GitOrigin-RevId: 771968f9ac
tags/v1.3.0
| @@ -11,3 +11,4 @@ imperative/python/test/integration/data/*.mge filter=lfs diff=lfs merge=lfs -tex | |||
| ci/resource/models/float/mobilenet_v2.pkl filter=lfs diff=lfs merge=lfs -text | |||
| ci/resource/models/float/shufflenet_v2.pkl filter=lfs diff=lfs merge=lfs -text | |||
| ci/resource/dump/roi_align_backward_8.8.0.mdl filter=lfs diff=lfs merge=lfs -text | |||
| ci/resource/dump/relayout_format_8.10.0.mdl filter=lfs diff=lfs merge=lfs -text | |||
| @@ -1233,6 +1233,7 @@ protected: | |||
| void check_exec(const TensorLayout& src, const TensorLayout& dst, | |||
| size_t workspace_in_bytes); | |||
| void deduce_exec_layout(const TensorLayout& src, const TensorLayout& dst, | |||
| TensorLayout& exec_workspace, | |||
| TensorLayout& exec_src, TensorLayout& exec_dst); | |||
| }; | |||
| } // namespace megdnn | |||
| @@ -935,8 +935,9 @@ Relayout mode. | |||
| Note: the axis column means the corresponding ``align_axis`` for image format | |||
| when the ``I`` suffix is present. | |||
| Note: NCHW_NCHW4_WEIGHT will auto pad oc and ic, you should remove oc in later opr by seting group and oc param with NCHW4_NCHW | |||
| """ | |||
| (pdef('RelayoutFormat', 'Change the tensor layout format'). | |||
| (pdef('RelayoutFormat', 'Change the tensor layout format', version=0, is_legacy=True). | |||
| add_enum( | |||
| Doc('Mode', RELAYOUT_FORMAT_MODE_DOC), | |||
| 'NHWC_NHWCD4', | |||
| @@ -964,9 +965,16 @@ when the ``I`` suffix is present. | |||
| 'NCHW_NCHW4_IC_SMALL', | |||
| 'NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT', | |||
| 'NCHW_NCHW4', | |||
| 'NCHW4_NCHW', | |||
| 'NCHW_NCHW4_WEIGHT', | |||
| ) | |||
| ) | |||
| (pdef('RelayoutFormat', 'Change the tensor layout format', version=1). | |||
| add_enum_alias('Mode', 'RelayoutFormatV0'). | |||
| add_fields('uint32', 'oc', '0'). | |||
| add_fields('uint32', 'group', '1') | |||
| ) | |||
| (pdef('SeparableFilter', version=0, is_legacy=True). | |||
| add_enum_alias('Format', 'ConvolutionV0'). | |||
| @@ -208,14 +208,48 @@ void RelayoutFormat::deduce_layout_fwd(const TensorLayout& src, | |||
| dst[3] = src[2]; | |||
| dst[4] = src[4]; | |||
| break; | |||
| case Param::Mode::NCHW_NCHW4: | |||
| case Param::Mode::NCHW_NCHW4: { | |||
| megdnn_assert(src.ndim == 4); | |||
| const size_t group = param().group; | |||
| megdnn_assert(src[1] % group == 0); | |||
| const size_t icpg = src[1] / group; | |||
| dst.ndim = 5; | |||
| dst[0] = src[0]; | |||
| dst[1] = div_ceil<size_t>(src[1], 4); | |||
| dst[1] = group * div_ceil<size_t>(icpg, 4); | |||
| dst[2] = src[2]; | |||
| dst[3] = src[3]; | |||
| dst[4] = 4; | |||
| }; break; | |||
| case Param::Mode::NCHW_NCHW4_WEIGHT:; | |||
| { | |||
| if (src.ndim == 4) { | |||
| //! dense case | |||
| dst.ndim = 5; | |||
| dst[0] = div_ceil<size_t>(src[0], 4) * 4; | |||
| dst[1] = div_ceil<size_t>(src[1], 4); | |||
| dst[2] = src[2]; | |||
| dst[3] = src[3]; | |||
| dst[4] = 4; | |||
| } else if (src.ndim == 5) { | |||
| //! group case | |||
| dst.ndim = 6; | |||
| dst[0] = src[0]; | |||
| dst[1] = div_ceil<size_t>(src[1], 4) * 4; | |||
| dst[2] = div_ceil<size_t>(src[2], 4); | |||
| dst[3] = src[3]; | |||
| dst[4] = src[4]; | |||
| dst[5] = 4; | |||
| } | |||
| }; | |||
| break; | |||
| case Param::Mode::NCHW4_NCHW: | |||
| megdnn_assert(src.ndim == 5); | |||
| dst.ndim = 4; | |||
| dst[0] = src[0]; | |||
| dst[1] = param().oc == 0 ? src[1] * 4 : param().oc; | |||
| dst[2] = src[2]; | |||
| dst[3] = src[3]; | |||
| megdnn_assert(dst[1] % param().group == 0); | |||
| break; | |||
| default: | |||
| megdnn_assert(0, "Invalid RelayoutFormat Mode"); | |||
| @@ -258,16 +292,13 @@ void RelayoutFormat::deduce_format(TensorFormat src, TensorFormat& dst) { | |||
| CHECK_SRC(DefaultTensorFormat::make()); | |||
| dst = src; | |||
| break; | |||
| case Param::Mode::NCHW_NCHW4: | |||
| CHECK_SRC(DefaultTensorFormat::make()); | |||
| dst = src; | |||
| break; | |||
| case Param::Mode::NCHW_NHWCD4I: | |||
| CHECK_SRC(DefaultTensorFormat::make()); | |||
| dst = Image2DPack4TensorFormat::make_raw(2, align, vendor_type); | |||
| break; | |||
| case Param::Mode::NHWCD4I_NCHW: | |||
| CHECK_SRC(Image2DPack4TensorFormat::make_raw(2, align, vendor_type)); | |||
| CHECK_SRC( | |||
| Image2DPack4TensorFormat::make_raw(2, align, vendor_type)); | |||
| dst = DefaultTensorFormat::make(); | |||
| break; | |||
| case Param::Mode::NHWCD4_NCHW: | |||
| @@ -308,6 +339,9 @@ void RelayoutFormat::deduce_format(TensorFormat src, TensorFormat& dst) { | |||
| CHECK_SRC(DefaultTensorFormat::make()); | |||
| dst = src; | |||
| break; | |||
| case Param::Mode::NCHW4_NCHW: | |||
| case Param::Mode::NCHW_NCHW4: | |||
| case Param::Mode::NCHW_NCHW4_WEIGHT: | |||
| case Param::Mode::NCHW_NCHW88: | |||
| case Param::Mode::NCHW88_NCHW: | |||
| case Param::Mode::NCHW_NCHW88_CONV_DENSE_WEIGHT: | |||
| @@ -354,6 +388,7 @@ void RelayoutFormat::check_exec(const TensorLayout& src, | |||
| void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
| const TensorLayout& dst, | |||
| TensorLayout& exec_workspace, | |||
| TensorLayout& exec_src, | |||
| TensorLayout& exec_dst) { | |||
| check_layout_fwd(src, dst); | |||
| @@ -362,10 +397,10 @@ void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
| case Param::Mode::NCHW_NCHW88: | |||
| // nchw to nchw8c | |||
| { | |||
| TensorLayout work_space_layout( | |||
| exec_workspace = TensorLayout( | |||
| {src[0], round_up(src[1], 8_z), src[2], src[3]}, | |||
| src.dtype, src.format); | |||
| exec_src = work_space_layout | |||
| exec_src = exec_workspace | |||
| .reshape({src[0], div_ceil(src[1], 8_z), 8, | |||
| src[2], src[3]}) | |||
| .dimshuffle({0, 1, 3, 4, 2}); | |||
| @@ -375,13 +410,56 @@ void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
| case Param::Mode::NCHW_NCHW4: | |||
| // nchw to nchw4 | |||
| { | |||
| TensorLayout work_space_layout( | |||
| {src[0], round_up(src[1], 4_z), src[2], src[3]}, | |||
| const size_t group = param().group; | |||
| const size_t icpg = src[1] / group; | |||
| exec_workspace = TensorLayout( | |||
| {src[0], group * round_up(icpg, 4_z), src[2], src[3]}, | |||
| src.dtype, src.format); | |||
| exec_src = work_space_layout | |||
| .reshape({src[0], div_ceil(src[1], 4_z), 4, | |||
| src[2], src[3]}) | |||
| .dimshuffle({0, 1, 3, 4, 2}); | |||
| exec_src = | |||
| exec_workspace | |||
| .reshape({src[0], group * div_ceil(icpg, 4_z), | |||
| 4, src[2], src[3]}) | |||
| .dimshuffle({0, 1, 3, 4, 2}); | |||
| exec_dst = dst; | |||
| } | |||
| break; | |||
| case Param::Mode::NCHW_NCHW4_WEIGHT: | |||
| // nchw to nchw4_weight | |||
| { | |||
| if (src.ndim == 4) { | |||
| exec_workspace = TensorLayout( | |||
| {round_up(src[0], 4_z), round_up(src[1], 4_z), | |||
| src[2], src[3]}, | |||
| src.dtype, src.format); | |||
| exec_src = exec_workspace | |||
| .reshape({round_up(src[0], 4_z), | |||
| div_ceil(src[1], 4_z), 4, | |||
| src[2], src[3]}) | |||
| .dimshuffle({0, 1, 3, 4, 2}); | |||
| exec_dst = dst; | |||
| } else if (src.ndim == 5) { | |||
| exec_workspace = TensorLayout( | |||
| {src[0], round_up(src[1], 4_z), | |||
| round_up(src[2], 4_z), src[3], src[4]}, | |||
| src.dtype, src.format); | |||
| exec_src = exec_workspace | |||
| .reshape({src[0], round_up(src[1], 4_z), | |||
| div_ceil(src[2], 4_z), 4, | |||
| src[3], src[4]}) | |||
| .dimshuffle({0, 1, 2, 4, 5, 3}); | |||
| exec_dst = dst; | |||
| } | |||
| } | |||
| break; | |||
| case Param::Mode::NCHW4_NCHW: | |||
| // nchw to nchw4 | |||
| { | |||
| exec_workspace = | |||
| TensorLayout({src[0], src[1] * 4, src[2], src[3]}, | |||
| src.dtype, src.format) | |||
| .reshape({src[0], src[1], 4, src[2], src[3]}) | |||
| .dimshuffle({0, 1, 3, 4, 2}); | |||
| exec_src = src; | |||
| exec_dst = dst; | |||
| } | |||
| break; | |||
| @@ -396,11 +474,11 @@ void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
| { | |||
| megdnn_assert(src.ndim == 4); | |||
| megdnn_assert(src[0] % 8 == 0); | |||
| TensorLayout work_space_layout( | |||
| exec_workspace = TensorLayout( | |||
| {src[0], round_up(src[1], 8_z), src[2], src[3]}, | |||
| src.dtype, src.format); | |||
| exec_src = | |||
| work_space_layout | |||
| exec_workspace | |||
| .reshape({src[0] / 8, 8, div_ceil(src[1], 8_z), | |||
| 8, src[2], src[3]}) | |||
| .dimshuffle({0, 2, 4, 5, 3, 1}); | |||
| @@ -411,10 +489,10 @@ void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
| // goihw to goihw8g | |||
| { | |||
| megdnn_assert(src.ndim == 5); | |||
| TensorLayout work_space_layout( | |||
| exec_workspace = TensorLayout( | |||
| {round_up(src[0], 8_z), src[1], src[2], src[3], src[4]}, | |||
| src.dtype, src.format); | |||
| exec_src = work_space_layout | |||
| exec_src = exec_workspace | |||
| .reshape({div_ceil(src[0], 8_z), 8, src[1], | |||
| src[2], src[3], src[4]}) | |||
| .dimshuffle({0, 2, 3, 4, 5, 1}); | |||
| @@ -426,10 +504,10 @@ void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
| { | |||
| megdnn_assert(src.ndim == 5); | |||
| megdnn_assert(src[1] % 8 == 0); | |||
| TensorLayout work_space_layout( | |||
| exec_workspace = TensorLayout( | |||
| {src[0], src[1], round_up(src[2], 8_z), src[3], src[4]}, | |||
| src.dtype, src.format); | |||
| exec_src = work_space_layout | |||
| exec_src = exec_workspace | |||
| .reshape({src[0], src[1] / 8, 8, | |||
| div_ceil(src[2], 8_z), 8, src[3], | |||
| src[4]}) | |||
| @@ -442,10 +520,10 @@ void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
| case Param::Mode::NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT: | |||
| // nchw to nchw4c or oihw to oihw4i | |||
| { | |||
| TensorLayout work_space_layout( | |||
| exec_workspace = TensorLayout( | |||
| {src[0], round_up(src[1], 4_z), src[2], src[3]}, | |||
| src.dtype, src.format); | |||
| exec_src = work_space_layout | |||
| exec_src = exec_workspace | |||
| .reshape({src[0], div_ceil(src[1], 4_z), 4, | |||
| src[2], src[3]}) | |||
| .dimshuffle({0, 1, 3, 4, 2}); | |||
| @@ -91,6 +91,7 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||
| all_algos.push_back(&algo); | |||
| } | |||
| all_algos.push_back(&int8_chwn4_dotprod); | |||
| all_algos.push_back(&fallback_nchw_qs8); | |||
| for (size_t i = all_algo_size; i < all_algos.size(); ++i) { | |||
| non_cudnn_algos.push_back(all_algos[i]); | |||
| } | |||
| @@ -15,14 +15,14 @@ | |||
| #include "megdnn/oprs.h" | |||
| #include "src/common/algo_base.h" | |||
| #include "src/common/utils.h" | |||
| #include "src/common/metahelper.h" | |||
| #include "src/common/utils.h" | |||
| #include "src/cuda/conv_bias/conv_bias_int8.cuh" | |||
| #include "src/cuda/conv_bias/helper.h" | |||
| #include "src/cuda/conv_bias/opr_impl.h" | |||
| #include "src/cuda/convolution_helper/parameter.cuh" | |||
| #include "src/cuda/handle.h" | |||
| #include "src/cuda/cudnn_wrapper.h" | |||
| #include "src/cuda/handle.h" | |||
| #include <cuda.h> | |||
| #include <memory> | |||
| @@ -547,6 +547,28 @@ private: | |||
| std::string m_name; | |||
| }; | |||
| class ConvBiasForwardImpl::AlgoFallbackNCHWQS8 final : public AlgoBase { | |||
| public: | |||
| bool is_available(const SizeArgs& args) const override; | |||
| size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
| void exec(const ExecArgs& args) const override; | |||
| const char* name() const override { | |||
| return "FALLBACK_CONV_NCHW_QS8"; | |||
| } | |||
| AlgoAttribute attribute() const override { | |||
| return AlgoAttribute::REPRODUCIBLE; | |||
| } | |||
| MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_NCHW4_DOTPROD_INT8) | |||
| private: | |||
| void make_inner_layout(const SizeArgs& args, TensorLayout& inner_src_layout, | |||
| TensorLayout& inner_weight_layout, | |||
| TensorLayout& inner_dst_layout, | |||
| TensorLayout& inner_bias_layout, | |||
| TensorLayout& inner_z_layout) const; | |||
| WorkspaceBundle get_workspace_bundle(void* ptr, const SizeArgs& args) const; | |||
| }; | |||
| #if CUDA_VERSION >= 10000 | |||
| class ConvBiasForwardImpl::AlgoInt8CHWN4IMMAImplicitGemm final | |||
| : public AlgoBase { | |||
| @@ -763,6 +785,7 @@ public: | |||
| non_cudnn_algos, bfloat16_algos; | |||
| std::vector<AlgoCUDNNConvBiasActivation> cudnn_conv_bias_activations; | |||
| std::vector<AlgoCUDNNConv> cudnn_convs; | |||
| AlgoFallbackNCHWQS8 fallback_nchw_qs8; | |||
| AlgoChanwise chanwise; | |||
| AlgoChanwiseSmall chanwise_small; | |||
| AlgoChanwise8x8x32 chanwise8x8x32; | |||
| @@ -0,0 +1,162 @@ | |||
| /** | |||
| * \file dnn/src/cuda/conv_bias/conv_nchwqs8.cpp | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "src/common/conv_bias.h" | |||
| #include "src/cuda/conv_bias/algo.h" | |||
| #include "src/cuda/cudnn_wrapper.h" | |||
| #include "src/cuda/relayout_format/opr_impl.h" | |||
| #include "src/cuda/utils.h" | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| using namespace conv_bias; | |||
| namespace { | |||
| inline void deduce_reformat_layout(std::unique_ptr<RelayoutFormat>& relayout, | |||
| const TensorLayout& src_layout, | |||
| TensorLayout& dst_layout, | |||
| RelayoutFormat::Param::Mode mode, | |||
| const int oc = 0, const int group = 1) { | |||
| if (src_layout.ndim > 0) { | |||
| RelayoutFormat::Param trans_param; | |||
| trans_param.mode = mode; | |||
| trans_param.oc = oc; | |||
| trans_param.group = group; | |||
| relayout->param() = trans_param; | |||
| relayout->deduce_layout(src_layout, dst_layout); | |||
| } else { | |||
| dst_layout = src_layout; | |||
| } | |||
| } | |||
| } // namespace | |||
| void ConvBiasForwardImpl::AlgoFallbackNCHWQS8::make_inner_layout( | |||
| const SizeArgs& args, TensorLayout& inner_src_layout, | |||
| TensorLayout& inner_weight_layout, TensorLayout& inner_dst_layout, | |||
| TensorLayout& inner_bias_layout, TensorLayout& inner_z_layout) const { | |||
| auto relayout_src = args.handle->create_operator<RelayoutFormat>(); | |||
| deduce_reformat_layout(relayout_src, *args.src_layout, inner_src_layout, | |||
| RelayoutFormat::Param::Mode::NCHW_NCHW4, 0, | |||
| args.filter_meta.group); | |||
| deduce_reformat_layout(relayout_src, *args.filter_layout, | |||
| inner_weight_layout, | |||
| RelayoutFormat::Param::Mode::NCHW_NCHW4_WEIGHT); | |||
| deduce_reformat_layout(relayout_src, *args.dst_layout, inner_dst_layout, | |||
| RelayoutFormat::Param::Mode::NCHW_NCHW4, 0, | |||
| args.filter_meta.group); | |||
| deduce_reformat_layout(relayout_src, *args.bias_layout, inner_bias_layout, | |||
| RelayoutFormat::Param::Mode::NCHW_NCHW4, 0, | |||
| args.filter_meta.group); | |||
| deduce_reformat_layout(relayout_src, *args.z_layout, inner_z_layout, | |||
| RelayoutFormat::Param::Mode::NCHW_NCHW4, 0, | |||
| args.filter_meta.group); | |||
| }; | |||
| bool ConvBiasForwardImpl::AlgoFallbackNCHWQS8::is_available( | |||
| const SizeArgs& args) const { | |||
| auto&& param = args.opr->param(); | |||
| bool is_format_ok = param.format == param::ConvBias::Format::NCHW; | |||
| bool is_version_ok = CUDNN_VERSION >= 7500; | |||
| bool is_dtype_ok = | |||
| args.src_layout->dtype.enumv() == DTypeEnum::QuantizedS8; | |||
| bool is_bias_ok = | |||
| args.bias_layout->ndim == 0 || | |||
| (args.bias_layout->ndim == 4 && args.bias_layout->shape[0] == 1 && | |||
| args.bias_layout->shape[2] == 1 && | |||
| args.bias_layout->shape[3] == 1); | |||
| bool is_ok = is_format_ok && is_version_ok && is_dtype_ok && is_bias_ok; | |||
| return is_ok; | |||
| } | |||
| WorkspaceBundle ConvBiasForwardImpl::AlgoFallbackNCHWQS8::get_workspace_bundle( | |||
| void* ptr, const SizeArgs& args) const { | |||
| TensorLayout inner_src_layout; | |||
| TensorLayout inner_weight_layout; | |||
| TensorLayout inner_dst_layout; | |||
| TensorLayout inner_bias_layout; | |||
| TensorLayout inner_z_layout; | |||
| make_inner_layout(args, inner_src_layout, inner_weight_layout, | |||
| inner_dst_layout, inner_bias_layout, inner_z_layout); | |||
| auto opr = args.handle->create_operator<ConvBiasForward>(); | |||
| Param inner_conv_param = args.opr->param(); | |||
| inner_conv_param.format = Param::Format::NCHW4; | |||
| opr->param() = inner_conv_param; | |||
| return WorkspaceBundle(ptr, {inner_src_layout.span().dist_byte(), | |||
| inner_weight_layout.span().dist_byte(), | |||
| inner_dst_layout.span().dist_byte(), | |||
| inner_bias_layout.span().dist_byte(), | |||
| inner_z_layout.span().dist_byte(), | |||
| opr->get_workspace_in_bytes( | |||
| inner_src_layout, inner_weight_layout, | |||
| inner_bias_layout, inner_z_layout, | |||
| inner_dst_layout, nullptr)}); | |||
| } | |||
| size_t ConvBiasForwardImpl::AlgoFallbackNCHWQS8::get_workspace_in_bytes( | |||
| const SizeArgs& args) const { | |||
| auto trans_bundle = get_workspace_bundle(nullptr, args); | |||
| return trans_bundle.total_size_in_bytes(); | |||
| } | |||
| void ConvBiasForwardImpl::AlgoFallbackNCHWQS8::exec( | |||
| const ExecArgs& args) const { | |||
| auto relayout_nchw_nchw4 = args.handle->create_operator<RelayoutFormat>(); | |||
| RelayoutFormat::Param in_trans; | |||
| in_trans.mode = RelayoutFormat::Param::Mode::NCHW_NCHW4; | |||
| in_trans.group = args.filter_meta.group; | |||
| relayout_nchw_nchw4->param() = in_trans; | |||
| auto relayout_weight = args.handle->create_operator<RelayoutFormat>(); | |||
| RelayoutFormat::Param weight_trans; | |||
| weight_trans.mode = RelayoutFormat::Param::Mode::NCHW_NCHW4_WEIGHT; | |||
| relayout_weight->param() = weight_trans; | |||
| auto relayout_nchw4_nchw = args.handle->create_operator<RelayoutFormat>(); | |||
| RelayoutFormat::Param nchw4_nchw_trans; | |||
| nchw4_nchw_trans.mode = RelayoutFormat::Param::Mode::NCHW4_NCHW; | |||
| nchw4_nchw_trans.oc = args.dst_layout->shape[1]; | |||
| nchw4_nchw_trans.group = args.filter_meta.group; | |||
| relayout_nchw4_nchw->param() = nchw4_nchw_trans; | |||
| auto bundle = get_workspace_bundle(args.workspace.raw_ptr, args); | |||
| TensorLayout inner_src_layout; | |||
| TensorLayout inner_weight_layout; | |||
| TensorLayout inner_dst_layout; | |||
| TensorLayout inner_bias_layout; | |||
| TensorLayout inner_z_layout; | |||
| make_inner_layout(args, inner_src_layout, inner_weight_layout, | |||
| inner_dst_layout, inner_bias_layout, inner_z_layout); | |||
| TensorND inner_src(bundle.get(0), inner_src_layout); | |||
| TensorND inner_weight(bundle.get(1), inner_weight_layout); | |||
| TensorND inner_dst(bundle.get(2), inner_dst_layout); | |||
| TensorND inner_bias(bundle.get(3), inner_bias_layout); | |||
| TensorND inner_z(bundle.get(4), inner_z_layout); | |||
| Param inner_conv_param = args.opr->param(); | |||
| inner_conv_param.format = Param::Format::NCHW4; | |||
| auto inner_opr = args.handle->create_operator<ConvBiasForward>(); | |||
| inner_opr->param() = inner_conv_param; | |||
| relayout_nchw_nchw4->exec(*args.src_tensor, inner_src, {}); | |||
| relayout_weight->exec(*args.filter_tensor, inner_weight, {}); | |||
| if (inner_bias_layout.ndim > 0) { | |||
| relayout_nchw_nchw4->exec(*args.bias_tensor, inner_bias, {}); | |||
| } | |||
| if (inner_z_layout.ndim > 0) { | |||
| relayout_nchw_nchw4->exec(*args.z_tensor, inner_z, {}); | |||
| } | |||
| inner_opr->exec(inner_src, inner_weight, inner_bias, inner_z, inner_dst, | |||
| nullptr, Workspace((dt_byte*)bundle.get(5), bundle.get_size(5))); | |||
| relayout_nchw4_nchw->exec(inner_dst, *args.dst_tensor, {}); | |||
| } | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -201,6 +201,11 @@ ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic( | |||
| return algo; | |||
| } | |||
| if (sm_algo_pack.fallback_nchw_qs8.is_available_reproducible( | |||
| args, reproducible, workspace_limit_in_bytes)) { | |||
| return &sm_algo_pack.fallback_nchw_qs8; | |||
| } | |||
| if (args.src_layout->dtype.enumv() != DTypeTrait<dtype::BFloat16>::enumv) { | |||
| if (reproducible) { | |||
| return megdnn::get_reproducible_algo<ConvBiasForwardImpl>( | |||
| @@ -49,6 +49,7 @@ public: | |||
| class AlgoChanwiseSmall; | |||
| class AlgoChanwise8x8x32; | |||
| class AlgoCUDNNConv; | |||
| class AlgoFallbackNCHWQS8; | |||
| class AlgoInplaceMatmul; | |||
| class AlgoMatmul; | |||
| class AlgoMatmul8x8x32; | |||
| @@ -24,6 +24,9 @@ void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
| megdnn_assert( | |||
| param().mode == param::RelayoutFormat::Mode::NCHW4_CHWN4 || | |||
| param().mode == param::RelayoutFormat::Mode::NCHW_NCHW4 || | |||
| param().mode == | |||
| param::RelayoutFormat::Mode::NCHW_NCHW4_WEIGHT || | |||
| param().mode == param::RelayoutFormat::Mode::NCHW4_NCHW || | |||
| param().mode == param::RelayoutFormat::Mode::CHWN4_NCHW4 || | |||
| param().mode == Param::Mode::NCHW_NCHW4_IC_SMALL || | |||
| param().mode == | |||
| @@ -76,7 +79,9 @@ void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
| {src.raw_ptr, exec_src_layout}, {dst.raw_ptr, exec_dst_layout}); | |||
| } | |||
| if (param().mode == Param::Mode::NCHW_NCHW4) { | |||
| if (param().mode == Param::Mode::NCHW_NCHW4 || | |||
| param().mode == Param::Mode::NCHW4_NCHW || | |||
| param().mode == Param::Mode::NCHW_NCHW4_WEIGHT) { | |||
| bool is_usable = relayout_format::RelayoutFormatFast::usable( | |||
| src.layout, dst.layout); | |||
| megdnn_assert(is_usable, | |||
| @@ -85,10 +90,12 @@ void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
| src.layout.to_string().c_str(), src.layout.dtype.name(), | |||
| dst.layout.to_string().c_str(), dst.layout.dtype.name()); | |||
| relayout_format::RelayoutFormatFast::exec(src, dst, | |||
| cuda_stream(this->handle())); | |||
| cuda_stream(this->handle()), | |||
| param().mode, param().group); | |||
| } else { | |||
| TensorLayout exec_src, exec_dst; | |||
| deduce_exec_layout(src.layout, dst.layout, exec_src, exec_dst); | |||
| TensorLayout exec_src, exec_dst, exec_workspace; | |||
| deduce_exec_layout(src.layout, dst.layout, exec_workspace, exec_src, | |||
| exec_dst); | |||
| TensorND exec_src_nd{src.raw_ptr, exec_src}; | |||
| TensorND exec_dst_nd{dst.raw_ptr, exec_dst}; | |||
| handle()->create_operator<RelayoutForward>()->exec(exec_src_nd, | |||
| @@ -36,7 +36,9 @@ bool relayout_format::RelayoutFormatFast::usable( | |||
| void relayout_format::RelayoutFormatFast::exec(const TensorND& src, | |||
| const TensorND& dst, | |||
| cudaStream_t stream) { | |||
| cudaStream_t stream, | |||
| RelayoutFormat::Param::Mode mode, | |||
| int group) { | |||
| size_t ih = src.layout[2]; | |||
| size_t iw = src.layout[3]; | |||
| size_t hw = ih * iw; | |||
| @@ -49,11 +51,22 @@ void relayout_format::RelayoutFormatFast::exec(const TensorND& src, | |||
| if (src.layout.dtype.enumv() == DTypeEnum::Uint8) { | |||
| src_zero_point = 128; | |||
| } | |||
| if (hw % 4 == 0) { | |||
| relayout_format_cuda_exec<4>(src, dst, stream, src_scale, dst_scale, | |||
| src_zero_point, dst_zero_point); | |||
| if (mode == RelayoutFormat::Param::Mode::NCHW_NCHW4) { | |||
| if (hw % 4 == 0) { | |||
| relayout_format_cuda_nchw_nchw4<4>(src, dst, stream, src_scale, | |||
| dst_scale, src_zero_point, | |||
| dst_zero_point, group); | |||
| } else { | |||
| relayout_format_cuda_nchw_nchw4<1>(src, dst, stream, src_scale, | |||
| dst_scale, src_zero_point, | |||
| dst_zero_point, group); | |||
| } | |||
| } else if (mode == RelayoutFormat::Param::Mode::NCHW_NCHW4_WEIGHT) { | |||
| relayout_format_cuda_nchw_nchw4_weight(src, dst, stream); | |||
| } else if (mode == RelayoutFormat::Param::Mode::NCHW4_NCHW) { | |||
| relayout_format_cuda_nchw4_nchw(src, dst, stream, group); | |||
| } else { | |||
| relayout_format_cuda_exec<1>(src, dst, stream, src_scale, dst_scale, | |||
| src_zero_point, dst_zero_point); | |||
| megdnn_throw("only support nchw_nchw4 nchw4_nchw layout_format"); | |||
| } | |||
| } | |||
| @@ -80,10 +80,30 @@ struct CudaPostProcess<dtype::QuantizedS8, dtype::QuantizedS8, false> { | |||
| template <> | |||
| struct CudaPostProcess<dtype::QuantizedS8, dtype::QuantizedS8, true> { | |||
| CudaPostProcess(){}; | |||
| CudaPostProcess(float, uint8_t, float, uint8_t){}; | |||
| inline __device__ int8_t operator()(int8_t val) { return val; } | |||
| }; | |||
| template <> | |||
| struct CudaPostProcess<dtype::QuantizedS32, dtype::QuantizedS32, false> { | |||
| CudaDTypeParamImpl<dt_qint32> m_dst_type_cvt; | |||
| CudaDTypeParamImpl<dt_qint32> m_src_type_cvt; | |||
| CudaPostProcess(float src_scale, int, float dst_scale, int) { | |||
| m_dst_type_cvt = CudaDTypeParamImpl<dt_qint32>(dst_scale); | |||
| m_src_type_cvt = CudaDTypeParamImpl<dt_qint32>(src_scale); | |||
| }; | |||
| inline __device__ int operator()(int val) { | |||
| float med_var = m_src_type_cvt.dequantize(dt_qint32(val)); | |||
| return m_dst_type_cvt.quantize(med_var).as_int32(); | |||
| } | |||
| }; | |||
| template <> | |||
| struct CudaPostProcess<dtype::QuantizedS32, dtype::QuantizedS32, true> { | |||
| CudaPostProcess(float, int, float, int){}; | |||
| inline __device__ int operator()(int val) { return val; } | |||
| }; | |||
| template <typename SrcType, int pack_w> | |||
| struct DTypeRWHelper; | |||
| template <> | |||
| @@ -98,6 +118,18 @@ struct DTypeRWHelper<char, 4> { | |||
| using DstDtype = char4; | |||
| }; | |||
| template <> | |||
| struct DTypeRWHelper<int, 1> { | |||
| using InnerDtype = int; | |||
| using DstDtype = int4; | |||
| }; | |||
| template <> | |||
| struct DTypeRWHelper<int, 4> { | |||
| using InnerDtype = int4; | |||
| using DstDtype = int4; | |||
| }; | |||
| template <int pack_w, int pack_c, typename SrcType, typename DnnSrcType, | |||
| typename DnnDstType, bool same_scale> | |||
| struct Translayout { | |||
| @@ -165,6 +197,11 @@ inline __device__ char4 make_zero_pad<char4>(const char zero_point) { | |||
| return {zero_point, zero_point, zero_point, zero_point}; | |||
| } | |||
| template <> | |||
| inline __device__ int4 make_zero_pad<int4>(const char zero_point) { | |||
| return {zero_point, zero_point, zero_point, zero_point}; | |||
| } | |||
| template <typename DstDtype> | |||
| inline __device__ void write_helper(DstDtype* ptr, DstDtype val) { | |||
| *ptr = val; | |||
| @@ -176,14 +213,14 @@ inline __device__ void write_helper<char4>(char4* ptr, char4 val) { | |||
| *rel_ptr = *(int32_t*)(&val); | |||
| } | |||
| template <bool with_pad, int pack_w, int pack_c, bool same_scale, | |||
| template <bool with_pad, int pack_w, int pack_c, bool same_scale, bool all_pad, | |||
| typename SrcType, typename DstType, typename DnnSrcType, | |||
| typename DnnDstType> | |||
| struct RelayoutKern { | |||
| using InnerDtype = typename DTypeRWHelper<SrcType, pack_w>::InnerDtype; | |||
| using DstDtype = typename DTypeRWHelper<SrcType, pack_w>::DstDtype; | |||
| static inline __device__ void write(DstType* dst_ptr, | |||
| char4 (&dst_width)[pack_w]) { | |||
| DstDtype (&dst_width)[pack_w]) { | |||
| DstDtype* dst_inner_ptr = (DstDtype*)dst_ptr; | |||
| #pragma unroll | |||
| for (int iw_idx = 0; iw_idx < pack_w; ++iw_idx) { | |||
| @@ -213,6 +250,17 @@ struct RelayoutKern { | |||
| } | |||
| } | |||
| static inline __device__ void fake_read(const SrcType* src_ptr, | |||
| InnerDtype (&read_channel)[pack_c], | |||
| const int ic_stride, | |||
| const int remain_ic, | |||
| const InnerDtype zero_point) { | |||
| #pragma unroll | |||
| for (int ic_idx = 0; ic_idx < pack_c; ++ic_idx) { | |||
| read_channel[ic_idx] = zero_point; | |||
| } | |||
| } | |||
| static inline __device__ void core_relayout_kern( | |||
| const SrcType* src, DstType* dst, const int src_offset_base, | |||
| const int dst_offset_base, const int ic_offset, const int ic_stride, | |||
| @@ -220,12 +268,20 @@ struct RelayoutKern { | |||
| CudaPostProcess<DnnSrcType, DnnDstType, same_scale>& post_process, | |||
| const char zero_point) { | |||
| InnerDtype read_channel[pack_c]; | |||
| if (with_pad) { | |||
| if (all_pad) { | |||
| const InnerDtype zero_pad = make_zero_pad<InnerDtype>(zero_point); | |||
| read_with_pad(src + ic_offset + src_offset_base, read_channel, | |||
| ic_stride, remain_ic, zero_pad); | |||
| fake_read(src + ic_offset + src_offset_base, read_channel, | |||
| ic_stride, remain_ic, zero_pad); | |||
| } else { | |||
| read(src + ic_offset + src_offset_base, read_channel, ic_stride); | |||
| if (with_pad) { | |||
| const InnerDtype zero_pad = | |||
| make_zero_pad<InnerDtype>(zero_point); | |||
| read_with_pad(src + ic_offset + src_offset_base, read_channel, | |||
| ic_stride, remain_ic, zero_pad); | |||
| } else { | |||
| read(src + ic_offset + src_offset_base, read_channel, | |||
| ic_stride); | |||
| } | |||
| } | |||
| DstDtype dst_width[pack_w]; | |||
| Translayout<pack_w, pack_c, SrcType, DnnSrcType, DnnDstType, | |||
| @@ -238,45 +294,195 @@ struct RelayoutKern { | |||
| template <int pack_w, bool same_scale, typename SrcType, typename DstType, | |||
| typename DnnSrcType, typename DnnDstType> | |||
| __global__ void kern_nchw_nchw4( | |||
| const SrcType* src, DstType* dst, int ic, int ihw, int n_stride_src, | |||
| int ic_stride, int n_stride_dst, | |||
| const SrcType* src, DstType* dst, int in_n, int ic, int ihw, | |||
| int n_stride_src, int ic_stride, int n_stride_dst, | |||
| CudaPostProcess<DnnSrcType, DnnDstType, same_scale> post_process, | |||
| const char zero_point) { | |||
| const char zero_point, const int group, const int ocpg) { | |||
| constexpr int pack_c = 4; | |||
| const int n_idx = blockIdx.y; | |||
| const int ihw_block_idx = blockIdx.x * blockDim.x + threadIdx.x; | |||
| const int ihw_offset = ihw_block_idx * pack_w; | |||
| if (ihw_offset < ihw) { | |||
| const int ic_block = ic / pack_c; | |||
| const int remain_ic = ic % pack_c; | |||
| const int src_offset_base = n_idx * n_stride_src + ihw_offset; | |||
| const int dst_offset_base = n_idx * n_stride_dst + ihw_offset * pack_c; | |||
| if (n_idx < in_n) { | |||
| const int icpg = ic / group; | |||
| const int ic_block = icpg / pack_c; | |||
| const int remain_ic = icpg % pack_c; | |||
| const int src_group_stride = icpg * ic_stride; | |||
| const int dst_group_stride = ocpg * ic_stride; | |||
| for (int g_idx = 0; g_idx < group; ++g_idx) { | |||
| const int src_offset = | |||
| src_offset_base + g_idx * src_group_stride; | |||
| const int dst_offset = | |||
| dst_offset_base + g_idx * dst_group_stride; | |||
| for (int ic_blk_idx = 0; ic_blk_idx < ic_block; ++ic_blk_idx) { | |||
| const int ic_offset = ic_blk_idx * pack_c * ic_stride; | |||
| RelayoutKern<false, pack_w, pack_c, same_scale, false, | |||
| SrcType, DstType, DnnSrcType, | |||
| DnnDstType>::core_relayout_kern(src, dst, | |||
| src_offset, | |||
| dst_offset, | |||
| ic_offset, | |||
| ic_stride, | |||
| remain_ic, | |||
| post_process, | |||
| zero_point); | |||
| } | |||
| if (remain_ic > 0) { | |||
| const int ic_offset = ic_block * pack_c * ic_stride; | |||
| RelayoutKern<true, pack_w, pack_c, same_scale, false, | |||
| SrcType, DstType, DnnSrcType, | |||
| DnnDstType>::core_relayout_kern(src, dst, | |||
| src_offset, | |||
| dst_offset, | |||
| ic_offset, | |||
| ic_stride, | |||
| remain_ic, | |||
| post_process, | |||
| zero_point); | |||
| } | |||
| } | |||
| } else { | |||
| //! pad n | |||
| const int ic_full_block = group * ocpg / pack_c; | |||
| for (int ic_blk_idx = 0; ic_blk_idx < ic_full_block; ++ic_blk_idx) { | |||
| RelayoutKern<false, pack_w, pack_c, same_scale, true, SrcType, | |||
| DstType, DnnSrcType, | |||
| DnnDstType>::core_relayout_kern(src, dst, | |||
| src_offset_base, | |||
| dst_offset_base, 0, | |||
| ic_stride, 0, | |||
| post_process, | |||
| zero_point); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| for (int ic_blk_idx = 0; ic_blk_idx < ic_block; ++ic_blk_idx) { | |||
| const int ic_offset = ic_blk_idx * pack_c * ic_stride; | |||
| RelayoutKern<false, pack_w, pack_c, same_scale, SrcType, DstType, | |||
| DnnSrcType, | |||
| DnnDstType>::core_relayout_kern(src, dst, | |||
| src_offset_base, | |||
| dst_offset_base, | |||
| ic_offset, ic_stride, | |||
| remain_ic, | |||
| post_process, | |||
| zero_point); | |||
| __global__ void kern_nchw4_nchw(const int8_t* src, int8_t* dst, int n, int ic, | |||
| int oc, int oh, int ow, int group) { | |||
| constexpr int pack_w = 1; | |||
| constexpr int pack_ic = 4; | |||
| const int n_idx = blockIdx.y; | |||
| const int hw_block_idx = blockIdx.x * blockDim.x + threadIdx.x; | |||
| const int hw_offset = hw_block_idx * pack_w; | |||
| const int hw = oh * ow; | |||
| const int n_stride_src = ic * hw; | |||
| const int n_stride_dst = oc * hw; | |||
| const int c_stride = hw; | |||
| if (hw_offset < hw) { | |||
| const int icpg = ic / group; | |||
| const int ocpg = oc / group; | |||
| const int src_group_stride = icpg * c_stride; | |||
| const int dst_group_stride = ocpg * c_stride; | |||
| for (int g_idx = 0; g_idx < group; ++g_idx) { | |||
| const int oc_block = ocpg / pack_ic; | |||
| const int remain_oc = ocpg % pack_ic; | |||
| const int src_offset_base = n_idx * n_stride_src + | |||
| g_idx * src_group_stride + | |||
| hw_offset * pack_ic; | |||
| const int dst_offset_base = | |||
| n_idx * n_stride_dst + g_idx * dst_group_stride + hw_offset; | |||
| for (int ic_blk_idx = 0; ic_blk_idx < oc_block; ++ic_blk_idx) { | |||
| const int oc_offset = ic_blk_idx * pack_ic * c_stride; | |||
| char4 temp = *(char4*)(src + src_offset_base + oc_offset); | |||
| dst[dst_offset_base + oc_offset + 0 * c_stride] = temp.x; | |||
| dst[dst_offset_base + oc_offset + 1 * c_stride] = temp.y; | |||
| dst[dst_offset_base + oc_offset + 2 * c_stride] = temp.z; | |||
| dst[dst_offset_base + oc_offset + 3 * c_stride] = temp.w; | |||
| } | |||
| if (remain_oc > 0) { | |||
| const int oc_offset = oc_block * pack_ic * c_stride; | |||
| char4 temp = *(char4*)(src + src_offset_base + oc_offset); | |||
| dst[dst_offset_base + oc_offset + 0 * c_stride] = temp.x; | |||
| if (remain_oc > 1) { | |||
| dst[dst_offset_base + oc_offset + 1 * c_stride] = temp.y; | |||
| } | |||
| if (remain_oc > 2) { | |||
| dst[dst_offset_base + oc_offset + 2 * c_stride] = temp.z; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| if (remain_ic > 0) { | |||
| const int ic_offset = ic_block * pack_c * ic_stride; | |||
| RelayoutKern<true, pack_w, pack_c, same_scale, SrcType, DstType, | |||
| DnnSrcType, | |||
| DnnDstType>::core_relayout_kern(src, dst, | |||
| src_offset_base, | |||
| dst_offset_base, | |||
| ic_offset, ic_stride, | |||
| remain_ic, | |||
| post_process, | |||
| zero_point); | |||
| __global__ void kern_nchw_nchw4_weight( | |||
| const char* src, char* dst, int in_oc, int ic, int ihw, | |||
| int oc_stride_src, int ic_stride, int oc_stride_dst, | |||
| int group_stride_src, int group_stride_dst, const char zero_point, | |||
| CudaPostProcess<dtype::QuantizedS8, dtype::QuantizedS8, true> | |||
| post_process) { | |||
| typedef char SrcType; | |||
| typedef char DstType; | |||
| typedef dtype::QuantizedS8 DnnSrcType; | |||
| typedef dtype::QuantizedS8 DnnDstType; | |||
| constexpr int pack_c = 4; | |||
| constexpr int pack_w = 1; | |||
| constexpr bool same_scale = true; | |||
| const int group_idx = blockIdx.z; | |||
| const int oc_idx = blockIdx.y; | |||
| const int ihw_block_idx = blockIdx.x * blockDim.x + threadIdx.x; | |||
| const int ihw_offset = ihw_block_idx * pack_w; | |||
| if (ihw_offset < ihw) { | |||
| const int ic_block = ic / pack_c; | |||
| const int remain_ic = ic % pack_c; | |||
| const int src_offset_base = group_idx * group_stride_src + | |||
| oc_idx * oc_stride_src + ihw_offset; | |||
| const int dst_offset_base = group_idx * group_stride_dst + | |||
| oc_idx * oc_stride_dst + | |||
| ihw_offset * pack_c; | |||
| if (oc_idx < in_oc) { | |||
| for (int ic_blk_idx = 0; ic_blk_idx < ic_block; ++ic_blk_idx) { | |||
| const int ic_offset = ic_blk_idx * pack_c * ic_stride; | |||
| RelayoutKern<false, pack_w, pack_c, same_scale, false, SrcType, | |||
| DstType, DnnSrcType, | |||
| DnnDstType>::core_relayout_kern(src, dst, | |||
| src_offset_base, | |||
| dst_offset_base, | |||
| ic_offset, | |||
| ic_stride, | |||
| remain_ic, | |||
| post_process, | |||
| zero_point); | |||
| } | |||
| if (remain_ic > 0) { | |||
| const int ic_offset = ic_block * pack_c * ic_stride; | |||
| RelayoutKern<true, pack_w, pack_c, same_scale, false, SrcType, | |||
| DstType, DnnSrcType, | |||
| DnnDstType>::core_relayout_kern(src, dst, | |||
| src_offset_base, | |||
| dst_offset_base, | |||
| ic_offset, | |||
| ic_stride, | |||
| remain_ic, | |||
| post_process, | |||
| zero_point); | |||
| } | |||
| } else { | |||
| //! pad oc per group | |||
| const int ic_full_block = (ic + pack_c - 1) / pack_c; | |||
| for (int ic_blk_idx = 0; ic_blk_idx < ic_full_block; ++ic_blk_idx) { | |||
| const int ic_offset = ic_blk_idx * pack_c * ic_stride; | |||
| RelayoutKern<false, pack_w, pack_c, same_scale, true, SrcType, | |||
| DstType, DnnSrcType, | |||
| DnnDstType>::core_relayout_kern(src, dst, | |||
| src_offset_base, | |||
| dst_offset_base, | |||
| ic_offset, | |||
| ic_stride, | |||
| remain_ic, | |||
| post_process, | |||
| zero_point); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -284,20 +490,23 @@ __global__ void kern_nchw_nchw4( | |||
| } // namespace | |||
| template <int pack_w = 1> | |||
| void relayout_format::relayout_format_cuda_exec( | |||
| void relayout_format::relayout_format_cuda_nchw_nchw4( | |||
| const TensorND& src, const TensorND& dst, const cudaStream_t& stream, | |||
| const float src_scale, const float dst_scale, | |||
| const uint8_t src_zero_point, const uint8_t dst_zero_point) { | |||
| const uint8_t src_zero_point, const uint8_t dst_zero_point, | |||
| const int group) { | |||
| constexpr int pack_oc = 4; | |||
| const int n = src.layout[0]; | |||
| const int c = src.layout[1]; | |||
| const int in_n = src.layout[0]; | |||
| const int out_n = dst.layout[0]; | |||
| const int ic = src.layout[1]; | |||
| const int h = src.layout[2]; | |||
| const int w = src.layout[3]; | |||
| const int oc = dst.layout[1] * pack_oc; | |||
| const int hw = h * w; | |||
| const int oc_block = DIVUP(c, pack_oc); | |||
| const int n_stride_src = c * hw; | |||
| const int ocpg = oc / group; | |||
| const int n_stride_src = ic * hw; | |||
| const int ic_stride = hw; | |||
| const int n_stride_dst = oc_block * pack_oc * h * w; | |||
| const int n_stride_dst = oc * hw; | |||
| auto& src_layout = src.layout; | |||
| auto& dst_layout = dst.layout; | |||
| @@ -307,26 +516,26 @@ void relayout_format::relayout_format_cuda_exec( | |||
| int nr_threads = query_blocksize_for_kernel( \ | |||
| kern_nchw_nchw4<pack_w, true, SRC_C_TYPE, DST_C_TYPE, \ | |||
| SRC_TYPE, DST_TYPE>); \ | |||
| const dim3 block_dim(DIVUP(hw, nr_threads* pack_w), n); \ | |||
| const dim3 block_dim(DIVUP(hw, nr_threads* pack_w), out_n); \ | |||
| const dim3 thread_dim(nr_threads); \ | |||
| kern_nchw_nchw4<pack_w, true><<<block_dim, thread_dim, 0, stream>>>( \ | |||
| (SRC_C_TYPE*)src.raw_ptr, (DST_C_TYPE*)dst.raw_ptr, c, hw, \ | |||
| n_stride_src, ic_stride, n_stride_dst, \ | |||
| (SRC_C_TYPE*)src.raw_ptr, (DST_C_TYPE*)dst.raw_ptr, in_n, ic, \ | |||
| hw, n_stride_src, ic_stride, n_stride_dst, \ | |||
| CudaPostProcess<SRC_TYPE, DST_TYPE, true>( \ | |||
| src_scale, src_zero_point, dst_scale, dst_zero_point), \ | |||
| src_zero_point); \ | |||
| src_zero_point, group, ocpg); \ | |||
| } else { \ | |||
| int nr_threads = query_blocksize_for_kernel( \ | |||
| kern_nchw_nchw4<pack_w, false, SRC_C_TYPE, DST_C_TYPE, \ | |||
| SRC_TYPE, DST_TYPE>); \ | |||
| const dim3 block_dim(DIVUP(hw, nr_threads* pack_w), n); \ | |||
| const dim3 block_dim(DIVUP(hw, nr_threads* pack_w), out_n); \ | |||
| const dim3 thread_dim(nr_threads); \ | |||
| kern_nchw_nchw4<pack_w, false><<<block_dim, thread_dim, 0, stream>>>( \ | |||
| (SRC_C_TYPE*)src.raw_ptr, (DST_C_TYPE*)dst.raw_ptr, c, hw, \ | |||
| n_stride_src, ic_stride, n_stride_dst, \ | |||
| (SRC_C_TYPE*)src.raw_ptr, (DST_C_TYPE*)dst.raw_ptr, in_n, ic, \ | |||
| hw, n_stride_src, ic_stride, n_stride_dst, \ | |||
| CudaPostProcess<SRC_TYPE, DST_TYPE, false>( \ | |||
| src_scale, src_zero_point, dst_scale, dst_zero_point), \ | |||
| src_zero_point); \ | |||
| src_zero_point, group, ocpg); \ | |||
| } | |||
| if (src_layout.dtype.enumv().ev == DTypeEnum::Ev::Uint8 && | |||
| @@ -340,6 +549,10 @@ void relayout_format::relayout_format_cuda_exec( | |||
| dst_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS8) { | |||
| RUN_KERNEL(same_scale, dtype::QuantizedS8, dtype::QuantizedS8, char, | |||
| char); | |||
| } else if (src_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS32 && | |||
| dst_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS32) { | |||
| RUN_KERNEL(same_scale, dtype::QuantizedS32, dtype::QuantizedS32, int, | |||
| int); | |||
| } else { | |||
| megdnn_assert(0, "not support dtype %s %s", src_layout.dtype.name(), | |||
| dst_layout.dtype.name()); | |||
| @@ -356,16 +569,65 @@ bool relayout_format::relayout_format_cuda_usable( | |||
| (src_layout.dtype.enumv().ev == DTypeEnum::Ev::Quantized8Asymm && | |||
| dst_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS8) || | |||
| (src_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS8 && | |||
| dst_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS8); | |||
| dst_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS8) || | |||
| (src_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS32 && | |||
| dst_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS32); | |||
| return is_all_continue && is_all_int8; | |||
| } | |||
| template void relayout_format::relayout_format_cuda_exec<1>( | |||
| void relayout_format::relayout_format_cuda_nchw4_nchw( | |||
| const TensorND& src, const TensorND& dst, const cudaStream_t& stream, | |||
| const int group) { | |||
| constexpr int pack_w = 1; | |||
| const int n = src.layout[0]; | |||
| const int ic = src.layout[1] * 4; | |||
| const int h = src.layout[2]; | |||
| const int w = src.layout[3]; | |||
| const int oc = dst.layout[1]; | |||
| const int hw = h * w; | |||
| int nr_threads = query_blocksize_for_kernel(kern_nchw4_nchw); | |||
| const dim3 block_dim(DIVUP(hw, nr_threads * pack_w), n); | |||
| const dim3 thread_dim(nr_threads); | |||
| kern_nchw4_nchw<<<block_dim, thread_dim, 0, stream>>>( | |||
| (int8_t*)src.raw_ptr, (int8_t*)dst.raw_ptr, n, ic, oc, h, w, group); | |||
| } | |||
| void relayout_format::relayout_format_cuda_nchw_nchw4_weight( | |||
| const TensorND& src, const TensorND& dst, const cudaStream_t& stream) { | |||
| constexpr int pack_c = 4; | |||
| const bool is_group = src.layout.ndim == 5; | |||
| const int group = is_group ? src.layout[0] : 1; | |||
| const int oc = is_group ? src.layout[1] : src.layout[0]; | |||
| const int ic = is_group ? src.layout[2] : src.layout[1]; | |||
| const int kh = is_group ? src.layout[3] : src.layout[2]; | |||
| const int kw = is_group ? src.layout[4] : src.layout[3]; | |||
| const int hw = kh * kw; | |||
| const int oc_round = ROUNDUP(oc, pack_c); | |||
| const int ic_round = ROUNDUP(ic, pack_c); | |||
| const int ic_stride = hw; | |||
| const int oc_stride_src = ic * ic_stride; | |||
| const int oc_stride_dst = ic_round * ic_stride; | |||
| const int group_stride_src = oc * oc_stride_src; | |||
| const int group_stride_dst = oc_round * oc_stride_dst; | |||
| int nr_threads = 32; | |||
| const dim3 block_dim(DIVUP(hw, nr_threads), oc_round, group); | |||
| const dim3 thread_dim(nr_threads); | |||
| kern_nchw_nchw4_weight<<<block_dim, thread_dim, 0, stream>>>( | |||
| (char*)src.raw_ptr, (char*)dst.raw_ptr, oc, ic, hw, oc_stride_src, | |||
| ic_stride, oc_stride_dst, group_stride_src, group_stride_dst, 0, | |||
| {}); | |||
| } | |||
| template void relayout_format::relayout_format_cuda_nchw_nchw4<1>( | |||
| const TensorND& src, const TensorND& dst, const cudaStream_t& stream, | |||
| const float src_scale, const float dst_scale, | |||
| const uint8_t src_zero_point, const uint8_t dst_zero_point); | |||
| const uint8_t src_zero_point, const uint8_t dst_zero_point, | |||
| const int group); | |||
| template void relayout_format::relayout_format_cuda_exec<4>( | |||
| template void relayout_format::relayout_format_cuda_nchw_nchw4<4>( | |||
| const TensorND& src, const TensorND& dst, const cudaStream_t& stream, | |||
| const float src_scale, const float dst_scale, | |||
| const uint8_t src_zero_point, const uint8_t dst_zero_point); | |||
| const uint8_t src_zero_point, const uint8_t dst_zero_point, | |||
| const int group); | |||
| @@ -20,16 +20,25 @@ namespace cuda { | |||
| namespace relayout_format { | |||
| template <int pack_w = 1> | |||
| void relayout_format_cuda_exec(const TensorND& src, const TensorND& dst, | |||
| const cudaStream_t& stream, | |||
| const float src_scale = 1.f, | |||
| const float dst_scale = 1.f, | |||
| const uint8_t src_zero_point = 0, | |||
| const uint8_t dst_zero_point = 0); | |||
| void relayout_format_cuda_nchw_nchw4(const TensorND& src, const TensorND& dst, | |||
| const cudaStream_t& stream, | |||
| const float src_scale = 1.f, | |||
| const float dst_scale = 1.f, | |||
| const uint8_t src_zero_point = 0, | |||
| const uint8_t dst_zero_point = 0, | |||
| const int group = 1); | |||
| bool relayout_format_cuda_usable(const TensorLayout& src_layout, | |||
| const TensorLayout& dst_layout); | |||
| void relayout_format_cuda_nchw4_nchw(const TensorND& src, const TensorND& dst, | |||
| const cudaStream_t& stream, | |||
| const int group); | |||
| void relayout_format_cuda_nchw_nchw4_weight(const TensorND& src, | |||
| const TensorND& dst, | |||
| const cudaStream_t& stream); | |||
| } // namespace relayout_format | |||
| } // namespace cuda | |||
| } // namespace megdnn | |||
| @@ -13,6 +13,7 @@ | |||
| #pragma once | |||
| #include "megdnn/basic_types.h" | |||
| #include "megdnn/oprs.h" | |||
| #include "src/cuda/utils.cuh" | |||
| namespace megdnn { | |||
| @@ -23,7 +24,8 @@ struct RelayoutFormatFast { | |||
| static bool usable(const TensorLayout& src_layout, | |||
| const TensorLayout& dst_layout); | |||
| static void exec(const TensorND& src, const TensorND& dst, | |||
| cudaStream_t stream); | |||
| cudaStream_t stream, RelayoutFormat::Param::Mode mode, | |||
| int group); | |||
| }; | |||
| } // namespace relayout_format | |||
| @@ -86,6 +86,7 @@ | |||
| #endif | |||
| #define DIVUP(x, y) (((x) + (y)-1) / (y)) | |||
| #define ROUNDUP(x, y) (DIVUP(x, y) * (y)) | |||
| #define KERN_FOR(i, n) \ | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ | |||
| @@ -23,6 +23,71 @@ using namespace megdnn; | |||
| using namespace naive; | |||
| namespace { | |||
| template <typename ctype> | |||
| void recursive_cp(const TensorND& dst, const TensorND& src, size_t idx = 0, | |||
| size_t src_offset = 0, size_t dst_offset = 0) { | |||
| if (idx < (src.layout.ndim - 1)) { | |||
| for (size_t i = 0; i < src.layout[idx]; ++i) { | |||
| recursive_cp<ctype>(dst, src, idx + 1, | |||
| src_offset + i * src.layout.stride[idx], | |||
| dst_offset + i * dst.layout.stride[idx]); | |||
| } | |||
| } else { | |||
| for (size_t i = 0; i < src.layout[idx]; ++i) { | |||
| ((ctype*)dst.raw_ptr)[dst_offset + i * dst.layout.stride[idx]] = | |||
| ((ctype*)src | |||
| .raw_ptr)[src_offset + i * src.layout.stride[idx]]; | |||
| } | |||
| } | |||
| } | |||
| void padding_to_workspace(_megdnn_tensor_out dst, _megdnn_tensor_in src) { | |||
| switch (src.layout.dtype.enumv()) { | |||
| #define cb(name, ctype) \ | |||
| case (DTypeEnum::name): { \ | |||
| recursive_cp<ctype>(dst, src); \ | |||
| break; \ | |||
| } | |||
| cb(Float32, dt_float32); | |||
| cb(Int32, dt_int32); | |||
| cb(QuantizedS32, dt_int32); | |||
| cb(QuantizedS8, dt_qint8); | |||
| default: | |||
| megdnn_assert(0, "not support dtype %s", src.layout.dtype.name()); | |||
| #undef cb | |||
| } | |||
| } | |||
| void extract_from_workspace(_megdnn_tensor_out dst, _megdnn_tensor_in src, | |||
| size_t group) { | |||
| megdnn_assert(dst.layout.is_contiguous() && src.layout.is_contiguous(), | |||
| "dst %s, src %s", dst.layout.to_string().c_str(), | |||
| src.layout.to_string().c_str()); | |||
| const size_t type_size = dst.layout.dtype.size(); | |||
| const size_t n = dst.layout[0]; | |||
| const size_t n_stride_dst = dst.layout.stride[0]; | |||
| const size_t n_stride_src = src.layout.stride[0]; | |||
| const size_t ocpg = dst.layout[1] / group; | |||
| const size_t icpg = src.layout[1] / group; | |||
| const size_t dst_hw = dst.layout[2] * dst.layout[3]; | |||
| const size_t src_hw = src.layout[2] * src.layout[3]; | |||
| megdnn_assert(dst_hw == src_hw); | |||
| for (size_t nid = 0; nid < n; ++nid) { | |||
| const size_t n_offset_dst = nid * n_stride_dst * type_size; | |||
| const size_t n_offset_src = nid * n_stride_src * type_size; | |||
| for (size_t gid = 0; gid < group; ++gid) { | |||
| memcpy((char*)dst.raw_ptr + n_offset_dst + | |||
| gid * ocpg * dst_hw * type_size, | |||
| (char*)src.raw_ptr + n_offset_src + | |||
| gid * icpg * src_hw * type_size, | |||
| ocpg * dst_hw * type_size); | |||
| } | |||
| } | |||
| }; | |||
| template <typename dtype> | |||
| void padding_src_to_workspace(dtype* dptr, const dtype* sptr, size_t N, | |||
| size_t IC, size_t IH, size_t IW) { | |||
| @@ -86,6 +151,8 @@ void padding_to_workspace(_megdnn_tensor_out dst, _megdnn_tensor_in src, | |||
| } | |||
| cb(Float32, dt_float32); | |||
| cb(Int32, dt_int32); | |||
| cb(QuantizedS32, dt_int32); | |||
| cb(QuantizedS8, dt_qint8); | |||
| case (DTypeEnum::Quantized8Asymm): { | |||
| @@ -159,6 +226,19 @@ void do_copy_diff_q8_q8(const TensorND& dst, const TensorND& src) { | |||
| ++isrc; | |||
| } | |||
| } | |||
| void do_copy_diff_q32_q32(const TensorND& dst, const TensorND& src) { | |||
| auto isrc = tensor_iter_valonly<DTypeTrait<dtype::QuantizedS32>::ctype>(src) | |||
| .begin(); | |||
| auto idst = tensor_iter_valonly<DTypeTrait<dtype::QuantizedS32>::ctype>(dst) | |||
| .begin(); | |||
| auto src_dt_parm = src.layout.dtype.param<dtype::QuantizedS32>(); | |||
| auto dst_dt_parm = dst.layout.dtype.param<dtype::QuantizedS32>(); | |||
| for (size_t i = 0, it = dst.layout.total_nr_elems(); i < it; ++i) { | |||
| *idst = dst_dt_parm.quantize(src_dt_parm.dequantize(*isrc)); | |||
| ++idst; | |||
| ++isrc; | |||
| } | |||
| } | |||
| void do_copy_diff_u8_q8(const TensorND& dst, const TensorND& src) { | |||
| auto isrc = | |||
| @@ -263,12 +343,34 @@ size_t RelayoutFormatImpl::get_workspace_in_bytes(const TensorLayout& src, | |||
| return n * c * h * w * src.dtype.size(); | |||
| } | |||
| case Param::Mode::NCHW_NCHW4: { | |||
| size_t group = param().group; | |||
| size_t n = src[0]; | |||
| size_t c = round_up(src[1], 4_z); | |||
| size_t c = group * round_up(src[1] / group, 4_z); | |||
| size_t h = src[2]; | |||
| size_t w = src[3]; | |||
| return n * c * h * w * src.dtype.size(); | |||
| } | |||
| case Param::Mode::NCHW4_NCHW: { | |||
| return src.total_nr_elems() * src.dtype.size(); | |||
| } | |||
| case Param::Mode::NCHW_NCHW4_WEIGHT: { | |||
| if (src.ndim == 4) { | |||
| size_t oc = round_up(src[0], 4_z); | |||
| size_t ic = round_up(src[1], 4_z); | |||
| size_t h = src[2]; | |||
| size_t w = src[3]; | |||
| return oc * ic * h * w * src.dtype.size(); | |||
| } else if (src.ndim == 5) { | |||
| size_t group = src[0]; | |||
| size_t oc = round_up(src[1], 4_z); | |||
| size_t ic = round_up(src[2], 4_z); | |||
| size_t h = src[3]; | |||
| size_t w = src[4]; | |||
| return group * oc * ic * h * w * src.dtype.size(); | |||
| } else { | |||
| megdnn_throw("no support nchw_nchw4_weight"); | |||
| } | |||
| } | |||
| case Param::Mode::NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT: { | |||
| megdnn_assert(src.ndim == 4, "src must be oihw, ndim == 5"); | |||
| if (src[1] % 4 == 0) | |||
| @@ -288,13 +390,15 @@ size_t RelayoutFormatImpl::get_workspace_in_bytes(const TensorLayout& src, | |||
| void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
| _megdnn_workspace workspace) { | |||
| megdnn_assert(src.layout.dtype.category() == DTypeCategory::FLOAT || | |||
| src.layout.dtype.enumv() == DTypeEnum::Int32 || | |||
| (src.layout.dtype.enumv() == DTypeEnum::Uint8 && | |||
| dst.layout.dtype.enumv() == DTypeEnum::QuantizedS8) || | |||
| src.layout.dtype.category() == DTypeCategory::QUANTIZED); | |||
| check_exec(src.layout, dst.layout, workspace.size); | |||
| HandleImpl* m_handle = static_cast<HandleImpl*>(handle()); | |||
| TensorLayout exec_src, exec_dst; | |||
| deduce_exec_layout(src.layout, dst.layout, exec_src, exec_dst); | |||
| TensorLayout exec_src, exec_dst, exec_workspace; | |||
| deduce_exec_layout(src.layout, dst.layout, exec_workspace, exec_src, | |||
| exec_dst); | |||
| TensorND exec_src_nd{src.raw_ptr, exec_src}; | |||
| TensorND exec_dst_nd{dst.raw_ptr, exec_dst}; | |||
| // clean dst | |||
| @@ -371,6 +475,19 @@ void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
| } \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| #define cb2(_idx, _pack_size, _mode, _src_layout, _workspace_layout) \ | |||
| MIDOUT_BEGIN(megdnn_naive_relayout_format, \ | |||
| midout_iv(Param::Mode::_mode)) { \ | |||
| size_t val = _src_layout[_idx]; \ | |||
| if (val % _pack_size != 0) { \ | |||
| memset(workspace.raw_ptr, 0, exec_src.span().dist_byte()); \ | |||
| padding_to_workspace({workspace.raw_ptr, _workspace_layout}, \ | |||
| {src.raw_ptr, _src_layout}); \ | |||
| exec_src_nd.raw_ptr = workspace.raw_ptr; \ | |||
| } \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| cb(1, 8, NCHW_NCHW88); | |||
| } else if (param().mode == Param::Mode::NCHW_NCHW88_CONV_DENSE_WEIGHT) { | |||
| @@ -384,10 +501,62 @@ void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
| } else if (param().mode == Param::Mode::NCHW_NCHW4_IC_SMALL) { | |||
| cb(1, 4, NCHW_NCHW4_IC_SMALL); | |||
| } else if (param().mode == Param::Mode::NCHW_NCHW4) { | |||
| cb(1, 4, NCHW_NCHW4); | |||
| if (param().group == 1) { | |||
| cb(1, 4, NCHW_NCHW4); | |||
| } else { | |||
| TensorLayout group_src_layout{{src.layout[0], param().group, | |||
| src.layout[1] / param().group, | |||
| src.layout[2], src.layout[3]}, | |||
| src.layout.dtype, | |||
| src.layout.format}; | |||
| TensorLayout workspace_layout{ | |||
| {src.layout[0], param().group, | |||
| div_ceil(src.layout[1] / param().group, 4_z) * 4_z, | |||
| src.layout[2], src.layout[3]}, | |||
| src.layout.dtype, | |||
| src.layout.format}; | |||
| cb2(2, 4, NCHW_NCHW4, group_src_layout, workspace_layout); | |||
| } | |||
| } else if (param().mode == | |||
| Param::Mode::NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT) { | |||
| cb(1, 4, NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT); | |||
| } else if (param().mode == Param::Mode::NCHW_NCHW4_WEIGHT) { | |||
| #undef cb | |||
| #define cb(_idx0, _idx1, _pack_size, _mode) \ | |||
| MIDOUT_BEGIN(megdnn_naive_relayout_format, \ | |||
| midout_iv(Param::Mode::_mode)) { \ | |||
| size_t val0 = src.layout[_idx0]; \ | |||
| size_t val1 = src.layout[_idx1]; \ | |||
| if (val0 % _pack_size != 0 || val1 % _pack_size != 0) { \ | |||
| memset(workspace.raw_ptr, 0, exec_src.span().dist_byte()); \ | |||
| padding_to_workspace({workspace.raw_ptr, exec_workspace}, src); \ | |||
| exec_src_nd.raw_ptr = workspace.raw_ptr; \ | |||
| } \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| if (src.layout.ndim == 4) { | |||
| cb(0, 1, 4, NCHW_NCHW4_WEIGHT); | |||
| } else if (src.layout.ndim == 5) { | |||
| cb(1, 2, 4, NCHW_NCHW4_WEIGHT); | |||
| } | |||
| } else if (param().mode == Param::Mode::NCHW4_NCHW) { | |||
| if (exec_workspace.total_nr_elems() == dst.layout.total_nr_elems()) { | |||
| m_handle->relayout_opr()->exec( | |||
| exec_src_nd, {dst.raw_ptr, exec_workspace}, handle()); | |||
| return; | |||
| } else { | |||
| m_handle->relayout_opr()->exec( | |||
| exec_src_nd, {workspace.raw_ptr, exec_workspace}, handle()); | |||
| TensorLayout workspace_layout{{src.layout[0], src.layout[1] * 4, | |||
| src.layout[2], src.layout[3]}, | |||
| src.layout.dtype, | |||
| src.layout.format}; | |||
| extract_from_workspace(exec_dst_nd, | |||
| {workspace.raw_ptr, workspace_layout}, | |||
| param().group); | |||
| return; | |||
| } | |||
| } | |||
| if (src.layout.dtype.enumv() == DTypeEnum::Quantized8Asymm && | |||
| @@ -417,6 +586,15 @@ void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
| }; | |||
| MEGDNN_DISPATCH_CPU_KERN_OPR(func(dst0, src0)); | |||
| return; | |||
| } else if (src.layout.dtype.enumv() == DTypeEnum::QuantizedS32 && | |||
| dst.layout.dtype.enumv() == DTypeEnum::QuantizedS32) { | |||
| TensorND src0 = exec_src_nd, dst0 = exec_dst_nd; | |||
| check_layout_and_canonize(src0.layout, src0.layout); | |||
| auto func = [](const TensorND& dst, const TensorND& src) { | |||
| do_copy_diff_q32_q32(dst, src); | |||
| }; | |||
| MEGDNN_DISPATCH_CPU_KERN_OPR(func(dst0, src0)); | |||
| return; | |||
| } else { | |||
| m_handle->relayout_opr()->exec(exec_src_nd, exec_dst_nd, handle()); | |||
| } | |||
| @@ -215,8 +215,7 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_QS8) { | |||
| .execs({src_shape, filter_shape, bias_shape, {}, {}}); | |||
| } | |||
| } | |||
| //! close for cu111 ci, reopen it when bug fixed | |||
| #if CUDA_VERSION < 11000 | |||
| TEST_F(CUDA, CONV_BIAS_NCHW_QS8) { | |||
| //! not support NonlineMode::SIGMOID and NonlineMode::H_SWISH | |||
| require_compute_capability(6, 1); | |||
| @@ -274,8 +273,97 @@ TEST_F(CUDA, CONV_BIAS_NCHW_QS8) { | |||
| } | |||
| } | |||
| } | |||
| for (NonlineMode mode : {NonlineMode::RELU, | |||
| NonlineMode::IDENTITY, NonlineMode::H_SWISH}) { | |||
| for (size_t g : {13}) { | |||
| for (size_t b : {1, 2}) { | |||
| for (size_t ic : {13}) { | |||
| for (size_t oc : {13}) { | |||
| for (size_t fh : {1, 3}) { | |||
| for (int ph : {static_cast<int>(fh / 2)}) { | |||
| for (int sh : {1, 2}) { | |||
| size_t ih = 16, iw = 16; | |||
| param.nonlineMode = mode; | |||
| param.stride_h = param.stride_w = sh; | |||
| param.pad_h = param.pad_w = ph; | |||
| param.sparse = | |||
| ConvBias::Param::Sparse::GROUP; | |||
| checker.set_param(param) | |||
| .execs({{b, ic, ih, iw}, | |||
| {g, oc/g, ic/g, fh, fh}, | |||
| {1, oc, 1, 1}, | |||
| {}, | |||
| {}}); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| { | |||
| size_t ih = 16, iw = 16, b = 1, oc = 14, ic = 14; | |||
| size_t fh = 3, sh = 1, ph = 1; | |||
| param.nonlineMode = NonlineMode::IDENTITY; | |||
| param.stride_h = param.stride_w = sh; | |||
| param.pad_h = param.pad_w = ph; | |||
| param.sparse = ConvBias::Param::Sparse::DENSE; | |||
| checker.set_param(param).execs( | |||
| {{b, ic, ih, iw}, {oc, ic, fh, fh}, {}, {}, {}}); | |||
| } | |||
| } | |||
| #endif | |||
| TEST_F(CUDA, CONV_BIAS_NCHW_QS8_FUSE_Z) { | |||
| require_compute_capability(6, 1); | |||
| Checker<ConvBiasForward> checker(handle_cuda()); | |||
| UniformIntRNG int_rng{-128, 127}; | |||
| using NonlineMode = ConvBias::Param::NonlineMode; | |||
| ConvBias::Param param; | |||
| param.format = ConvBias::Param::Format::NCHW; | |||
| checker.set_dtype(0, dtype::QuantizedS8(2.5f)) | |||
| .set_dtype(1, dtype::QuantizedS8(2.5f)) | |||
| .set_dtype(2, dtype::QuantizedS32(6.25f)) | |||
| .set_dtype(3, dtype::QuantizedS8(0.25f)) | |||
| .set_dtype(4, dtype::QuantizedS8(0.25f)) | |||
| .set_rng(0, &int_rng) | |||
| .set_rng(1, &int_rng) | |||
| .set_rng(2, &int_rng) | |||
| .set_rng(3, &int_rng); | |||
| for (NonlineMode mode : | |||
| {NonlineMode::RELU, NonlineMode::IDENTITY, NonlineMode::H_SWISH}) { | |||
| for (size_t b : {2}) { | |||
| for (size_t ic : {6, 16}) { | |||
| for (size_t oc : {4}) { | |||
| for (size_t fh : {1, 3}) { | |||
| for (int ph : {static_cast<int>(fh / 2)}) { | |||
| for (int sh : {1, 2}) { | |||
| size_t ih = 16, iw = 16; | |||
| param.nonlineMode = mode; | |||
| param.stride_h = param.stride_w = sh; | |||
| param.pad_h = param.pad_w = ph; | |||
| param.sparse = ConvBias::Param::Sparse::DENSE; | |||
| const size_t oh = (ih - fh + 2 * ph) / sh + 1; | |||
| const size_t ow = (iw - fh + 2 * ph) / sh + 1; | |||
| checker.set_param(param).execs( | |||
| {{b, ic, ih, iw}, | |||
| {oc, ic, fh, fh}, | |||
| {1, oc, 1, 1}, | |||
| {b, oc, oh, ow}, | |||
| {}}); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| #if MEGDNN_WITH_BENCHMARK | |||
| TEST_F(CUDA, BENCHMARK_CONV_BIAS_NCHW4_INT8) { | |||
| require_compute_capability(6, 1); | |||
| @@ -34,9 +34,43 @@ TEST_F(CUDA, RELAYOUT_FORMAT) { | |||
| checker.execs({{22, 23, 24, 25, 4}, {}}); | |||
| } | |||
| TEST_F(CUDA, RELAYOUT_FORMAT_NCHW4_NCHW) { | |||
| Checker<RelayoutFormat> checker(handle_cuda()); | |||
| UniformIntRNG rng{-50, 50}; | |||
| param::RelayoutFormat param; | |||
| param.mode = param::RelayoutFormat::Mode::NCHW4_NCHW; | |||
| checker.set_dtype(0, dtype::QuantizedS8{0.1f}) | |||
| .set_dtype(1, dtype::QuantizedS8{0.1f}) | |||
| .set_rng(0, &rng) | |||
| .set_param(param) | |||
| .execs({{1, 1, 2, 2, 4}, {}}); | |||
| checker.set_dtype(0, dtype::QuantizedS8{0.1f}) | |||
| .set_dtype(1, dtype::QuantizedS8{0.1f}) | |||
| .set_rng(0, &rng) | |||
| .set_param(param) | |||
| .execs({{22, 23, 24, 25, 4}, {}}); | |||
| param.oc = 90; | |||
| checker.set_dtype(0, dtype::QuantizedS8{0.1f}) | |||
| .set_dtype(1, dtype::QuantizedS8{0.1f}) | |||
| .set_rng(0, &rng) | |||
| .set_param(param) | |||
| .execs({{22, 23, 24, 25, 4}, {}}); | |||
| param.oc = 16; | |||
| param.group = 8; | |||
| checker.set_dtype(0, dtype::QuantizedS8{0.1f}) | |||
| .set_dtype(1, dtype::QuantizedS8{0.1f}) | |||
| .set_rng(0, &rng) | |||
| .set_param(param) | |||
| .execs({{11, 16, 22, 33, 4}, {}}); | |||
| } | |||
| TEST_F(CUDA, RELAYOUT_FORMAT_NCHW_NCHW4) { | |||
| Checker<RelayoutFormat> checker(handle_cuda()); | |||
| UniformIntRNG rng{0, 50}; | |||
| UniformIntRNG rng{-50, 50}; | |||
| param::RelayoutFormat param; | |||
| param.mode = param::RelayoutFormat::Mode::NCHW_NCHW4; | |||
| @@ -55,6 +89,12 @@ TEST_F(CUDA, RELAYOUT_FORMAT_NCHW_NCHW4) { | |||
| .set_rng(0, &rng) | |||
| .set_param(param) | |||
| .execs({{n, c, h, w}, {}}); | |||
| checker.set_dtype(0, dtype::QuantizedS32{1.f}) | |||
| .set_dtype(1, dtype::QuantizedS32{1.f}) | |||
| .set_rng(0, &rng) | |||
| .set_param(param) | |||
| .execs({{n, c, h, w}, {}}); | |||
| } | |||
| } | |||
| } | |||
| @@ -77,6 +117,59 @@ TEST_F(CUDA, RELAYOUT_FORMAT_NCHW_NCHW4) { | |||
| .set_rng(0, &rng) | |||
| .set_param(param) | |||
| .execs({{1, 6, 768, 1280}, {}}); | |||
| param.group = 2; | |||
| checker.set_dtype(0, dtype::QuantizedS8{1.f}) | |||
| .set_dtype(1, dtype::QuantizedS8{1.f}) | |||
| .set_rng(0, &rng) | |||
| .set_param(param) | |||
| .execs({{8, 6, 300, 300}, {}}); | |||
| param.group = 3; | |||
| checker.set_dtype(0, dtype::QuantizedS8{1.f}) | |||
| .set_dtype(1, dtype::QuantizedS8{1.f}) | |||
| .set_rng(0, &rng) | |||
| .set_param(param) | |||
| .execs({{8, 6, 300, 300}, {}}); | |||
| } | |||
| TEST_F(CUDA, RELAYOUT_FORMAT_NCHW_NCHW4_WEIGHT) { | |||
| Checker<RelayoutFormat> checker(handle_cuda()); | |||
| UniformIntRNG rng{-50, 50}; | |||
| param::RelayoutFormat param; | |||
| param.mode = param::RelayoutFormat::Mode::NCHW_NCHW4_WEIGHT; | |||
| for (size_t oc : {1, 3, 4, 16, 33}) { | |||
| for (size_t ic : {1, 2, 3, 4, 8, 9, 11, 16, 33}) { | |||
| for (size_t h : {3, 5, 7}) { | |||
| for (size_t w : {3, 5, 7}) { | |||
| checker.set_dtype(0, dtype::QuantizedS8{1.f}) | |||
| .set_dtype(1, dtype::QuantizedS8{1.f}) | |||
| .set_rng(0, &rng) | |||
| .set_param(param) | |||
| .execs({{oc, ic, h, w}, {}}); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| checker.set_dtype(0, dtype::QuantizedS8{1.f}) | |||
| .set_dtype(1, dtype::QuantizedS8{1.f}) | |||
| .set_rng(0, &rng) | |||
| .set_param(param) | |||
| .execs({{13, 13, 5, 5}, {}}); | |||
| checker.set_dtype(0, dtype::QuantizedS8{1.f}) | |||
| .set_dtype(1, dtype::QuantizedS8{1.f}) | |||
| .set_rng(0, &rng) | |||
| .set_param(param) | |||
| .execs({{4, 16, 16, 3, 3}, {}}); | |||
| checker.set_dtype(0, dtype::QuantizedS8{1.f}) | |||
| .set_dtype(1, dtype::QuantizedS8{1.f}) | |||
| .set_rng(0, &rng) | |||
| .set_param(param) | |||
| .execs({{4, 13, 11, 3, 3}, {}}); | |||
| } | |||
| TEST_F(CUDA, RELAYOUT_FORMAT_NCHW_NCHW4_DEFAULT) { | |||
| @@ -6,7 +6,8 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "test/naive/fixture.h" | |||
| @@ -17,6 +18,136 @@ | |||
| using namespace megdnn; | |||
| using namespace test; | |||
| TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW4_NCHW) { | |||
| Checker<RelayoutFormat> checker(handle(), /* check_dispatch */ false); | |||
| { | |||
| auto tensor_nchw4 = TensorValue( | |||
| {1, 2, 1, 2, 4}, dtype::Float32(), | |||
| {1, 3, 5, 7, 2, 4, 6, 8, 9, 11, 13, 15, 10, 12, 14, 16}); | |||
| auto tensor_nchw = TensorValue( | |||
| {1, 8, 1, 2}, dtype::Float32(), | |||
| {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); | |||
| RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW4_NCHW}; | |||
| checker.set_param(param).exect(Testcase{tensor_nchw4, {}}, | |||
| Testcase{{}, tensor_nchw}); | |||
| } | |||
| { | |||
| auto tensor_nchw4 = TensorValue( | |||
| {1, 2, 1, 2, 4}, dtype::Float32(), | |||
| {1, 3, 5, 7, 2, 4, 6, 8, 9, 11, 13, 15, 10, 12, 14, 16}); | |||
| auto tensor_nchw = | |||
| TensorValue({1, 7, 1, 2}, dtype::Float32(), | |||
| {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}); | |||
| RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW4_NCHW}; | |||
| param.oc = 7; | |||
| checker.set_param(param).exect(Testcase{tensor_nchw4, {}}, | |||
| Testcase{{}, tensor_nchw}); | |||
| } | |||
| { | |||
| auto tensor_nchw4 = TensorValue( | |||
| {1, 2, 1, 2, 4}, dtype::Float32(), | |||
| {1, 3, 5, 7, 2, 4, 6, 8, 9, 11, 13, 15, 10, 12, 14, 16}); | |||
| auto tensor_nchw = | |||
| TensorValue({1, 6, 1, 2}, dtype::Float32(), | |||
| {1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14}); | |||
| RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW4_NCHW}; | |||
| param.oc = 6; | |||
| param.group = 2; | |||
| checker.set_param(param).exect(Testcase{tensor_nchw4, {}}, | |||
| Testcase{{}, tensor_nchw}); | |||
| } | |||
| } | |||
| TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW_NCHW4_WEIGHT) { | |||
| Checker<RelayoutFormat> checker(handle(), /* check_dispatch */ false); | |||
| { | |||
| auto tensor_nchw = TensorValue({2, 2, 2, 2}, dtype::Float32(), | |||
| {1, 2, 3, 4, 5, 6, 7, 8, | |||
| 9, 10, 11, 12, 13, 14, 15, 16}); | |||
| auto tensor_nchw4 = TensorValue( | |||
| {4, 1, 2, 2, 4}, dtype::Float32(), | |||
| {1, 5, 0, 0, 2, 6, 0, 0, 3, 7, 0, 0, 4, 8, 0, 0, | |||
| 9, 13, 0, 0, 10, 14, 0, 0, 11, 15, 0, 0, 12, 16, 0, 0, | |||
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}); | |||
| RelayoutFormat::Param param{ | |||
| RelayoutFormat::Param::Mode::NCHW_NCHW4_WEIGHT}; | |||
| checker.set_param(param).exect(Testcase{tensor_nchw, {}}, | |||
| Testcase{{}, tensor_nchw4}); | |||
| } | |||
| { | |||
| auto tensor_nchw = TensorValue({2, 2, 1, 2, 2}, dtype::Float32(), | |||
| {1, 2, 3, 4, 5, 6, 7, 8, | |||
| 9, 10, 11, 12, 13, 14, 15, 16}); | |||
| auto tensor_nchw4 = TensorValue( | |||
| {2, 4, 1, 2, 2, 4}, dtype::Float32(), | |||
| {1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, | |||
| 0, 6, 0, 0, 0, 7, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
| 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 10, 0, 0, 0, 11, 0, 0, 0, | |||
| 12, 0, 0, 0, 13, 0, 0, 0, 14, 0, 0, 0, 15, 0, 0, 0, 16, 0, 0, | |||
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}); | |||
| RelayoutFormat::Param param{ | |||
| RelayoutFormat::Param::Mode::NCHW_NCHW4_WEIGHT}; | |||
| checker.set_param(param).exect(Testcase{tensor_nchw, {}}, | |||
| Testcase{{}, tensor_nchw4}); | |||
| } | |||
| } | |||
| TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW_NCHW4) { | |||
| Checker<RelayoutFormat> checker(handle(), /* check_dispatch */ false); | |||
| { | |||
| auto tensor_nchw = TensorValue( | |||
| {1, 8, 1, 2}, dtype::Float32(), | |||
| {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); | |||
| auto tensor_nchw4 = TensorValue( | |||
| {1, 2, 1, 2, 4}, dtype::Float32(), | |||
| {1, 3, 5, 7, 2, 4, 6, 8, 9, 11, 13, 15, 10, 12, 14, 16}); | |||
| RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW_NCHW4}; | |||
| checker.set_param(param).exect(Testcase{tensor_nchw, {}}, | |||
| Testcase{{}, tensor_nchw4}); | |||
| } | |||
| { | |||
| auto tensor_nchw = TensorValue( | |||
| {1, 8, 1, 2}, dtype::Float32(), | |||
| {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); | |||
| auto tensor_nchw4 = TensorValue( | |||
| {1, 4, 1, 2, 4}, dtype::Float32(), | |||
| {1, 3, 0, 0, 2, 4, 0, 0, 5, 7, 0, 0, 6, 8, 0, 0, | |||
| 9, 11, 0, 0, 10, 12, 0, 0, 13, 15, 0, 0, 14, 16, 0, 0}); | |||
| RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW_NCHW4}; | |||
| param.group = 4; | |||
| checker.set_param(param).exect(Testcase{tensor_nchw, {}}, | |||
| Testcase{{}, tensor_nchw4}); | |||
| } | |||
| { | |||
| auto tensor_nchw = TensorValue({1, 6, 1, 2}, dtype::Float32(), | |||
| {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); | |||
| auto tensor_nchw4 = TensorValue( | |||
| {1, 2, 1, 2, 4}, dtype::Float32(), | |||
| {1, 3, 5, 0, 2, 4, 6, 0, 7, 9, 11, 0, 8, 10, 12, 0}); | |||
| RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW_NCHW4}; | |||
| param.group = 2; | |||
| checker.set_param(param).exect(Testcase{tensor_nchw, {}}, | |||
| Testcase{{}, tensor_nchw4}); | |||
| } | |||
| } | |||
| TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW88) { | |||
| Checker<RelayoutFormat> checker(handle(), /* check_dispatch */ false); | |||
| @@ -1914,8 +1914,17 @@ TEST(TestEnableTensorCore, Nchw4Nchw) { | |||
| unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc); | |||
| } | |||
| auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt); | |||
| if (format == opr::ConvBias::Param::Format::NCHW4) { | |||
| #if CUDA_VERSION >= 10020 | |||
| //! try_conv_reformat_nchw322nchw4 used when cuda_version >= 10020 | |||
| ASSERT_EQ(1u, nr_dimshuffle); | |||
| #else | |||
| ASSERT_EQ(2u, nr_dimshuffle); | |||
| #endif | |||
| } else { | |||
| ASSERT_EQ(2u, nr_dimshuffle); | |||
| } | |||
| std::string json_name; | |||
| ASSERT_EQ(2u, nr_dimshuffle); | |||
| if (format == opr::ConvBias::Param::Format::NCHW4) { | |||
| json_name = "TestGoptInference.Nchw4Nchw.NCHW4.json"; | |||
| } else { | |||
| @@ -2856,8 +2865,6 @@ TEST(TestGoptInference, EnableCHWN4ShuffleRemove) { | |||
| } | |||
| #endif | |||
| //! close for cu111 ci, reopen it when bug fixed | |||
| #if CUDA_VERSION < 11000 | |||
| TEST(TestGoptInference, ConvertFormatNCHW4GPU) { | |||
| REQUIRE_GPU(1); | |||
| auto cn = CompNode::load("gpu0"); | |||
| @@ -2936,7 +2943,6 @@ TEST(TestGoptInference, ConvertFormatNCHW4GPU) { | |||
| func->execute(); | |||
| MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt); | |||
| } | |||
| #endif | |||
| #endif | |||
| @@ -3076,8 +3082,6 @@ TEST(TestGoptInference, ConvertFormatNCHW4) { | |||
| MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3); | |||
| } | |||
| //! close for cu111 ci, reopen it when bug fixed | |||
| #if CUDA_VERSION < 11000 | |||
| TEST(TestGoptInference, ConvertFormatNCHW4Ic3) { | |||
| REQUIRE_GPU(1); | |||
| auto cn = CompNode::load("gpu0"); | |||
| @@ -3139,7 +3143,6 @@ TEST(TestGoptInference, ConvertFormatNCHW4Ic3) { | |||
| func->execute(); | |||
| MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3); | |||
| } | |||
| #endif | |||
| TEST(TestGoptInference, ConvertFormatNCHW88) { | |||
| HostTensorGenerator<> gen; | |||
| @@ -183,7 +183,9 @@ namespace opr { | |||
| } | |||
| MGB_REG_OPR_SHALLOW_COPY(ParamPackConcat, opr_shallow_copy_param_pack_concat); | |||
| MGB_SEREG_OPR(RelayoutFormat, 1); | |||
| using RelayoutFormatV1 = opr::RelayoutFormat; | |||
| MGB_SEREG_OPR(RelayoutFormatV1, 1); | |||
| } // namespace opr | |||
| } // namespace mgb | |||
| @@ -1977,8 +1977,7 @@ TEST(TestTensorRTReplace, FuseConvAdd) { | |||
| MGB_ASSERT_TENSOR_NEAR(outputs[0], outputs[2], 1e-3); | |||
| MGB_ASSERT_TENSOR_NEAR(outputs[1], outputs[3], 1e-3); | |||
| } | |||
| //! close for cu111 ci, reopen it when bug fixed | |||
| #if CUDA_VERSION < 11000 | |||
| TEST(TestTensorRTReplace, FuseConvAddNchw2nchw4) { | |||
| REQUIRE_GPU(1); | |||
| auto cn = CompNode::load("gpu0"); | |||
| @@ -2044,7 +2043,7 @@ TEST(TestTensorRTReplace, FuseConvAddNchw2nchw4) { | |||
| MGB_ASSERT_TENSOR_NEAR(outputs[0], outputs[1], 1e-3); | |||
| } | |||
| #endif | |||
| #endif // MGB_ENABLE_TENSOR_RT | |||