| @@ -0,0 +1,4 @@ | |||||
| import os | |||||
| import sys | |||||
| sys.path.append(os.path.join(os.path.dirname(__file__), "helpers")) | |||||
| @@ -0,0 +1,66 @@ | |||||
| import numpy as np | |||||
| from megengine import tensor | |||||
| def _default_compare_fn(x, y): | |||||
| np.testing.assert_allclose(x.numpy(), y, rtol=1e-6) | |||||
| def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): | |||||
| """ | |||||
| :param cases: the list which have dict element, the list length should be 2 for dynamic shape test. | |||||
| and the dict should have input, | |||||
| and should have output if ref_fn is None. | |||||
| should use list for multiple inputs and outputs for each case. | |||||
| :param func: the function to run opr. | |||||
| :param compare_fn: the function to compare the result and expected, use assertTensorClose if None. | |||||
| :param ref_fn: the function to generate expected data, should assign output if None. | |||||
| Examples: | |||||
| .. code-block:: | |||||
| dtype = np.float32 | |||||
| cases = [{"input": [10, 20]}, {"input": [20, 30]}] | |||||
| opr_test(cases, | |||||
| F.eye, | |||||
| ref_fn=lambda n, m: np.eye(n, m).astype(dtype), | |||||
| dtype=dtype) | |||||
| """ | |||||
| def check_results(results, expected): | |||||
| if not isinstance(results, (tuple, list)): | |||||
| results = (results,) | |||||
| for r, e in zip(results, expected): | |||||
| compare_fn(r, e) | |||||
| def get_param(cases, idx): | |||||
| case = cases[idx] | |||||
| inp = case.get("input", None) | |||||
| outp = case.get("output", None) | |||||
| if inp is None: | |||||
| raise ValueError("the test case should have input") | |||||
| if not isinstance(inp, (tuple, list)): | |||||
| inp = (inp,) | |||||
| if ref_fn is not None and callable(ref_fn): | |||||
| outp = ref_fn(*inp) | |||||
| if outp is None: | |||||
| raise ValueError("the test case should have output or reference function") | |||||
| if not isinstance(outp, (tuple, list)): | |||||
| outp = (outp,) | |||||
| return inp, outp | |||||
| if len(cases) == 0: | |||||
| raise ValueError("should give one case at least") | |||||
| if not callable(func): | |||||
| raise ValueError("the input func should be callable") | |||||
| inp, outp = get_param(cases, 0) | |||||
| inp_tensor = [tensor(inpi) for inpi in inp] | |||||
| results = func(*inp_tensor, **kwargs) | |||||
| check_results(results, outp) | |||||
| @@ -13,9 +13,9 @@ else | |||||
| fi | fi | ||||
| pushd $(dirname "${BASH_SOURCE[0]}")/.. >/dev/null | pushd $(dirname "${BASH_SOURCE[0]}")/.. >/dev/null | ||||
| PYTHONPATH="." PY_IGNORE_IMPORTMISMATCH=1 python3 -m pytest $test_dirs -m 'not isolated_distributed' | |||||
| PYTHONPATH="." python3 -m pytest $test_dirs -m 'not isolated_distributed' | |||||
| if [[ "$TEST_PLAT" == cuda ]]; then | if [[ "$TEST_PLAT" == cuda ]]; then | ||||
| echo "test GPU pytest now" | echo "test GPU pytest now" | ||||
| PYTHONPATH="." PY_IGNORE_IMPORTMISMATCH=1 python3 -m pytest $test_dirs -m 'isolated_distributed' | |||||
| PYTHONPATH="." python3 -m pytest $test_dirs -m 'isolated_distributed' | |||||
| fi | fi | ||||
| popd >/dev/null | popd >/dev/null | ||||
| @@ -1,8 +0,0 @@ | |||||
| # -*- coding: utf-8 -*- | |||||
| # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
| # | |||||
| # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, | |||||
| # software distributed under the License is distributed on an | |||||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| @@ -10,6 +10,7 @@ import itertools | |||||
| import numpy as np | import numpy as np | ||||
| import pytest | import pytest | ||||
| from utils import opr_test | |||||
| import megengine.core.ops.builtin as builtin | import megengine.core.ops.builtin as builtin | ||||
| import megengine.core.tensor.dtype as dtype | import megengine.core.tensor.dtype as dtype | ||||
| @@ -21,68 +22,6 @@ from megengine.core.tensor.utils import make_shape_tuple | |||||
| from megengine.test import assertTensorClose | from megengine.test import assertTensorClose | ||||
| def _default_compare_fn(x, y): | |||||
| assertTensorClose(x.numpy(), y) | |||||
| def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): | |||||
| """ | |||||
| func: the function to run opr. | |||||
| compare_fn: the function to compare the result and expected, use assertTensorClose if None. | |||||
| ref_fn: the function to generate expected data, should assign output if None. | |||||
| cases: the list which have dict element, the list length should be 2 for dynamic shape test. | |||||
| and the dict should have input, | |||||
| and should have output if ref_fn is None. | |||||
| should use list for multiple inputs and outputs for each case. | |||||
| kwargs: The additional kwargs for opr func. | |||||
| simple examples: | |||||
| dtype = np.float32 | |||||
| cases = [{"input": [10, 20]}, {"input": [20, 30]}] | |||||
| opr_test(cases, | |||||
| F.eye, | |||||
| ref_fn=lambda n, m: np.eye(n, m).astype(dtype), | |||||
| dtype=dtype) | |||||
| """ | |||||
| def check_results(results, expected): | |||||
| if not isinstance(results, (tuple, list)): | |||||
| results = (results,) | |||||
| for r, e in zip(results, expected): | |||||
| compare_fn(r, e) | |||||
| def get_param(cases, idx): | |||||
| case = cases[idx] | |||||
| inp = case.get("input", None) | |||||
| outp = case.get("output", None) | |||||
| if inp is None: | |||||
| raise ValueError("the test case should have input") | |||||
| if not isinstance(inp, (tuple, list)): | |||||
| inp = (inp,) | |||||
| if ref_fn is not None and callable(ref_fn): | |||||
| outp = ref_fn(*inp) | |||||
| if outp is None: | |||||
| raise ValueError("the test case should have output or reference function") | |||||
| if not isinstance(outp, (tuple, list)): | |||||
| outp = (outp,) | |||||
| return inp, outp | |||||
| if len(cases) == 0: | |||||
| raise ValueError("should give one case at least") | |||||
| if not callable(func): | |||||
| raise ValueError("the input func should be callable") | |||||
| inp, outp = get_param(cases, 0) | |||||
| inp_tensor = [tensor(inpi) for inpi in inp] | |||||
| results = func(*inp_tensor, **kwargs) | |||||
| check_results(results, outp) | |||||
| def test_where(): | def test_where(): | ||||
| maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_) | maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_) | ||||
| xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32) | xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32) | ||||
| @@ -9,78 +9,13 @@ | |||||
| from functools import partial | from functools import partial | ||||
| import numpy as np | import numpy as np | ||||
| from utils import opr_test | |||||
| import megengine.functional as F | import megengine.functional as F | ||||
| from megengine import tensor | from megengine import tensor | ||||
| from megengine.test import assertTensorClose | from megengine.test import assertTensorClose | ||||
| def _default_compare_fn(x, y): | |||||
| assertTensorClose(x.numpy(), y) | |||||
| def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): | |||||
| """ | |||||
| func: the function to run opr. | |||||
| compare_fn: the function to compare the result and expected, use assertTensorClose if None. | |||||
| ref_fn: the function to generate expected data, should assign output if None. | |||||
| cases: the list which have dict element, the list length should be 2 for dynamic shape test. | |||||
| and the dict should have input, | |||||
| and should have output if ref_fn is None. | |||||
| should use list for multiple inputs and outputs for each case. | |||||
| kwargs: The additional kwargs for opr func. | |||||
| simple examples: | |||||
| dtype = np.float32 | |||||
| cases = [{"input": [10, 20]}, {"input": [20, 30]}] | |||||
| opr_test(cases, | |||||
| F.eye, | |||||
| ref_fn=lambda n, m: np.eye(n, m).astype(dtype), | |||||
| dtype=dtype) | |||||
| """ | |||||
| def check_results(results, expected): | |||||
| if not isinstance(results, tuple): | |||||
| results = (results,) | |||||
| for r, e in zip(results, expected): | |||||
| compare_fn(r, e) | |||||
| def get_param(cases, idx): | |||||
| case = cases[idx] | |||||
| inp = case.get("input", None) | |||||
| outp = case.get("output", None) | |||||
| if inp is None: | |||||
| raise ValueError("the test case should have input") | |||||
| if not isinstance(inp, list): | |||||
| inp = (inp,) | |||||
| else: | |||||
| inp = tuple(inp) | |||||
| if ref_fn is not None and callable(ref_fn): | |||||
| outp = ref_fn(*inp) | |||||
| if outp is None: | |||||
| raise ValueError("the test case should have output or reference function") | |||||
| if not isinstance(outp, list): | |||||
| outp = (outp,) | |||||
| else: | |||||
| outp = tuple(outp) | |||||
| return inp, outp | |||||
| if len(cases) == 0: | |||||
| raise ValueError("should give one case at least") | |||||
| if not callable(func): | |||||
| raise ValueError("the input func should be callable") | |||||
| inp, outp = get_param(cases, 0) | |||||
| inp_tensor = [tensor(inpi) for inpi in inp] | |||||
| results = func(*inp_tensor, **kwargs) | |||||
| check_results(results, outp) | |||||
| def common_test_reduce(opr, ref_opr): | def common_test_reduce(opr, ref_opr): | ||||
| data1_shape = (5, 6, 7) | data1_shape = (5, 6, 7) | ||||
| data2_shape = (2, 9, 12) | data2_shape = (2, 9, 12) | ||||
| @@ -6,10 +6,12 @@ | |||||
| # Unless required by applicable law or agreed to in writing, | # Unless required by applicable law or agreed to in writing, | ||||
| # software distributed under the License is distributed on an | # software distributed under the License is distributed on an | ||||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| import os | |||||
| import platform | import platform | ||||
| import numpy as np | import numpy as np | ||||
| import pytest | import pytest | ||||
| from utils import opr_test | |||||
| import megengine.functional as F | import megengine.functional as F | ||||
| from megengine import tensor | from megengine import tensor | ||||
| @@ -19,72 +21,6 @@ from megengine.distributed.helper import get_device_count_by_fork | |||||
| from megengine.test import assertTensorClose | from megengine.test import assertTensorClose | ||||
| def _default_compare_fn(x, y): | |||||
| assertTensorClose(x.numpy(), y) | |||||
| def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): | |||||
| """ | |||||
| func: the function to run opr. | |||||
| compare_fn: the function to compare the result and expected, use assertTensorClose if None. | |||||
| ref_fn: the function to generate expected data, should assign output if None. | |||||
| cases: the list which have dict element, the list length should be 2 for dynamic shape test. | |||||
| and the dict should have input, | |||||
| and should have output if ref_fn is None. | |||||
| should use list for multiple inputs and outputs for each case. | |||||
| kwargs: The additional kwargs for opr func. | |||||
| simple examples: | |||||
| dtype = np.float32 | |||||
| cases = [{"input": [10, 20]}, {"input": [20, 30]}] | |||||
| opr_test(cases, | |||||
| F.eye, | |||||
| ref_fn=lambda n, m: np.eye(n, m).astype(dtype), | |||||
| dtype=dtype) | |||||
| """ | |||||
| def check_results(results, expected): | |||||
| if not isinstance(results, tuple): | |||||
| results = (results,) | |||||
| for r, e in zip(results, expected): | |||||
| compare_fn(r, e) | |||||
| def get_param(cases, idx): | |||||
| case = cases[idx] | |||||
| inp = case.get("input", None) | |||||
| outp = case.get("output", None) | |||||
| if inp is None: | |||||
| raise ValueError("the test case should have input") | |||||
| if not isinstance(inp, list): | |||||
| inp = (inp,) | |||||
| else: | |||||
| inp = tuple(inp) | |||||
| if ref_fn is not None and callable(ref_fn): | |||||
| outp = ref_fn(*inp) | |||||
| if outp is None: | |||||
| raise ValueError("the test case should have output or reference function") | |||||
| if not isinstance(outp, list): | |||||
| outp = (outp,) | |||||
| else: | |||||
| outp = tuple(outp) | |||||
| return inp, outp | |||||
| if len(cases) == 0: | |||||
| raise ValueError("should give one case at least") | |||||
| if not callable(func): | |||||
| raise ValueError("the input func should be callable") | |||||
| inp, outp = get_param(cases, 0) | |||||
| inp_tensor = [tensor(inpi) for inpi in inp] | |||||
| results = func(*inp_tensor, **kwargs) | |||||
| check_results(results, outp) | |||||
| def test_eye(): | def test_eye(): | ||||
| dtype = np.float32 | dtype = np.float32 | ||||
| cases = [{"input": [10, 20]}, {"input": [20, 30]}] | cases = [{"input": [10, 20]}, {"input": [20, 30]}] | ||||
| @@ -265,37 +201,37 @@ def test_flatten(): | |||||
| data1 = np.random.random(data1_shape).astype(np.float32) | data1 = np.random.random(data1_shape).astype(np.float32) | ||||
| def compare_fn(x, y): | def compare_fn(x, y): | ||||
| assert x.numpy().shape == y[0] | |||||
| assert x.shape[0] == y | |||||
| output0 = (2 * 3 * 4 * 5,) | output0 = (2 * 3 * 4 * 5,) | ||||
| output1 = (4 * 5 * 6 * 7,) | output1 = (4 * 5 * 6 * 7,) | ||||
| cases = [ | cases = [ | ||||
| {"input": data0, "output": (output0,)}, | |||||
| {"input": data1, "output": (output1,)}, | |||||
| {"input": data0, "output": output0}, | |||||
| {"input": data1, "output": output1}, | |||||
| ] | ] | ||||
| opr_test(cases, F.flatten, compare_fn=compare_fn) | opr_test(cases, F.flatten, compare_fn=compare_fn) | ||||
| output0 = (2, 3 * 4 * 5) | output0 = (2, 3 * 4 * 5) | ||||
| output1 = (4, 5 * 6 * 7) | output1 = (4, 5 * 6 * 7) | ||||
| cases = [ | cases = [ | ||||
| {"input": data0, "output": (output0,)}, | |||||
| {"input": data1, "output": (output1,)}, | |||||
| {"input": data0, "output": output0}, | |||||
| {"input": data1, "output": output1}, | |||||
| ] | ] | ||||
| opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1) | opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1) | ||||
| output0 = (2, 3, 4 * 5) | output0 = (2, 3, 4 * 5) | ||||
| output1 = (4, 5, 6 * 7) | output1 = (4, 5, 6 * 7) | ||||
| cases = [ | cases = [ | ||||
| {"input": data0, "output": (output0,)}, | |||||
| {"input": data1, "output": (output1,)}, | |||||
| {"input": data0, "output": output0}, | |||||
| {"input": data1, "output": output1}, | |||||
| ] | ] | ||||
| opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2) | opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2) | ||||
| output0 = (2, 3 * 4, 5) | output0 = (2, 3 * 4, 5) | ||||
| output1 = (4, 5 * 6, 7) | output1 = (4, 5 * 6, 7) | ||||
| cases = [ | cases = [ | ||||
| {"input": data0, "output": (output0,)}, | |||||
| {"input": data1, "output": (output1,)}, | |||||
| {"input": data0, "output": output0}, | |||||
| {"input": data1, "output": output1}, | |||||
| ] | ] | ||||
| opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, end_axis=2) | opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, end_axis=2) | ||||
| @@ -310,7 +246,7 @@ def test_broadcast(): | |||||
| data2 = np.random.random(input2_shape).astype(np.float32) | data2 = np.random.random(input2_shape).astype(np.float32) | ||||
| def compare_fn(x, y): | def compare_fn(x, y): | ||||
| assert x.numpy().shape == y | |||||
| assert x.shape[0] == y | |||||
| cases = [ | cases = [ | ||||
| {"input": [data1, output1_shape], "output": output1_shape}, | {"input": [data1, output1_shape], "output": output1_shape}, | ||||