr/local/cuda-10.1-libs/TensorRT-5.1.5.0/lib:/usr/local/cuda-10.1-libs/TensorRT-5.1.5.0/lib64:/tmp/build/cuda/dnn/cuda-stub/libcuda.so \ | |||
| CPATH=${CPATH}:/usr/local/cuda/include:/usr/local/cuda-10.1-libs/cudnn-v7.6.0/include:/usr/local/cuda-10.1-libs/TensorRT-5.1.5.0/include \ | |||
| CUDA_BIN_PATH=/usr/local/cuda | |||
| RUN pip3 install --upgrade pip | |||
| # TODO: set following envs in github environment. | |||
| ENV CUDA_ROOT_DIR=/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/cuda-10.1 \ | |||
| TRT_ROOT_DIR=/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/TensorRT-6.0.1.5 \ | |||
| TENSORRT_ROOT_DIR=${TRT_ROOT_DIR} \ | |||
| CUDNN_ROOT_DIR=/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/cudnn-v7.6.3 \ | |||
| PATH=/usr/bin:${CUDA_ROOT_DIR}/bin:${CUDA_ROOT_DIR}/nsight-compute-2019.4.0:$PATH \ | |||
| LIBRARY_PATH=${LIBRARY_PATH}:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/cuda-10.1/lib:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/cuda-10.1/lib64:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/cuda-10.1/lib/stubs:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/cuda-10.1/lib64/stubs:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/cudnn-v7.6.3/lib:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/cudnn-v7.6.3/lib64:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/TensorRT-6.0.1.5/lib:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/TensorRT-6.0.1.5/lib64 \ | |||
| LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/cudnn-v7.6.3/lib:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/cudnn-v7.6.3/lib64:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/TensorRT-6.0.1.5/lib:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/TensorRT-6.0.1.5/lib64 \ | |||
| CPATH=${CPATH}:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/cuda-10.1/include:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/cudnn-v7.6.3/include:/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/TensorRT-6.0.1.5/include \ | |||
| CUDA_BIN_PATH=/usr/local/cuda-10.1-cudnn-7.6.3-trt-6.0.1.5-libs/cuda-10.1 | |||