GitOrigin-RevId: ee5a6874fb
tags/v0.6.0
| @@ -6,7 +6,8 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "src/aarch64/conv_bias/fp16/algos.h" | |||
| @@ -22,7 +23,7 @@ using namespace aarch64; | |||
| MIDOUT_DECL(megdnn_aarch64_conv_bias_stride2_conv2357_fp16) | |||
| bool ConvBiasImpl::AlgoF16DirectStride2::usable( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp16, 0, 0) { | |||
| auto&& fm = param.filter_meta; | |||
| @@ -47,7 +48,7 @@ bool ConvBiasImpl::AlgoF16DirectStride2::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoF16DirectStride2::get_workspace( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp16, 0, 1) { | |||
| auto wbundle = arm_common::MultithreadDirectConvCommon< | |||
| dt_float16, __fp16>::get_bundle_stride(param, m_large_group); | |||
| @@ -59,7 +60,7 @@ size_t ConvBiasImpl::AlgoF16DirectStride2::get_workspace( | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoF16DirectStride2::dispatch_kerns( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 2) { | |||
| return get_kimpls(param); | |||
| } | |||
| @@ -19,6 +19,7 @@ namespace aarch64 { | |||
| class ConvBiasImpl::AlgoF16DirectStride2 final : public AlgoBase { | |||
| SmallVector<NCBKern> get_kimpls(const NCBKernSizeParam& param) const; | |||
| bool m_large_group; | |||
| public: | |||
| AlgoF16DirectStride2(bool large_group) : m_large_group(large_group) {} | |||
| bool is_reproducible() const override { return true; } | |||
| @@ -26,15 +27,12 @@ public: | |||
| return m_large_group ? "ARMV8F16STRD2_LARGE_GROUP" | |||
| : "ARMV8F16STRD2_SMALL_GROUP"; | |||
| } | |||
| bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override; | |||
| }; | |||
| } // namespace aarch64 | |||
| } // namespace megdnn | |||
| @@ -22,7 +22,7 @@ using namespace aarch64; | |||
| MIDOUT_DECL(megdnn_aarch64_conv_bias_stride2_conv2357_fp32) | |||
| bool ConvBiasImpl::AlgoF32DirectStride2::usable( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 0) { | |||
| auto&& fm = param.filter_meta; | |||
| @@ -47,7 +47,7 @@ bool ConvBiasImpl::AlgoF32DirectStride2::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoF32DirectStride2::get_workspace( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 1) { | |||
| auto wbundle = arm_common::MultithreadDirectConvCommon< | |||
| float, float>::get_bundle_stride(param, m_large_group); | |||
| @@ -58,7 +58,7 @@ size_t ConvBiasImpl::AlgoF32DirectStride2::get_workspace( | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoF32DirectStride2::dispatch_kerns( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 2) { | |||
| return get_kimpls(param); | |||
| } | |||
| @@ -23,6 +23,7 @@ using FallbackConvBiasImpl = fallback::ConvBiasImpl; | |||
| class ConvBiasImpl::AlgoF32DirectStride2 final : public AlgoBase { | |||
| SmallVector<NCBKern> get_kimpls(const NCBKernSizeParam& param) const; | |||
| bool m_large_group; | |||
| public: | |||
| AlgoF32DirectStride2(bool large_group) : m_large_group(large_group) {} | |||
| bool is_reproducible() const override { return true; } | |||
| @@ -31,14 +32,12 @@ public: | |||
| : "ARMV8F32STRD2_SMALL_GROUP"; | |||
| } | |||
| bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override; | |||
| }; | |||
| } // namespace aarch64 | |||
| @@ -30,9 +30,8 @@ using megdnn::arm_common::TypeCvtOp; | |||
| /* ===================== matrix mul algo ===================== */ | |||
| bool ConvBiasImpl::AlgoS8MatrixMul::usable( | |||
| FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| auto&& fm = param.filter_meta; | |||
| return param.src_type.enumv() == DTypeEnum::QuantizedS8 && | |||
| param.dst_type.enumv() == DTypeEnum::QuantizedS8 && | |||
| @@ -13,6 +13,7 @@ | |||
| #include "src/aarch64/conv_bias/opr_impl.h" | |||
| #include "src/fallback/conv_bias/opr_impl.h" | |||
| #include "src/common/opr_delegate.h" | |||
| namespace megdnn { | |||
| namespace aarch64 { | |||
| @@ -27,21 +28,21 @@ public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "S8MATMUL"; } | |||
| bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| SmallVector<NCBKern> dispatch_kerns( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const override { | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t group = param.filter_meta.group; | |||
| return {{kimpl, {group, 1_z, 1_z}}}; | |||
| } | |||
| //! select matmul to the highest preference | |||
| bool is_preferred(FallbackConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override { | |||
| return static_cast<arm_common::ConvBiasImpl*>(opr) | |||
| bool is_preferred(const NCBKernSizeParam& param) const override { | |||
| static CpuOprDelegationStorage<1> storage; | |||
| auto conv_bias_opr = storage.get<ConvBias, 0>(); | |||
| return static_cast<ConvBiasImpl*>(conv_bias_opr) | |||
| ->is_matmul_quantized_prefer(param); | |||
| } | |||
| }; | |||
| @@ -32,9 +32,8 @@ using megdnn::arm_common::TypeCvtOp; | |||
| /* ===================== matrix mul algo ===================== */ | |||
| bool ConvBiasImpl::AlgoQU8MatrixMul::usable( | |||
| FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| auto&& fm = param.filter_meta; | |||
| return param.src_type.enumv() == DTypeEnum::Quantized8Asymm && | |||
| param.dst_type.enumv() == DTypeEnum::Quantized8Asymm && | |||
| @@ -13,6 +13,7 @@ | |||
| #include "src/aarch64/conv_bias/opr_impl.h" | |||
| #include "src/fallback/conv_bias/opr_impl.h" | |||
| #include "src/common/opr_delegate.h" | |||
| namespace megdnn { | |||
| namespace aarch64 { | |||
| @@ -27,22 +28,21 @@ public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "QU8MATMUL"; } | |||
| bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| SmallVector<NCBKern> dispatch_kerns( | |||
| FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t group = param.filter_meta.group; | |||
| return {{kimpl, {group, 1_z, 1_z}}}; | |||
| } | |||
| //! select matmul to the highest preference | |||
| bool is_preferred(FallbackConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override { | |||
| return static_cast<arm_common::ConvBiasImpl*>(opr) | |||
| bool is_preferred(const NCBKernSizeParam& param) const override { | |||
| static CpuOprDelegationStorage<1> storage; | |||
| auto conv_bias_opr = storage.get<ConvBias, 0>(); | |||
| return static_cast<ConvBiasImpl*>(conv_bias_opr) | |||
| ->is_matmul_quantized_prefer(param); | |||
| } | |||
| }; | |||
| @@ -27,10 +27,9 @@ using namespace arm_common; | |||
| /* ======================= AlgoFP16WinogradF23 ======================== */ | |||
| bool ConvBiasImpl::AlgoFP16WinogradF23::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 0, 0) { | |||
| using Strategy = winograd::winograd_2x3_4x4_f16; | |||
| Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
| @@ -38,13 +37,13 @@ bool ConvBiasImpl::AlgoFP16WinogradF23::usable( | |||
| strategy, m_tile_size, param) | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| (opr->param().format == param::ConvBias::Format::NCHW || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 2 && | |||
| param.output_block_size == 2 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::DEFAULT)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -69,10 +68,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF23, | |||
| /* ======================= AlgoFP16WinogradF45 ======================== */ | |||
| bool ConvBiasImpl::AlgoFP16WinogradF45::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 1, 0) { | |||
| using Strategy = winograd::winograd_4x5_1x1_f16; | |||
| Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
| @@ -80,13 +78,13 @@ bool ConvBiasImpl::AlgoFP16WinogradF45::usable( | |||
| strategy, m_tile_size, param) | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| (opr->param().format == param::ConvBias::Format::NCHW || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 4 && | |||
| param.output_block_size == 4 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::DEFAULT)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 5) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -109,10 +107,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF45, | |||
| /* ======================= AlgoFP16WinogradF63 ======================== */ | |||
| bool ConvBiasImpl::AlgoFP16WinogradF63::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 2, 0) { | |||
| using Strategy = winograd::winograd_6x3_1x1_f16; | |||
| Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
| @@ -120,13 +117,13 @@ bool ConvBiasImpl::AlgoFP16WinogradF63::usable( | |||
| strategy, m_tile_size, param) | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| (opr->param().format == param::ConvBias::Format::NCHW || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 6 && | |||
| param.output_block_size == 6 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::DEFAULT)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -149,10 +146,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF63, | |||
| /* ======================= AlgoFP16WinogradF23_8x8 ======================== */ | |||
| bool ConvBiasImpl::AlgoFP16WinogradF23_8x8::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 3, 0) { | |||
| if (param.filter_meta.icpg % 8 != 0 || param.filter_meta.ocpg % 8 != 0) | |||
| return false; | |||
| @@ -166,13 +162,13 @@ bool ConvBiasImpl::AlgoFP16WinogradF23_8x8::usable( | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| m_matmul_algo->packmode() == PackMode::NO_PACK && | |||
| (opr->param().format == param::ConvBias::Format::NCHW || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 2 && | |||
| param.output_block_size == 2 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::MK8)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -197,7 +193,7 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF23_8x8, | |||
| MIDOUT_DECL(megdnn_arm_common_conv_bias_fp16_kimpl) | |||
| bool ConvBiasImpl::AlgoF16Direct::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 0) { | |||
| auto&& fm = param.filter_meta; | |||
| @@ -227,7 +223,7 @@ bool ConvBiasImpl::AlgoF16Direct::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoF16Direct::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 1) { | |||
| auto wbundle = | |||
| MultithreadDirectConvCommon<dt_float16, __fp16>::get_bundle( | |||
| @@ -310,7 +306,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF16Direct::get_kimpls( | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF16Direct::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 1) { | |||
| return get_kimpls(param); | |||
| } | |||
| @@ -321,7 +317,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF16Direct::dispatch_kerns( | |||
| /* ===================== stride-1 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoF16DirectStride1::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 0) { | |||
| auto&& fm = param.filter_meta; | |||
| @@ -425,7 +421,7 @@ ConvBiasImpl::AlgoF16DirectStride1::get_kimpls( | |||
| } | |||
| size_t ConvBiasImpl::AlgoF16DirectStride1::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 1) { | |||
| auto bundle = MultithreadDirectConvCommon< | |||
| dt_float16, __fp16>::get_bundle_stride(param, m_large_group); | |||
| @@ -437,7 +433,7 @@ size_t ConvBiasImpl::AlgoF16DirectStride1::get_workspace( | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoF16DirectStride1::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 2) { | |||
| return get_kimpls(param); | |||
| } | |||
| @@ -88,14 +88,12 @@ public: | |||
| return m_large_group ? "F16DIRECT_LARGE_GROUP" | |||
| : "F16DIRECT_SMALL_GROUP"; | |||
| } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -109,12 +107,10 @@ public: | |||
| const char* name() const override { | |||
| return m_large_group ? "F16STRD1_LARGE_GROUP" : "F16STRD1_SMALL_GROUP"; | |||
| } | |||
| bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -6,7 +6,8 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "src/arm_common/conv_bias/fp32/algos.h" | |||
| @@ -30,9 +31,8 @@ using namespace arm_common; | |||
| /* ======================= AlgoFP32WinogradF23_4x4 ======================== */ | |||
| bool ConvBiasImpl::AlgoFP32WinogradF23_4x4::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 0, 0) { | |||
| if (param.filter_meta.icpg % 4 != 0 || param.filter_meta.ocpg % 4 != 0) | |||
| @@ -47,13 +47,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF23_4x4::usable( | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| m_matmul_algo->packmode() == PackMode::NO_PACK && | |||
| (opr->param().format == param::ConvBias::Format::NCHW || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 2 && | |||
| param.output_block_size == 2 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::MK4)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -76,10 +76,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF23_4x4, | |||
| /* ======================= AlgoFP32WinogradF63 ======================== */ | |||
| bool ConvBiasImpl::AlgoFP32WinogradF63::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 1, 0) { | |||
| using Strategy = winograd::winograd_6x3_1x1_f; | |||
| Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
| @@ -87,13 +86,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF63::usable( | |||
| strategy, m_tile_size, param) | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| (opr->param().format == param::ConvBias::Format::NCHW || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 6 && | |||
| param.output_block_size == 6 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::DEFAULT)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -116,10 +115,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63, | |||
| /* ======================= AlgoFP32WinogradF54 ======================== */ | |||
| bool ConvBiasImpl::AlgoFP32WinogradF54::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 2, 0) { | |||
| using Strategy = winograd::winograd_5x4_1x1_f; | |||
| Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
| @@ -127,13 +125,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF54::usable( | |||
| strategy, m_tile_size, param) | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| (opr->param().format == param::ConvBias::Format::NCHW || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 5 && | |||
| param.output_block_size == 5 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::DEFAULT)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 4) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -156,10 +154,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF54, | |||
| /* ======================= AlgoFP32WinogradF45 ======================== */ | |||
| bool ConvBiasImpl::AlgoFP32WinogradF45::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 3, 0) { | |||
| using Strategy = winograd::winograd_4x5_1x1_f; | |||
| Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
| @@ -167,13 +164,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF45::usable( | |||
| strategy, m_tile_size, param) | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| (opr->param().format == param::ConvBias::Format::NCHW || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 4 && | |||
| param.output_block_size == 4 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::DEFAULT)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 5) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -196,10 +193,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF45, | |||
| /* ======================= AlgoFP32WinogradF63_4x4 ======================== */ | |||
| bool ConvBiasImpl::AlgoFP32WinogradF63_4x4::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 4, 0) { | |||
| if (param.filter_meta.icpg % 4 != 0 || param.filter_meta.ocpg % 4 != 0) | |||
| return false; | |||
| @@ -213,13 +209,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF63_4x4::usable( | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| m_matmul_algo->packmode() == PackMode::NO_PACK && | |||
| (opr->param().format == param::ConvBias::Format::NCHW || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 6 && | |||
| param.output_block_size == 6 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::MK4)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -244,9 +240,8 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63_4x4, | |||
| /* =================== AlgoFP32WinogradF23_4x4_NCHW44 =================== */ | |||
| bool ConvBiasImpl::AlgoFP32WinogradF23_4x4_NCHW44::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, | |||
| midout_iv("AlgoFP32WinogradF23_4x4_NCHW44"_hash)) { | |||
| @@ -262,13 +257,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF23_4x4_NCHW44::usable( | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| m_matmul_algo->packmode() == | |||
| fallback::MatrixMulImpl::AlgoBase::PackMode::NO_PACK && | |||
| (opr->param().format == param::ConvBias::Format::NCHW44 || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW44 || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW44_WINOGRAD && | |||
| opr->param().output_block_size == 2 && | |||
| param.output_block_size == 2 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::MK4)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -291,10 +286,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF23_4x4_NCHW44, | |||
| /* =================== AlgoFP32WinogradF63_4x4_NCHW44 ===================== */ | |||
| bool ConvBiasImpl::AlgoFP32WinogradF63_4x4_NCHW44::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, | |||
| midout_iv("AlgoFP32WinogradF63_4x4_NCHW44"_hash)) { | |||
| if (param.filter_meta.icpg % 4 != 0 || param.filter_meta.ocpg % 4 != 0) | |||
| @@ -309,13 +303,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF63_4x4_NCHW44::usable( | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| m_matmul_algo->packmode() == | |||
| fallback::MatrixMulImpl::AlgoBase::PackMode::NO_PACK && | |||
| (opr->param().format == param::ConvBias::Format::NCHW44 || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW44 || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW44_WINOGRAD && | |||
| opr->param().output_block_size == 6 && | |||
| param.output_block_size == 6 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::MK4)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -341,7 +335,7 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63_4x4_NCHW44, | |||
| MIDOUT_DECL(megdnn_arm_common_conv_bias_f32_kimpl); | |||
| bool ConvBiasImpl::AlgoF32Direct::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 0, 0) { | |||
| auto&& fm = param.filter_meta; | |||
| @@ -370,7 +364,7 @@ bool ConvBiasImpl::AlgoF32Direct::usable( | |||
| return false; | |||
| } | |||
| size_t ConvBiasImpl::AlgoF32Direct::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 0, 1) { | |||
| auto wbundle = MultithreadDirectConvCommon<float, float>::get_bundle( | |||
| param, m_large_group); | |||
| @@ -409,7 +403,8 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF32Direct::get_kimpls( | |||
| } | |||
| for (size_t ic = 0; ic < IC; ic++) { | |||
| MultithreadDirectConvCommon<float, float>::copy_padding_kern( | |||
| bundle, kern_param, ncb_index, {ncb_index.thread_id, 0, ic}); | |||
| bundle, kern_param, ncb_index, | |||
| {ncb_index.thread_id, 0, ic}); | |||
| } | |||
| for (size_t oc = 0; oc < OC; oc++) { | |||
| MultithreadDirectConvCommon<float, float>::do_conv_kern( | |||
| @@ -449,7 +444,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF32Direct::get_kimpls( | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF32Direct::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 0, 1) { | |||
| return get_kimpls(param); | |||
| } | |||
| @@ -458,7 +453,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF32Direct::dispatch_kerns( | |||
| } | |||
| /* ===================== stride-1 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoF32DirectStride1::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 1, 1) { | |||
| auto&& fm = param.filter_meta; | |||
| @@ -484,7 +479,7 @@ bool ConvBiasImpl::AlgoF32DirectStride1::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoF32DirectStride1::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 1, 1) { | |||
| auto bundle = | |||
| MultithreadDirectConvCommon<float, float>::get_bundle_stride( | |||
| @@ -575,7 +570,7 @@ ConvBiasImpl::AlgoF32DirectStride1::get_kimpls( | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoF32DirectStride1::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 1, 2) { | |||
| return get_kimpls(param); | |||
| } | |||
| @@ -586,7 +581,7 @@ ConvBiasImpl::AlgoF32DirectStride1::dispatch_kerns( | |||
| /* ===================== stride-2 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoF32DirectStride2::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 2, 0) { | |||
| auto&& fm = param.filter_meta; | |||
| @@ -611,7 +606,7 @@ bool ConvBiasImpl::AlgoF32DirectStride2::usable( | |||
| return false; | |||
| } | |||
| size_t ConvBiasImpl::AlgoF32DirectStride2::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 2, 1) { | |||
| auto bundle = | |||
| MultithreadDirectConvCommon<float, float>::get_bundle_stride( | |||
| @@ -701,7 +696,7 @@ ConvBiasImpl::AlgoF32DirectStride2::get_kimpls( | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoF32DirectStride2::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 2, 2) { | |||
| return get_kimpls(param); | |||
| } | |||
| @@ -137,13 +137,11 @@ public: | |||
| return m_large_group ? "F32DIRECT_LARGE_GROUP" | |||
| : "F32DIRECT_SMALL_GROUP"; | |||
| } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -157,13 +155,11 @@ public: | |||
| const char* name() const override { | |||
| return m_large_group ? "F32STRD1_LARGE_GROUP" : "F32STRD1_SMALL_GROUP"; | |||
| } | |||
| bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -177,13 +173,11 @@ public: | |||
| const char* name() const override { | |||
| return m_large_group ? "F32STRD2_LARGE_GROUP" : "F32STRD2_SMALL_GROUP"; | |||
| } | |||
| bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -194,13 +188,11 @@ public: | |||
| AlgoF32DirectNCHW44() {} | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "F32_CONV_NCHW44_DIRECT"; } | |||
| bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -211,13 +203,11 @@ public: | |||
| AlgoF32DirectNCHWNCHW44() {} | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "F32_CONV_NCHW_NCHW44"; } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -227,13 +217,11 @@ class ConvBiasImpl::AlgoF32ChannelWiseNCHW44 final : public AlgoBase { | |||
| public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "F32_CHANNEL_WISE_NCHW44"; } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -10,8 +10,8 @@ | |||
| * implied. | |||
| */ | |||
| #include "src/arm_common/conv_bias/fp32/channel_wise_nchw44_kern.h" | |||
| #include "src/arm_common/conv_bias/fp32/algos.h" | |||
| #include "src/arm_common/conv_bias/fp32/channel_wise_nchw44_kern.h" | |||
| #include "src/arm_common/elemwise_op.h" | |||
| #include "midout.h" | |||
| @@ -26,8 +26,7 @@ using conv_fun = std::function<void( | |||
| MIDOUT_DECL(conv_bias_fp32_channel_wise_nchw44) | |||
| bool ConvBiasImpl::AlgoF32ChannelWiseNCHW44::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const { | |||
| const NCBKernSizeParam& param, AlgoSelectionStrategy) const { | |||
| auto&& fm = param.filter_meta; | |||
| auto FH = fm.spatial[0]; | |||
| size_t OC = fm.ocpg; | |||
| @@ -49,13 +48,13 @@ bool ConvBiasImpl::AlgoF32ChannelWiseNCHW44::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoF32ChannelWiseNCHW44::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam&) const { | |||
| const NCBKernSizeParam&) const { | |||
| return 0; | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoF32ChannelWiseNCHW44::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| const constexpr size_t pack_group_size = 4_z; | |||
| auto fm = param.filter_meta; | |||
| const int batch = param.n; | |||
| @@ -159,8 +159,7 @@ static void do_conv_kern(const WorkspaceBundle& bundle, | |||
| } // namespace | |||
| /* ===================== stride1 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoF32DirectNCHW44::usable(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param, | |||
| bool ConvBiasImpl::AlgoF32DirectNCHW44::usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const { | |||
| auto&& fm = param.filter_meta; | |||
| auto fh = fm.spatial[0]; | |||
| @@ -182,13 +181,13 @@ bool ConvBiasImpl::AlgoF32DirectNCHW44::usable(fallback::ConvBiasImpl*, | |||
| } | |||
| size_t ConvBiasImpl::AlgoF32DirectNCHW44::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoF32DirectNCHW44::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto fm = param.filter_meta; | |||
| const int batch = param.n; | |||
| const int group = fm.group; | |||
| @@ -188,8 +188,7 @@ static void do_conv_kern(const WorkspaceBundle& bundle, | |||
| } // namespace | |||
| bool ConvBiasImpl::AlgoF32DirectNCHWNCHW44::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const { | |||
| const NCBKernSizeParam& param, AlgoSelectionStrategy) const { | |||
| auto&& fm = param.filter_meta; | |||
| auto fh = fm.spatial[0]; | |||
| int oc = fm.ocpg; | |||
| @@ -209,13 +208,13 @@ bool ConvBiasImpl::AlgoF32DirectNCHWNCHW44::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoF32DirectNCHWNCHW44::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoF32DirectNCHWNCHW44::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto fm = param.filter_meta; | |||
| const int batch = param.n; | |||
| const int group = fm.group; | |||
| @@ -28,7 +28,7 @@ using namespace arm_common; | |||
| MIDOUT_DECL(megdnn_arm_common_conv_bias_int8) | |||
| /* ===================== stride1 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoS8DirectStride1::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| bool avaible = direct_int8_stride1::can_conv_direct_stride1_int8(param); | |||
| auto fm = param.filter_meta; | |||
| @@ -40,7 +40,7 @@ bool ConvBiasImpl::AlgoS8DirectStride1::usable( | |||
| return avaible; | |||
| } | |||
| bool ConvBiasImpl::AlgoS8DirectStride1::is_preferred( | |||
| megdnn::fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto&& fm = param.filter_meta; | |||
| auto FH = fm.spatial[0]; | |||
| auto OC = fm.ocpg; | |||
| @@ -53,14 +53,14 @@ bool ConvBiasImpl::AlgoS8DirectStride1::is_preferred( | |||
| } | |||
| size_t ConvBiasImpl::AlgoS8DirectStride1::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto bundle = direct_int8_stride1::get_bundle(param, m_large_group); | |||
| return bundle.total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoS8DirectStride1::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8, 1, 0) { | |||
| return direct_int8_stride1::get_kimpls(param, m_large_group); | |||
| } | |||
| @@ -70,20 +70,20 @@ ConvBiasImpl::AlgoS8DirectStride1::dispatch_kerns( | |||
| /* ===================== stride1 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoS8ChanWiseStride1NCHW44::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const { | |||
| return channel_wise_nchw44::stride1::is_available(param); | |||
| } | |||
| size_t ConvBiasImpl::AlgoS8ChanWiseStride1NCHW44::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto bundle = channel_wise_nchw44::stride1::get_bundle(param); | |||
| return bundle.total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoS8ChanWiseStride1NCHW44::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8, | |||
| midout_iv("AlgoS8ChanWiseStride1NCHW44"_hash)) { | |||
| return channel_wise_nchw44::stride1::get_kimpls(param); | |||
| @@ -94,20 +94,20 @@ ConvBiasImpl::AlgoS8ChanWiseStride1NCHW44::dispatch_kerns( | |||
| /* ===================== stride2 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoS8ChanWiseStride2NCHW44::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const { | |||
| return channel_wise_nchw44::stride2::is_available(param); | |||
| } | |||
| size_t ConvBiasImpl::AlgoS8ChanWiseStride2NCHW44::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto bundle = channel_wise_nchw44::stride2::get_bundle(param); | |||
| return bundle.total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoS8ChanWiseStride2NCHW44::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8, | |||
| midout_iv("AlgoS8ChanWiseStride2NCHW44"_hash)) { | |||
| return channel_wise_nchw44::stride2::get_kimpls(param); | |||
| @@ -118,7 +118,7 @@ ConvBiasImpl::AlgoS8ChanWiseStride2NCHW44::dispatch_kerns( | |||
| /* ===================== stride2 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoS8DirectStride2::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| bool avaible = direct_int8_stride2::can_conv_direct_stride2_int8(param); | |||
| if (algo_selection_strategy == | |||
| @@ -130,14 +130,14 @@ bool ConvBiasImpl::AlgoS8DirectStride2::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoS8DirectStride2::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto bundle = direct_int8_stride2::get_bundle(param, m_large_group); | |||
| return bundle.total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoS8DirectStride2::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8, 1, 1) { | |||
| return direct_int8_stride2::get_kimpls(param, m_large_group); | |||
| } | |||
| @@ -148,7 +148,7 @@ ConvBiasImpl::AlgoS8DirectStride2::dispatch_kerns( | |||
| #if __ARM_FEATURE_DOTPROD | |||
| /* ===================== dot stride1 algo ======================== */ | |||
| bool ConvBiasImpl::AlgoDotS8DirectStride1::usable( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| bool avaible = | |||
| direct_dotprod_int8_stride1::can_conv_direct_stride1_int8(param); | |||
| @@ -163,14 +163,14 @@ bool ConvBiasImpl::AlgoDotS8DirectStride1::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoDotS8DirectStride1::get_workspace( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto bundle = direct_dotprod_int8_stride1::get_bundle(param, m_large_group); | |||
| return bundle.total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoDotS8DirectStride1::dispatch_kerns( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8, 2, 1) { | |||
| return direct_dotprod_int8_stride1::get_kimpls(param, m_large_group); | |||
| } | |||
| @@ -180,7 +180,7 @@ ConvBiasImpl::AlgoDotS8DirectStride1::dispatch_kerns( | |||
| /* ===================== dot stride2 algo ======================== */ | |||
| bool ConvBiasImpl::AlgoDotS8DirectStride2::usable( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| bool avaible = | |||
| direct_dotprod_int8_stride2::can_conv_direct_stride2_int8(param); | |||
| @@ -193,14 +193,14 @@ bool ConvBiasImpl::AlgoDotS8DirectStride2::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoDotS8DirectStride2::get_workspace( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto bundle = direct_dotprod_int8_stride2::get_bundle(param, m_large_group); | |||
| return bundle.total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoDotS8DirectStride2::dispatch_kerns( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8, 2, 2) { | |||
| return direct_dotprod_int8_stride2::get_kimpls(param, m_large_group); | |||
| } | |||
| @@ -212,7 +212,7 @@ ConvBiasImpl::AlgoDotS8DirectStride2::dispatch_kerns( | |||
| /* ======================= AlgoS8WinogradF23_8x8 ======================== */ | |||
| bool ConvBiasImpl::AlgoS8WinogradF23_8x8::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| if (param.filter_meta.icpg % 8 != 0 || param.filter_meta.ocpg % 8 != 0) | |||
| return false; | |||
| @@ -225,13 +225,14 @@ bool ConvBiasImpl::AlgoS8WinogradF23_8x8::usable( | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| m_matmul_algo->packmode() == PackMode::NO_PACK && | |||
| ((opr->param().format == param::ConvBias::Format::NCHW && | |||
| ((param.filter_meta.format == param::ConvBias::Format::NCHW && | |||
| param.filter_type.enumv() == DTypeEnum::QuantizedS8) || | |||
| (opr->param().format == param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 2 && | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| param.output_block_size == 2 && | |||
| param.winograd_matmul_format == param::MatrixMul::Format::MK8 && | |||
| param.filter_type.enumv() == DTypeEnum::QuantizedS16)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -251,7 +252,7 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoS8WinogradF23_8x8, | |||
| //=========================== input int8 compute float32 ========= | |||
| bool ConvBiasImpl::AlgoS8CF32WinogradF23_4x4_NCHW44::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8, | |||
| @@ -270,14 +271,14 @@ bool ConvBiasImpl::AlgoS8CF32WinogradF23_4x4_NCHW44::usable( | |||
| .get_matmul_kern_param(param)); | |||
| return is_matmul_usable && | |||
| m_matmul_algo->packmode() == PackMode::NO_PACK && | |||
| ((opr->param().format == param::ConvBias::Format::NCHW44 && | |||
| ((param.filter_meta.format == param::ConvBias::Format::NCHW44 && | |||
| param.filter_type.enumv() == DTypeEnum::QuantizedS8) || | |||
| ((opr->param().format == | |||
| ((param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW44_WINOGRAD) && | |||
| opr->param().output_block_size == 2 && | |||
| param.output_block_size == 2 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::MK4)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -302,40 +303,42 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoS8CF32WinogradF23_4x4_NCHW44, | |||
| /* ======================= AlgoS8WinogradF23_8x8_NCHW44 ======================== */ | |||
| bool ConvBiasImpl::AlgoS8WinogradF23_8x8_NCHW44::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MIDOUT_BEGIN( | |||
| megdnn_arm_common_conv_bias_int8, | |||
| midout_iv( | |||
| "arm_common_AlgoS8WinogradF23_8x8_NCHW44::usable"_hash)) { | |||
| if (param.filter_meta.icpg % 8 != 0 || param.filter_meta.ocpg % 8 != 0) | |||
| return false; | |||
| using Strategy = winograd::winograd_2x3_8x8_s8_nchw44; | |||
| Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
| auto&& matmul_param = | |||
| megdnn::winograd::ConvBias<Strategy, param::MatrixMul::Format::MK8>( | |||
| strategy, m_tile_size, param) | |||
| .get_matmul_kern_param(param); | |||
| bool is_matmul_usable = m_matmul_algo->usable(matmul_param); | |||
| return is_matmul_usable && | |||
| ((opr->param().format == param::ConvBias::Format::NCHW44 && | |||
| param.filter_type.enumv() == DTypeEnum::QuantizedS8) || | |||
| (opr->param().format == param::ConvBias::Format::NCHW44_WINOGRAD && | |||
| opr->param().output_block_size == 2 && | |||
| param.winograd_matmul_format == param::MatrixMul::Format::MK8 && | |||
| param.filter_type.enumv() == DTypeEnum::QuantizedS16)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| param.filter_meta.stride[0] == 1) && | |||
| (param.filter_meta.dilation[0] == param.filter_meta.dilation[1] && | |||
| param.filter_meta.dilation[0] == 1) && | |||
| param.compute_mode == param::ConvBias::ComputeMode::DEFAULT && | |||
| param.src_type.enumv() == DTypeEnum::QuantizedS8 && | |||
| param.bias_type.enumv() == DTypeEnum::QuantizedS32 && | |||
| param.dst_type.enumv() == DTypeEnum::QuantizedS8; | |||
| midout_iv("arm_common_AlgoS8WinogradF23_8x8_NCHW44::usable"_hash)) { | |||
| if (param.filter_meta.icpg % 8 != 0 || param.filter_meta.ocpg % 8 != 0) | |||
| return false; | |||
| using Strategy = winograd::winograd_2x3_8x8_s8_nchw44; | |||
| Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
| auto&& matmul_param = | |||
| megdnn::winograd::ConvBias<Strategy, | |||
| param::MatrixMul::Format::MK8>( | |||
| strategy, m_tile_size, param) | |||
| .get_matmul_kern_param(param); | |||
| bool is_matmul_usable = m_matmul_algo->usable(matmul_param); | |||
| return is_matmul_usable && | |||
| ((param.filter_meta.format == param::ConvBias::Format::NCHW44 && | |||
| param.filter_type.enumv() == DTypeEnum::QuantizedS8) || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW44_WINOGRAD && | |||
| param.output_block_size == 2 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::MK8 && | |||
| param.filter_type.enumv() == DTypeEnum::QuantizedS16)) && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| param.filter_meta.stride[0] == 1) && | |||
| (param.filter_meta.dilation[0] == | |||
| param.filter_meta.dilation[1] && | |||
| param.filter_meta.dilation[0] == 1) && | |||
| param.compute_mode == param::ConvBias::ComputeMode::DEFAULT && | |||
| param.src_type.enumv() == DTypeEnum::QuantizedS8 && | |||
| param.bias_type.enumv() == DTypeEnum::QuantizedS32 && | |||
| param.dst_type.enumv() == DTypeEnum::QuantizedS8; | |||
| } | |||
| MIDOUT_END(); | |||
| return false; | |||
| @@ -26,16 +26,13 @@ public: | |||
| const char* name() const override { | |||
| return m_large_group ? "S8STRD1_LARGE_GROUP" : "S8STRD1_SMALL_GROUP"; | |||
| } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(megdnn::fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| }; | |||
| class ConvBiasImpl::AlgoS8DirectStride2 final : public AlgoBase { | |||
| @@ -47,13 +44,11 @@ public: | |||
| const char* name() const override { | |||
| return m_large_group ? "S8STRD2_LARGE_GROUP" : "S8STRD2_SMALL_GROUP"; | |||
| } | |||
| bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -62,15 +57,12 @@ public: | |||
| AlgoS8DirectNCHW44() {} | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "S8_NCHW44_DIRECT"; } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(megdnn::fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| }; | |||
| class ConvBiasImpl::AlgoS8DirectNCHWNCHW44 final : public AlgoBase { | |||
| @@ -78,27 +70,22 @@ public: | |||
| AlgoS8DirectNCHWNCHW44() {} | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "S8_CONV_NCHW_NCHW44"; } | |||
| bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(megdnn::fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| }; | |||
| class ConvBiasImpl::AlgoS8ChanWiseStride1NCHW44 final : public AlgoBase { | |||
| public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "S8_CHAN_WISE_STRD1_NCHW44"; } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -106,12 +93,10 @@ class ConvBiasImpl::AlgoS8ChanWiseStride2NCHW44 final : public AlgoBase { | |||
| public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "S8_CHAN_WISE_STRD2_NCHW44"; } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -121,13 +106,11 @@ class ConvBiasImpl::AlgoDotS8DirectNCHWNCHW44 final : public AlgoBase { | |||
| public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "ARMDOTS8_NCHW_NCHW44"; } | |||
| bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam&, | |||
| bool usable(const NCBKernSizeParam&, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| size_t get_workspace(const NCBKernSizeParam&) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -142,13 +125,11 @@ public: | |||
| return m_large_group ? "ARMDOTS8STRD1_LARGE_GROUP" | |||
| : "ARMDOTS8STRD1_SMALL_GROUP"; | |||
| } | |||
| bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam&, | |||
| bool usable(const NCBKernSizeParam&, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| size_t get_workspace(const NCBKernSizeParam&) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -163,13 +144,11 @@ public: | |||
| : "ARMDOTS8STRD2_SMALL_GROUP"; | |||
| } | |||
| bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam&, | |||
| bool usable(const NCBKernSizeParam&, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| size_t get_workspace(const NCBKernSizeParam&) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -178,21 +157,16 @@ public: | |||
| AlgoDotS8Direct_NCHW44() {} | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { | |||
| return "ARMDOTS8DIRECT_NCHW44"; | |||
| } | |||
| bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam&, | |||
| const char* name() const override { return "ARMDOTS8DIRECT_NCHW44"; } | |||
| bool usable(const NCBKernSizeParam&, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| size_t get_workspace(const NCBKernSizeParam&) const override; | |||
| SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(megdnn::fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| }; | |||
| #endif | |||
| @@ -161,7 +161,7 @@ static void conv_kern(const WorkspaceBundle& bundle, | |||
| } // namespace | |||
| bool ConvBiasImpl::AlgoDotS8Direct_NCHW44::usable( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| MEGDNN_MARK_USED_VAR(algo_selection_strategy); | |||
| auto&& fm = param.filter_meta; | |||
| @@ -199,19 +199,19 @@ bool ConvBiasImpl::AlgoDotS8Direct_NCHW44::usable( | |||
| } | |||
| bool ConvBiasImpl::AlgoDotS8Direct_NCHW44::is_preferred( | |||
| megdnn::fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| return true; | |||
| } | |||
| size_t ConvBiasImpl::AlgoDotS8Direct_NCHW44::get_workspace( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoDotS8Direct_NCHW44::dispatch_kerns( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8, | |||
| midout_iv("ALGODOTS8DIRECT_NCHW44"_hash)) { | |||
| auto fm = param.filter_meta; | |||
| @@ -189,7 +189,7 @@ static void do_conv_kern(const WorkspaceBundle& bundle, | |||
| } | |||
| bool ConvBiasImpl::AlgoS8DirectNCHW44::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| MEGDNN_MARK_USED_VAR(algo_selection_strategy); | |||
| auto&& fm = param.filter_meta; | |||
| @@ -213,22 +213,20 @@ bool ConvBiasImpl::AlgoS8DirectNCHW44::usable( | |||
| } | |||
| bool ConvBiasImpl::AlgoS8DirectNCHW44::is_preferred( | |||
| megdnn::fallback::ConvBiasImpl* conv_bias_impl_ptr, | |||
| const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| // TODO: benchmark and fix | |||
| MEGDNN_MARK_USED_VAR(conv_bias_impl_ptr); | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| return false; | |||
| } | |||
| size_t ConvBiasImpl::AlgoS8DirectNCHW44::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoS8DirectNCHW44::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto fm = param.filter_meta; | |||
| size_t N = param.n; | |||
| size_t IC = fm.icpg; | |||
| @@ -214,7 +214,7 @@ static void do_conv_kern(const WorkspaceBundle& bundle, | |||
| } | |||
| bool ConvBiasImpl::AlgoS8DirectNCHWNCHW44::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| MEGDNN_MARK_USED_VAR(algo_selection_strategy); | |||
| auto&& fm = param.filter_meta; | |||
| @@ -236,22 +236,20 @@ bool ConvBiasImpl::AlgoS8DirectNCHWNCHW44::usable( | |||
| } | |||
| bool ConvBiasImpl::AlgoS8DirectNCHWNCHW44::is_preferred( | |||
| megdnn::fallback::ConvBiasImpl* conv_bias_impl_ptr, | |||
| const NCBKernSizeParam& param) const { | |||
| // TODO: benchmark and fix | |||
| MEGDNN_MARK_USED_VAR(conv_bias_impl_ptr); | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| return false; | |||
| } | |||
| size_t ConvBiasImpl::AlgoS8DirectNCHWNCHW44::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoS8DirectNCHWNCHW44::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto fm = param.filter_meta; | |||
| size_t N = param.n; | |||
| size_t OC = fm.ocpg; | |||
| @@ -172,8 +172,7 @@ static void do_conv_kern(const WorkspaceBundle& bundle, | |||
| } // namespace | |||
| bool ConvBiasImpl::AlgoDotS8DirectNCHWNCHW44::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const { | |||
| const NCBKernSizeParam& param, AlgoSelectionStrategy) const { | |||
| auto&& fm = param.filter_meta; | |||
| auto fh = fm.spatial[0]; | |||
| int oc = fm.ocpg; | |||
| @@ -194,13 +193,13 @@ bool ConvBiasImpl::AlgoDotS8DirectNCHWNCHW44::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoDotS8DirectNCHWNCHW44::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoDotS8DirectNCHWNCHW44::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto fm = param.filter_meta; | |||
| const int batch = param.n; | |||
| const int group = fm.group; | |||
| @@ -83,7 +83,7 @@ void get_rectified_size_str2(size_t IH, size_t IW, size_t OH, size_t OW, | |||
| /* ===================== direct algo ===================== */ | |||
| bool ConvBiasImpl::AlgoI8x8x16Direct::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 1, 0) { | |||
| auto&& fm = param.filter_meta; | |||
| @@ -129,7 +129,7 @@ WorkspaceBundle ConvBiasImpl::AlgoI8x8x16Direct::get_bundle( | |||
| return {nullptr, {part0, part1}}; | |||
| } | |||
| size_t ConvBiasImpl::AlgoI8x8x16Direct::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 1, 1) { | |||
| auto bundle = get_bundle(param); | |||
| return bundle.total_size_in_bytes(); | |||
| @@ -293,7 +293,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoI8x8x16Direct::get_kimpls( | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoI8x8x16Direct::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 1, 2) { | |||
| return get_kimpls(param); | |||
| } | |||
| @@ -303,7 +303,7 @@ ConvBiasImpl::AlgoI8x8x16Direct::dispatch_kerns( | |||
| /* ===================== stride-2 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoI8x8x16Stride2::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 2, 0) { | |||
| auto&& fm = param.filter_meta; | |||
| @@ -350,7 +350,7 @@ WorkspaceBundle ConvBiasImpl::AlgoI8x8x16Stride2::get_bundle( | |||
| return {nullptr, {part0, part1}}; | |||
| } | |||
| size_t ConvBiasImpl::AlgoI8x8x16Stride2::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 2, 1) { | |||
| auto bundle = get_bundle(param); | |||
| return bundle.total_size_in_bytes(); | |||
| @@ -513,7 +513,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoI8x8x16Stride2::get_kimpls( | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoI8x8x16Stride2::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 2, 2) { | |||
| return get_kimpls(param); | |||
| } | |||
| @@ -521,7 +521,7 @@ ConvBiasImpl::AlgoI8x8x16Stride2::dispatch_kerns( | |||
| return {}; | |||
| } | |||
| bool ConvBiasImpl::AlgoI8x8x16Stride2Filter2::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 3, 0) { | |||
| return param.bias_mode == BiasMode::NO_BIAS && | |||
| @@ -534,7 +534,7 @@ bool ConvBiasImpl::AlgoI8x8x16Stride2Filter2::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoI8x8x16Stride2Filter2::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 3, 1) { | |||
| return conv_bias::get_workspace_in_bytes_conv_int8x8x16_stride2_flt2( | |||
| param); | |||
| @@ -545,7 +545,7 @@ size_t ConvBiasImpl::AlgoI8x8x16Stride2Filter2::get_workspace( | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoI8x8x16Stride2Filter2::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| // return {conv_bias::conv_int8x8x16_stride2_flt2,true}; | |||
| auto kern = [](const NCBKernParam& param, const NCBKernIndex& ncb_index) { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 3, 2) { | |||
| @@ -35,12 +35,10 @@ public: | |||
| return m_large_group ? "I8816DIRECT_LARGE_GROUP" | |||
| : "I8816DIRECT_SMALL_GROUP"; | |||
| } | |||
| bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -64,13 +62,11 @@ public: | |||
| return m_large_group ? "I8816STRD2_LARGE_GROUP" | |||
| : "I8816STRD2_SMALL_GROUP"; | |||
| } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -79,13 +75,11 @@ public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "I8816STRD2F2"; } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -232,7 +232,7 @@ void* const ConvBiasImpl::sm_arm_common_algo_type = | |||
| &arm_common_algo_type_storage; | |||
| bool ConvBiasImpl::is_matmul_quantized_prefer( | |||
| const ConvBiasImpl::NCBKernSizeParam& param) { | |||
| const ConvBiasImpl::NCBKernSizeParam& param) const { | |||
| // fallback::ConvBiasImpl::NCBKernParam conv_ncb_param; | |||
| fallback::ConvBiasImpl::NCBKernSizeParam conv_ncb_param( | |||
| param, 0, param::MatrixMul::Format::DEFAULT, {}, 0, | |||
| @@ -27,7 +27,7 @@ public: | |||
| SmallVector<AlgoBase*> algo_pack() override; | |||
| bool is_matmul_quantized_prefer( | |||
| const ConvBiasImpl::NCBKernSizeParam& ncb_param) override; | |||
| const ConvBiasImpl::NCBKernSizeParam& ncb_param) const override; | |||
| class AlgoPack; | |||
| protected: | |||
| @@ -6,17 +6,18 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "src/arm_common/conv_bias/quint8/algos.h" | |||
| #include "midout.h" | |||
| #include "src/arm_common/conv_bias/quint8/stride1.h" | |||
| #include "src/arm_common/conv_bias/quint8/stride2.h" | |||
| #include "src/arm_common/conv_bias/quint8/stride1_dotprod.h" | |||
| #include "src/arm_common/conv_bias/quint8/stride2.h" | |||
| #include "src/arm_common/conv_bias/quint8/stride2_dotprod.h" | |||
| #include "src/arm_common/elemwise_op.h" | |||
| #include "src/fallback/conv_bias/common.h" | |||
| #include "midout.h" | |||
| MIDOUT_DECL(megdnn_arm_common_conv_bias_quint8) | |||
| @@ -25,7 +26,7 @@ using namespace arm_common; | |||
| /* ===================== stride1 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoQU8DirectStride1::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| bool avaible = direct_quint8_stride1::can_conv_direct_stride1_quint8(param); | |||
| if (algo_selection_strategy == | |||
| @@ -37,14 +38,14 @@ bool ConvBiasImpl::AlgoQU8DirectStride1::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoQU8DirectStride1::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto bundle = direct_quint8_stride1::get_bundle(param, m_large_group); | |||
| return bundle.total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoQU8DirectStride1::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_quint8, 0, 0) { | |||
| return direct_quint8_stride1::get_kimpls(param, m_large_group); | |||
| } | |||
| @@ -54,7 +55,7 @@ ConvBiasImpl::AlgoQU8DirectStride1::dispatch_kerns( | |||
| /* ===================== stride2 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoQU8DirectStride2::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| bool avaible = direct_quint8_stride2::can_conv_direct_stride2_quint8(param); | |||
| if (algo_selection_strategy == | |||
| @@ -66,14 +67,14 @@ bool ConvBiasImpl::AlgoQU8DirectStride2::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoQU8DirectStride2::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto bundle = direct_quint8_stride2::get_bundle(param, m_large_group); | |||
| return bundle.total_size_in_bytes(); | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoQU8DirectStride2::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_quint8, 0, 1) { | |||
| return direct_quint8_stride2::get_kimpls(param, m_large_group); | |||
| } | |||
| @@ -83,7 +84,7 @@ ConvBiasImpl::AlgoQU8DirectStride2::dispatch_kerns( | |||
| #if __ARM_FEATURE_DOTPROD | |||
| /* ===================== stride1 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoDotU8DirectStride1::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| bool avaible = | |||
| direct_dotprod_quint8_stride1::can_conv_direct_stride1_quint8( | |||
| @@ -97,7 +98,7 @@ bool ConvBiasImpl::AlgoDotU8DirectStride1::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoDotU8DirectStride1::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto bundle = | |||
| direct_dotprod_quint8_stride1::get_bundle(param, m_large_group); | |||
| return bundle.total_size_in_bytes(); | |||
| @@ -105,7 +106,7 @@ size_t ConvBiasImpl::AlgoDotU8DirectStride1::get_workspace( | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoDotU8DirectStride1::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_quint8, 1, 0) { | |||
| return direct_dotprod_quint8_stride1::get_kimpls(param, m_large_group); | |||
| } | |||
| @@ -115,7 +116,7 @@ ConvBiasImpl::AlgoDotU8DirectStride1::dispatch_kerns( | |||
| /* ===================== stride2 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoDotU8DirectStride2::usable( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| bool avaible = | |||
| direct_dotprod_quint8_stride2::can_conv_direct_stride2_quint8( | |||
| @@ -129,7 +130,7 @@ bool ConvBiasImpl::AlgoDotU8DirectStride2::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoDotU8DirectStride2::get_workspace( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto bundle = | |||
| direct_dotprod_quint8_stride2::get_bundle(param, m_large_group); | |||
| return bundle.total_size_in_bytes(); | |||
| @@ -137,7 +138,7 @@ size_t ConvBiasImpl::AlgoDotU8DirectStride2::get_workspace( | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoDotU8DirectStride2::dispatch_kerns( | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_arm_common_conv_bias_quint8, 1, 1) { | |||
| return direct_dotprod_quint8_stride2::get_kimpls(param, m_large_group); | |||
| } | |||
| @@ -6,7 +6,8 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #pragma once | |||
| @@ -26,13 +27,11 @@ public: | |||
| return m_large_group ? "QU8STRD1_LARGE_GROUP" : "QU8STRD1_SMALL_GROUP"; | |||
| } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -45,16 +44,14 @@ public: | |||
| const char* name() const override { | |||
| return m_large_group ? "QU8STRD2_LARGE_GROUP" : "QU8STRD2_SMALL_GROUP"; | |||
| } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| #if __ARM_FEATURE_DOTPROD | |||
| #if __ARM_FEATURE_DOTPROD | |||
| class ConvBiasImpl::AlgoDotU8DirectStride1 final : public AlgoBase { | |||
| bool m_large_group; | |||
| @@ -66,13 +63,11 @@ public: | |||
| : "ARMDOTU8STRD1_SMALL_GROUP"; | |||
| } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| @@ -86,13 +81,11 @@ public: | |||
| return m_large_group ? "ARMDOTU8STRD2_LARGE_GROUP" | |||
| : "ARMDOTU8STRD2_SMALL_GROUP"; | |||
| } | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| }; | |||
| #endif | |||
| @@ -26,9 +26,8 @@ using namespace armv7; | |||
| /* ===================== matrix mul algo ===================== */ | |||
| bool ConvBiasImpl::AlgoS8MatrixMul::usable( | |||
| FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| auto&& fm = param.filter_meta; | |||
| return param.src_type.enumv() == DTypeEnum::QuantizedS8 && | |||
| param.dst_type.enumv() == DTypeEnum::QuantizedS8 && | |||
| @@ -27,14 +27,12 @@ public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "S8MATMUL"; } | |||
| bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| SmallVector<NCBKern> dispatch_kerns( | |||
| FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t group = param.filter_meta.group; | |||
| return {{kimpl, {group, 1_z, 1_z}}}; | |||
| @@ -26,9 +26,8 @@ using namespace armv7; | |||
| /* ===================== matrix mul algo ===================== */ | |||
| bool ConvBiasImpl::AlgoQU8MatrixMul::usable( | |||
| FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| auto&& fm = param.filter_meta; | |||
| return param.src_type.enumv() == DTypeEnum::Quantized8Asymm && | |||
| param.dst_type.enumv() == DTypeEnum::Quantized8Asymm && | |||
| @@ -27,15 +27,13 @@ public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "QU8MATMUL"; } | |||
| bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| SmallVector<fallback::ConvBiasImpl::NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl* /*opr*/, | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t group = param.filter_meta.group; | |||
| return {{kimpl, {group, 1_z, 1_z}}}; | |||
| @@ -10,6 +10,7 @@ | |||
| */ | |||
| #include "src/fallback/conv_bias/algos.h" | |||
| #include "megdnn/opr_param_defs.h" | |||
| #include "src/common/opr_delegate.h" | |||
| #include "src/fallback/conv_bias/winograd/strategy.h" | |||
| #include "src/naive/convolution/helper.h" | |||
| @@ -21,18 +22,28 @@ using namespace fallback; | |||
| namespace { | |||
| param::Convolution get_param_convolution(const param::ConvBias param) { | |||
| param::Convolution ret{param.mode, param.pad_h, | |||
| param.pad_w, param.stride_h, | |||
| param.stride_w, param.dilate_h, | |||
| param.dilate_w, param::Convolution::Sparse::DENSE, | |||
| param.format}; | |||
| return ret; | |||
| param::Convolution get_param_convolution( | |||
| const ConvBiasImpl::NCBKernSizeParam& param) { | |||
| param::Convolution::Mode mode; | |||
| param::Convolution::Sparse sparse; | |||
| if (param.filter_meta.should_flip) { | |||
| mode = param::Convolution::Mode::CONVOLUTION; | |||
| } else { | |||
| mode = param::Convolution::Mode::CROSS_CORRELATION; | |||
| } | |||
| return param::Convolution{mode, | |||
| param.filter_meta.padding[0], | |||
| param.filter_meta.padding[1], | |||
| param.filter_meta.stride[0], | |||
| param.filter_meta.stride[1], | |||
| param.filter_meta.dilation[1], | |||
| param.filter_meta.dilation[0], | |||
| sparse = param::Convolution::Sparse::DENSE, | |||
| param.filter_meta.format}; | |||
| } | |||
| TensorLayoutArray get_layouts(const param::ConvBias& param, | |||
| const ConvBiasImpl::NCBKernSizeParam& p) { | |||
| megdnn_assert(param.format == param::ConvBias::Format::NCHW); | |||
| TensorLayoutArray get_layouts(const ConvBiasImpl::NCBKernSizeParam& p) { | |||
| megdnn_assert(p.filter_meta.format == param::ConvBias::Format::NCHW); | |||
| UNPACK_CONV_NCB_KERN_SIZES(p); | |||
| MEGDNN_MARK_USED_VAR(SH); | |||
| MEGDNN_MARK_USED_VAR(SW); | |||
| @@ -53,14 +64,14 @@ TensorLayoutArray get_layouts(const param::ConvBias& param, | |||
| return {src_layout, filter_layout, bias_layout, dst_layout}; | |||
| } | |||
| void kern_default(param::ConvBias param, const ConvBiasImpl::NCBKernParam& p) { | |||
| void kern_default(const ConvBiasImpl::NCBKernParam& p) { | |||
| dt_byte* workspace_ptr = static_cast<dt_byte*>(p.workspace_ptr); | |||
| auto filter_meta_ptr = | |||
| reinterpret_cast<const ConvBiasForward::CanonizedFilterMeta*>( | |||
| &p.filter_meta); | |||
| auto filter_meta = *filter_meta_ptr; | |||
| auto layouts = get_layouts(param, p); | |||
| auto layouts = get_layouts(p); | |||
| TensorND src{reinterpret_cast<dt_byte*>(const_cast<void*>(p.src_ptr)), | |||
| layouts[0]}; | |||
| @@ -83,7 +94,7 @@ void kern_default(param::ConvBias param, const ConvBiasImpl::NCBKernParam& p) { | |||
| bias.layout.dtype.enumv() == \ | |||
| DTypeTrait<dtype::bias_dt>::enumv) && \ | |||
| sfb.layout.dtype.enumv() == DTypeTrait<dtype::out_dt>::enumv && \ | |||
| param.compute_mode == param::ConvBias::ComputeMode::cmode) { \ | |||
| p.compute_mode == param::ConvBias::ComputeMode::cmode) { \ | |||
| func(src, filter, bias, sfb, workspace_ptr, filter_meta); \ | |||
| } | |||
| #define DISPATCH(in_dt, out_dt) \ | |||
| @@ -118,7 +129,7 @@ void kern_default(param::ConvBias param, const ConvBiasImpl::NCBKernParam& p) { | |||
| auto res = sfb; | |||
| using NonlineMode = param::ConvBias::NonlineMode; | |||
| switch (param.nonlineMode) { | |||
| switch (p.nonlineMode) { | |||
| #define cb(_mode) \ | |||
| case NonlineMode::_mode: { \ | |||
| if (res.layout.dtype.category() != DTypeCategory::QUANTIZED) { \ | |||
| @@ -168,24 +179,23 @@ MIDOUT_DECL(megdnn_fallback_naive) | |||
| /* ======================= AlgoNaive ======================== */ | |||
| bool ConvBiasImpl::AlgoNaive::usable( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam&, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MIDOUT_BEGIN(megdnn_fallback_naive, 0) { | |||
| return opr->param().format == param::ConvBias::Format::NCHW; | |||
| return param.filter_meta.format == param::ConvBias::Format::NCHW; | |||
| } | |||
| MIDOUT_END(); | |||
| return false; | |||
| } | |||
| size_t ConvBiasImpl::AlgoNaive::get_workspace(ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& p) const { | |||
| size_t ConvBiasImpl::AlgoNaive::get_workspace(const NCBKernSizeParam& p) const { | |||
| MIDOUT_BEGIN(megdnn_fallback_naive, 1) { | |||
| auto layouts = get_layouts(opr->param(), p); | |||
| auto layouts = get_layouts(p); | |||
| //! When group>1 or n>1, this algo will parallel by group and n | |||
| size_t nr_threads = p.nr_threads; | |||
| auto conv_opr = | |||
| inplace_cpu_handle()->create_operator<ConvolutionForward>(); | |||
| conv_opr->param() = get_param_convolution(opr->param()); | |||
| conv_opr->param() = get_param_convolution(p); | |||
| if (p.dst_type.enumv() == DTypeEnum::QuantizedS8 || | |||
| p.dst_type.enumv() == DTypeEnum::Quantized8Asymm) { | |||
| TensorLayout conv_dst_layout; | |||
| @@ -201,15 +211,14 @@ size_t ConvBiasImpl::AlgoNaive::get_workspace(ConvBiasImpl* opr, | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoNaive::dispatch_kerns( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& p) const { | |||
| param::ConvBias opr_param = opr->param(); | |||
| size_t workspace_size = get_workspace(opr, p); | |||
| const NCBKernSizeParam& p) const { | |||
| size_t workspace_size = get_workspace(p); | |||
| //! When group>1 or n>1, this algo will parallel by group and n | |||
| size_t nr_threads = p.nr_threads; | |||
| size_t GROUP = p.filter_meta.group; | |||
| size_t N = p.n; | |||
| size_t workspace_per_thread = workspace_size / nr_threads; | |||
| auto kern = [opr_param, workspace_per_thread]( | |||
| auto kern = [workspace_per_thread]( | |||
| const NCBKernParam& param, | |||
| const NCBKernIndex& ncb_index) { | |||
| MIDOUT_BEGIN(megdnn_fallback_naive, 2) { | |||
| @@ -224,7 +233,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoNaive::dispatch_kerns( | |||
| thread_param.dst_ptr = param.dst<void>(batch_id, group_id); | |||
| thread_param.src_ptr = param.src<void>(batch_id, group_id); | |||
| thread_param.bias_ptr = param.bias<void>(batch_id, group_id); | |||
| kern_default(opr_param, thread_param); | |||
| kern_default(thread_param); | |||
| } | |||
| MIDOUT_END(); | |||
| }; | |||
| @@ -235,10 +244,9 @@ MIDOUT_DECL(megdnn_fallback_winograd) | |||
| /* ======================= AlgoWinogradF32 ======================== */ | |||
| bool ConvBiasImpl::AlgoWinogradF32::usable( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_fallback_winograd, 1, 0) { | |||
| using Strategy = fallback::winograd::winograd_2x3_1x1_f; | |||
| Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
| @@ -246,13 +254,13 @@ bool ConvBiasImpl::AlgoWinogradF32::usable( | |||
| strategy, UNIT_TILE_SIZE, param) | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| (opr->param().format == param::ConvBias::Format::NCHW || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 2 && | |||
| param.output_block_size == 2 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::DEFAULT)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -268,7 +276,7 @@ bool ConvBiasImpl::AlgoWinogradF32::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoWinogradF32::get_workspace( | |||
| ConvBiasImpl*, const NCBKernSizeParam& p) const { | |||
| const NCBKernSizeParam& p) const { | |||
| MEGDNN_MARK_USED_VAR(p); | |||
| MIDOUT_BEGIN(megdnn_fallback_winograd, 1, 1) { | |||
| fallback::winograd::winograd_2x3_1x1_f strategy( | |||
| @@ -284,7 +292,7 @@ size_t ConvBiasImpl::AlgoWinogradF32::get_workspace( | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoWinogradF32::dispatch_kerns( | |||
| ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MIDOUT_BEGIN(megdnn_fallback_winograd, 1, 2) { | |||
| fallback::winograd::winograd_2x3_1x1_f strategy( | |||
| @@ -302,10 +310,9 @@ ConvBiasImpl::AlgoWinogradF32::dispatch_kerns( | |||
| /* ======================= AlgoWinogradF32 4x4 ======================== */ | |||
| bool ConvBiasImpl::AlgoWinogradF32_4x4::usable( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_fallback_winograd, 2, 0) { | |||
| if (param.filter_meta.icpg % 4 != 0 || param.filter_meta.ocpg % 4 != 0) | |||
| return false; | |||
| @@ -317,13 +324,13 @@ bool ConvBiasImpl::AlgoWinogradF32_4x4::usable( | |||
| strategy, UNIT_TILE_SIZE, param) | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| (opr->param().format == param::ConvBias::Format::NCHW || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 2 && | |||
| param.output_block_size == 2 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::MK4)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -339,7 +346,7 @@ bool ConvBiasImpl::AlgoWinogradF32_4x4::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoWinogradF32_4x4::get_workspace( | |||
| ConvBiasImpl*, const NCBKernSizeParam& p) const { | |||
| const NCBKernSizeParam& p) const { | |||
| MEGDNN_MARK_USED_VAR(p); | |||
| MIDOUT_BEGIN(megdnn_fallback_winograd, 2, 1) { | |||
| fallback::winograd::winograd_2x3_4x4_f strategy( | |||
| @@ -356,7 +363,7 @@ size_t ConvBiasImpl::AlgoWinogradF32_4x4::get_workspace( | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoWinogradF32_4x4::dispatch_kerns( | |||
| ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MIDOUT_BEGIN(megdnn_fallback_winograd, 2, 2) { | |||
| fallback::winograd::winograd_2x3_4x4_f strategy( | |||
| @@ -374,10 +381,9 @@ ConvBiasImpl::AlgoWinogradF32_4x4::dispatch_kerns( | |||
| /* ======================= AlgoWinogradQS8 ======================== */ | |||
| bool ConvBiasImpl::AlgoWinogradQS8::usable( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_fallback_winograd, 3, 0) { | |||
| using Strategy = fallback::winograd::winograd_2x3_1x1_qs8; | |||
| Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
| @@ -386,13 +392,13 @@ bool ConvBiasImpl::AlgoWinogradQS8::usable( | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| (opr->param().format == param::ConvBias::Format::NCHW || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 2 && | |||
| param.output_block_size == 2 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::DEFAULT)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -408,7 +414,7 @@ bool ConvBiasImpl::AlgoWinogradQS8::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoWinogradQS8::get_workspace( | |||
| ConvBiasImpl*, const NCBKernSizeParam& p) const { | |||
| const NCBKernSizeParam& p) const { | |||
| MEGDNN_MARK_USED_VAR(p); | |||
| MIDOUT_BEGIN(megdnn_fallback_winograd, 3, 1) { | |||
| fallback::winograd::winograd_2x3_1x1_qs8 strategy( | |||
| @@ -424,7 +430,7 @@ size_t ConvBiasImpl::AlgoWinogradQS8::get_workspace( | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoWinogradQS8::dispatch_kerns( | |||
| ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MIDOUT_BEGIN(megdnn_fallback_winograd, 3, 2) { | |||
| fallback::winograd::winograd_2x3_1x1_qs8 strategy( | |||
| @@ -442,10 +448,9 @@ ConvBiasImpl::AlgoWinogradQS8::dispatch_kerns( | |||
| /* ======================= AlgoWinogradQS8 8x8 ======================== */ | |||
| bool ConvBiasImpl::AlgoWinogradQS8_8x8::usable( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_fallback_winograd, 4, 0) { | |||
| if (param.filter_meta.icpg % 8 != 0 || param.filter_meta.ocpg % 8 != 0) | |||
| return false; | |||
| @@ -457,13 +462,13 @@ bool ConvBiasImpl::AlgoWinogradQS8_8x8::usable( | |||
| strategy, UNIT_TILE_SIZE, param) | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| (opr->param().format == param::ConvBias::Format::NCHW || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW_WINOGRAD && | |||
| opr->param().output_block_size == 2 && | |||
| param.output_block_size == 2 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::MK8)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -479,7 +484,7 @@ bool ConvBiasImpl::AlgoWinogradQS8_8x8::usable( | |||
| } | |||
| size_t ConvBiasImpl::AlgoWinogradQS8_8x8::get_workspace( | |||
| ConvBiasImpl*, const NCBKernSizeParam& p) const { | |||
| const NCBKernSizeParam& p) const { | |||
| MEGDNN_MARK_USED_VAR(p); | |||
| MIDOUT_BEGIN(megdnn_fallback_winograd, 4, 1) { | |||
| fallback::winograd::winograd_2x3_8x8_qs8 strategy( | |||
| @@ -496,7 +501,7 @@ size_t ConvBiasImpl::AlgoWinogradQS8_8x8::get_workspace( | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoWinogradQS8_8x8::dispatch_kerns( | |||
| ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MIDOUT_BEGIN(megdnn_fallback_winograd, 4, 2) { | |||
| fallback::winograd::winograd_2x3_8x8_qs8 strategy( | |||
| @@ -22,12 +22,10 @@ class ConvBiasImpl::AlgoNaive final : public AlgoBase { | |||
| public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "FALLBACK_NAIVE"; } | |||
| bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(ConvBiasImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override; | |||
| }; | |||
| class ConvBiasImpl::AlgoWinogradF32 final : public AlgoBase { | |||
| @@ -43,12 +41,10 @@ public: | |||
| } | |||
| return m_name.c_str(); | |||
| } | |||
| bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(ConvBiasImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override; | |||
| private: | |||
| MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
| @@ -69,12 +65,10 @@ public: | |||
| } | |||
| return m_name.c_str(); | |||
| } | |||
| bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(ConvBiasImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override; | |||
| private: | |||
| MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
| @@ -95,12 +89,10 @@ public: | |||
| } | |||
| return m_name.c_str(); | |||
| } | |||
| bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(ConvBiasImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override; | |||
| private: | |||
| MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
| @@ -121,12 +113,10 @@ public: | |||
| } | |||
| return m_name.c_str(); | |||
| } | |||
| bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(ConvBiasImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override; | |||
| private: | |||
| MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
| @@ -140,22 +140,17 @@ using BiasMode = ConvBiasForward::BiasMode; | |||
| #define MEGDNN_WINOGRAD_ALGO_FUN_DECLARE() \ | |||
| bool is_reproducible() const override { return true; } \ | |||
| bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, \ | |||
| bool usable(const NCBKernSizeParam& param, \ | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; \ | |||
| size_t get_workspace(fallback::ConvBiasImpl*, \ | |||
| const NCBKernSizeParam& param) const override; \ | |||
| virtual SmallVector<NCBKern> dispatch_kerns(fallback::ConvBiasImpl* opr, \ | |||
| const NCBKernSizeParam& param) \ | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; \ | |||
| virtual SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam& param) \ | |||
| const override; \ | |||
| SmallVector<TensorLayout> deduce_preprocessed_filter_layout( \ | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) \ | |||
| const override; \ | |||
| size_t get_preprocess_workspace(fallback::ConvBiasImpl*, \ | |||
| const NCBKernSizeParam& param) \ | |||
| const NCBKernSizeParam& param) const override; \ | |||
| size_t get_preprocess_workspace(const NCBKernSizeParam& param) \ | |||
| const override; \ | |||
| virtual SmallVector<NCBKern> dispatch_preprocess_kerns( \ | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param) \ | |||
| const override; \ | |||
| const NCBKernSizeParam& param) const override; \ | |||
| \ | |||
| private: \ | |||
| fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; \ | |||
| @@ -48,7 +48,7 @@ size_t ConvBiasImpl::AlgoConv1x1::get_oc_tile_size_heuristic( | |||
| } | |||
| size_t ConvBiasImpl::AlgoConv1x1::get_workspace( | |||
| ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| size_t OH = param.osz[0]; | |||
| size_t OW = param.osz[1]; | |||
| size_t compt_oc_block_size = get_oc_tile_size_heuristic(param); | |||
| @@ -90,7 +90,7 @@ size_t ConvBiasImpl::AlgoConv1x1::get_workspace( | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoConv1x1::dispatch_kerns( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| SmallVector<ConvBiasImpl::NCBKern> ret_kern; | |||
| size_t OH = param.osz[0]; | |||
| size_t OW = param.osz[1]; | |||
| @@ -138,11 +138,11 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoConv1x1::dispatch_kerns( | |||
| //! get thread bundle | |||
| thread_bundle = utils::get_thread_bundle(param, matmul_bundle.get_size(2), | |||
| compt_oc_block_size); | |||
| compt_oc_block_size); | |||
| Conv1x1StrategyBase* conv1x1_strategy = | |||
| Conv1x1Factory::make_conv1x1_strategy(param, pack_mode, | |||
| opr->param().format); | |||
| param.filter_meta.format); | |||
| auto kern_packA = [this, whole_bundle, matmul_bundle, param, | |||
| compt_oc_block_size, conv1x1_strategy]( | |||
| @@ -180,13 +180,12 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoConv1x1::dispatch_kerns( | |||
| return ret_kern; | |||
| } | |||
| bool ConvBiasImpl::AlgoConv1x1::usable(ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param, | |||
| bool ConvBiasImpl::AlgoConv1x1::usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const { | |||
| MIDOUT_BEGIN(megdnn_fallback_conv1x1, 0, 2) { | |||
| if (opr->param().format != param::ConvBias::Format::NCHW && | |||
| opr->param().format != param::ConvBias::Format::NCHW44 && | |||
| opr->param().format != param::ConvBias::Format::NCHW44_DOT) | |||
| if (param.filter_meta.format != param::ConvBias::Format::NCHW && | |||
| param.filter_meta.format != param::ConvBias::Format::NCHW44 && | |||
| param.filter_meta.format != param::ConvBias::Format::NCHW44_DOT) | |||
| return false; | |||
| size_t FH = param.filter_meta.spatial[0], | |||
| @@ -199,7 +198,7 @@ bool ConvBiasImpl::AlgoConv1x1::usable(ConvBiasImpl* opr, | |||
| if (FH != 1 || FW != 1 || PH || PW || SH != 1 || SW != 1) | |||
| return false; | |||
| if(param.src_type.enumv() != param.filter_type.enumv()) { | |||
| if (param.src_type.enumv() != param.filter_type.enumv()) { | |||
| return false; | |||
| } | |||
| @@ -225,8 +224,8 @@ bool ConvBiasImpl::AlgoConv1x1::usable(ConvBiasImpl* opr, | |||
| } | |||
| } | |||
| if (opr->param().format == param::ConvBias::Format::NCHW44 || | |||
| opr->param().format == param::ConvBias::Format::NCHW44_DOT) { | |||
| if (param.filter_meta.format == param::ConvBias::Format::NCHW44 || | |||
| param.filter_meta.format == param::ConvBias::Format::NCHW44_DOT) { | |||
| if (param.filter_meta.icpg < 4_z || param.filter_meta.icpg == 1 || | |||
| param.filter_meta.ocpg == 1) { | |||
| return false; | |||
| @@ -236,13 +235,14 @@ bool ConvBiasImpl::AlgoConv1x1::usable(ConvBiasImpl* opr, | |||
| size_t OH = param.osz[0]; | |||
| size_t OW = param.osz[1]; | |||
| MatrixMulImpl::KernSizeParam matmul_param = utils::get_matmul_kern_param( | |||
| param, OH * OW, get_oc_tile_size_heuristic(param)); | |||
| MatrixMulImpl::KernSizeParam matmul_param = | |||
| utils::get_matmul_kern_param(param, OH * OW, | |||
| get_oc_tile_size_heuristic(param)); | |||
| bool matmul_usable = m_matmul_algo->usable(matmul_param); | |||
| auto pack_mode = m_matmul_algo->packmode(); | |||
| bool strategy_usable = Conv1x1Factory::can_make_conv1x1_strategy( | |||
| param, pack_mode, opr->param().format); | |||
| param, pack_mode, param.filter_meta.format); | |||
| return matmul_usable && strategy_usable && | |||
| (param.filter_meta.dilation[0] == | |||
| @@ -255,7 +255,7 @@ bool ConvBiasImpl::AlgoConv1x1::usable(ConvBiasImpl* opr, | |||
| } | |||
| bool ConvBiasImpl::AlgoConv1x1::is_preferred( | |||
| ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| size_t OH = param.osz[0]; | |||
| size_t OW = param.osz[1]; | |||
| if (OH * OW != 1) { | |||
| @@ -265,8 +265,8 @@ bool ConvBiasImpl::AlgoConv1x1::is_preferred( | |||
| if (param.src_type.enumv() == DTypeEnum::Int8 && | |||
| param.filter_type.enumv() == DTypeEnum::Int8 && | |||
| param.dst_type.enumv() == DTypeEnum::Int16) { | |||
| return true; | |||
| } | |||
| return true; | |||
| } | |||
| #elif MEGDNN_X86 | |||
| size_t OC = param.filter_meta.ocpg; | |||
| if (OC > 2 || param.src_type.enumv() == DTypeEnum::Float32) | |||
| @@ -276,4 +276,4 @@ bool ConvBiasImpl::AlgoConv1x1::is_preferred( | |||
| } | |||
| } | |||
| // vim: syntax=cpp.doxygen | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -34,14 +34,13 @@ public: | |||
| return m_name.c_str(); | |||
| } | |||
| bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& param) const override; | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(ConvBiasImpl*, const NCBKernSizeParam&) const override; | |||
| bool is_preferred(const NCBKernSizeParam&) const override; | |||
| protected: | |||
| size_t get_oc_tile_size_heuristic(const NCBKernSizeParam& param) const; | |||
| @@ -249,7 +249,7 @@ size_t ConvBiasImpl::AlgoConv1x1Gemv::get_oc_tile_size_heuristic( | |||
| } | |||
| size_t ConvBiasImpl::AlgoConv1x1Gemv::get_workspace( | |||
| ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_fallback_conv1x1_gemv, | |||
| midout_iv("AlgoConv1x1Gemv::get_workspace"_hash)) { | |||
| size_t compt_oc_block_size = get_oc_tile_size_heuristic(param); | |||
| @@ -265,7 +265,7 @@ size_t ConvBiasImpl::AlgoConv1x1Gemv::get_workspace( | |||
| SmallVector<ConvBiasImpl::NCBKern> | |||
| ConvBiasImpl::AlgoConv1x1Gemv::dispatch_kerns( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| SmallVector<ConvBiasImpl::NCBKern> ret_kern; | |||
| size_t OC = param.filter_meta.ocpg; | |||
| size_t compt_oc_block_size = get_oc_tile_size_heuristic(param); | |||
| @@ -311,7 +311,7 @@ ConvBiasImpl::AlgoConv1x1Gemv::dispatch_kerns( | |||
| } \ | |||
| MIDOUT_END() | |||
| switch (opr->param().format) { | |||
| switch (param.filter_meta.format) { | |||
| case param::ConvBias::Format::NCHW: | |||
| cb1(param::ConvBias::Format::NCHW, dt_float32, dt_float32, | |||
| PostprocessMode::FLOAT, "NCHW::GEMV::FLOAT"_hash); | |||
| @@ -401,18 +401,18 @@ ConvBiasImpl::AlgoConv1x1Gemv::dispatch_kerns( | |||
| return ret_kern; | |||
| } | |||
| bool ConvBiasImpl::AlgoConv1x1Gemv::usable(ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param, | |||
| bool ConvBiasImpl::AlgoConv1x1Gemv::usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const { | |||
| MIDOUT_BEGIN(megdnn_fallback_conv1x1_gemv, | |||
| midout_iv("AlgoConv1x1Gemv::usable"_hash)) { | |||
| auto format = param.filter_meta.format; | |||
| #if MEGDNN_X86 | |||
| if (opr->param().format != param::ConvBias::Format::NCHW) | |||
| if (format != param::ConvBias::Format::NCHW) | |||
| return false; | |||
| #elif MEGDNN_AARCH64 || MEGDNN_ARMV7 | |||
| if (opr->param().format != param::ConvBias::Format::NCHW && | |||
| opr->param().format != param::ConvBias::Format::NCHW44 && | |||
| opr->param().format != param::ConvBias::Format::NCHW44_DOT) | |||
| if (format != param::ConvBias::Format::NCHW && | |||
| format != param::ConvBias::Format::NCHW44 && | |||
| format != param::ConvBias::Format::NCHW44_DOT) | |||
| return false; | |||
| #endif | |||
| @@ -469,13 +469,13 @@ bool ConvBiasImpl::AlgoConv1x1Gemv::usable(ConvBiasImpl* opr, | |||
| return false; | |||
| } | |||
| #if MEGDNN_AARCH64 || MEGDNN_ARMV7 | |||
| if (opr->param().format == param::ConvBias::Format::NCHW44) { | |||
| if (format == param::ConvBias::Format::NCHW44) { | |||
| if (param.src_type.enumv() != DTypeEnum::Float32 && | |||
| param.src_type.enumv() != DTypeEnum::Int8 && | |||
| param.src_type.enumv() != DTypeEnum::QuantizedS8) { | |||
| return false; | |||
| } | |||
| } else if (opr->param().format == param::ConvBias::Format::NCHW44_DOT) { | |||
| } else if (format == param::ConvBias::Format::NCHW44_DOT) { | |||
| if (param.src_type.enumv() != DTypeEnum::Int8 && | |||
| param.src_type.enumv() != DTypeEnum::QuantizedS8) { | |||
| return false; | |||
| @@ -492,11 +492,11 @@ bool ConvBiasImpl::AlgoConv1x1Gemv::usable(ConvBiasImpl* opr, | |||
| } | |||
| bool ConvBiasImpl::AlgoConv1x1Gemv::is_preferred( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_fallback_conv1x1_gemv, | |||
| midout_iv("AlgoConv1x1Gemv::is_preferred"_hash)) { | |||
| #if (MEGDNN_ARMV7 || MEGDNN_AARCH64) | |||
| if (opr->param().format == param::ConvBias::Format::NCHW && | |||
| if (param.filter_meta.format == param::ConvBias::Format::NCHW && | |||
| param.src_type.enumv() == DTypeEnum::Quantized8Asymm) { | |||
| return false; | |||
| } | |||
| @@ -507,4 +507,4 @@ bool ConvBiasImpl::AlgoConv1x1Gemv::is_preferred( | |||
| return false; | |||
| } | |||
| // vim: syntax=cpp.doxygen | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -24,18 +24,15 @@ public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { | |||
| return "CONV1x1_GEMV"; | |||
| } | |||
| const char* name() const override { return "CONV1x1_GEMV"; } | |||
| bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& param) const override; | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(ConvBiasImpl*, const NCBKernSizeParam&) const override; | |||
| bool is_preferred(const NCBKernSizeParam&) const override; | |||
| protected: | |||
| size_t get_oc_tile_size_heuristic(const NCBKernSizeParam& param) const; | |||
| @@ -478,7 +478,7 @@ WorkspaceBundle ConvBiasImpl::AlgoIm2col::get_bundle( | |||
| } | |||
| size_t ConvBiasImpl::AlgoIm2col::get_workspace( | |||
| ConvBiasImpl*, const NCBKernSizeParam& p) const { | |||
| const NCBKernSizeParam& p) const { | |||
| MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 0) { | |||
| return get_bundle(p).total_size_in_bytes(); | |||
| } | |||
| @@ -487,7 +487,7 @@ size_t ConvBiasImpl::AlgoIm2col::get_workspace( | |||
| } | |||
| SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns( | |||
| ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 1) { | |||
| UNPACK_CONV_F32_NCB_KERN_SIZES(param); | |||
| MEGDNN_MARK_USED_VAR(SH); | |||
| @@ -660,12 +660,13 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns( | |||
| } | |||
| bool ConvBiasImpl::AlgoIm2col::usable( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 2) { | |||
| if (opr->param().format != param::ConvBias::Format::NCHW && | |||
| opr->param().format != param::ConvBias::Format::NCHW44_DOT && | |||
| opr->param().format != param::ConvBias::Format::NCHW44) { | |||
| auto format = param.filter_meta.format; | |||
| if (format != param::ConvBias::Format::NCHW && | |||
| format != param::ConvBias::Format::NCHW44_DOT && | |||
| format != param::ConvBias::Format::NCHW44) { | |||
| return false; | |||
| } | |||
| @@ -695,8 +696,8 @@ bool ConvBiasImpl::AlgoIm2col::usable( | |||
| } | |||
| fallback::MatrixMulImpl::AlgoBase::MatmulDescription mdesc = | |||
| m_matmul_algo->matmul_description(); | |||
| if (opr->param().format == param::ConvBias::Format::NCHW44 || | |||
| opr->param().format == param::ConvBias::Format::NCHW44_DOT) { | |||
| if (format == param::ConvBias::Format::NCHW44 || | |||
| format == param::ConvBias::Format::NCHW44_DOT) { | |||
| //! current NCHW44 im2col only support DEFAULT mode matmul | |||
| if (mdesc.packmode != Pack_Mode::DEFAULT) { | |||
| return false; | |||
| @@ -15,6 +15,8 @@ | |||
| #include "src/common/utils.h" | |||
| #include "src/fallback/conv_bias/opr_impl.h" | |||
| #include "src/fallback/matrix_mul/opr_impl.h" | |||
| #include "src/common/opr_delegate.h" | |||
| namespace megdnn { | |||
| namespace fallback { | |||
| @@ -54,16 +56,18 @@ public: | |||
| } | |||
| return m_name.c_str(); | |||
| } | |||
| bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(fallback::ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred( | |||
| const NCBKernSizeParam& param) const override { | |||
| if (param.src_type.category() == DTypeCategory::QUANTIZED) { | |||
| return opr->is_matmul_quantized_prefer(param); | |||
| static CpuOprDelegationStorage<1> storage; | |||
| auto conv_bias_opr = storage.get<ConvBias, 0>(); | |||
| return static_cast<ConvBiasImpl*>(conv_bias_opr) | |||
| ->is_matmul_quantized_prefer(param); | |||
| } | |||
| auto&& fm = param.filter_meta; | |||
| auto OC = fm.ocpg, IC = fm.icpg; | |||
| @@ -54,7 +54,6 @@ class ConvBiasImpl::AlgoPack : NonCopyableObj { | |||
| public: | |||
| AlgoPack() { | |||
| refhold.emplace_back(new AlgoConv1x1Gemv()); | |||
| all_algos.emplace_back(refhold.back().get()); | |||
| @@ -121,7 +120,7 @@ bool ConvBiasImpl::is_naive_algo(ConvBiasImpl::Algorithm* algo) { | |||
| } | |||
| #define NCB_ALGO_FUNC(name, algo, param) \ | |||
| static_cast<AlgoBase*>(algo)->name(this, param) | |||
| static_cast<AlgoBase*>(algo)->name(param) | |||
| void ConvBiasImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter, | |||
| _megdnn_tensor_in bias, _megdnn_tensor_in z, | |||
| @@ -243,11 +242,10 @@ ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm_heuristic_with_ncb( | |||
| const NCBKernSizeParam& param, size_t workspace_limit_in_bytes, | |||
| bool reproducible) { | |||
| for (auto i : get_all_algorithms_with_ncb(param)) { | |||
| size_t need_workspace = NCB_ALGO_FUNC(get_workspace, i, param); | |||
| if (static_cast<AlgoBase*>(i)->usable_reproducible( | |||
| this, param, AlgoSelectionStrategy::HEURISTIC, | |||
| reproducible) && | |||
| need_workspace <= workspace_limit_in_bytes) { | |||
| param, AlgoSelectionStrategy::HEURISTIC, reproducible) && | |||
| NCB_ALGO_FUNC(get_workspace, i, param) <= | |||
| workspace_limit_in_bytes) { | |||
| return i; | |||
| } | |||
| } | |||
| @@ -392,8 +390,8 @@ std::vector<ConvBiasImpl::Algorithm*> ConvBiasImpl::get_all_algorithms_with_ncb( | |||
| std::vector<Algorithm*> algos; | |||
| std::vector<Algorithm*> prefer_algos; | |||
| for (auto&& algo : algo_pack()) { | |||
| if (algo->usable(this, param, AlgoSelectionStrategy::FULL_RUN)) { | |||
| if (algo->is_preferred(this, param)) { | |||
| if (algo->usable(param, AlgoSelectionStrategy::FULL_RUN)) { | |||
| if (algo->is_preferred(param)) { | |||
| prefer_algos.push_back(algo); | |||
| } else { | |||
| algos.push_back(algo); | |||
| @@ -193,7 +193,7 @@ public: | |||
| //! move arm_common to fallback | |||
| virtual bool is_matmul_quantized_prefer( | |||
| const ConvBiasImpl::NCBKernSizeParam& ncb_param) { | |||
| const ConvBiasImpl::NCBKernSizeParam& ncb_param) const { | |||
| MEGDNN_MARK_USED_VAR(ncb_param); | |||
| return true; | |||
| }; | |||
| @@ -209,43 +209,39 @@ public: | |||
| public: | |||
| virtual ~AlgoBase() = default; | |||
| virtual bool usable( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const = 0; | |||
| virtual size_t get_workspace(ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const = 0; | |||
| virtual size_t get_workspace(const NCBKernSizeParam& param) const = 0; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| ConvBiasImpl* opr, const NCBKernSizeParam& param) const = 0; | |||
| const NCBKernSizeParam& param) const = 0; | |||
| virtual SmallVector<NCBKern> dispatch_preprocess_kerns( | |||
| ConvBiasImpl*, const NCBKernSizeParam&) const { | |||
| const NCBKernSizeParam&) const { | |||
| return {}; | |||
| }; | |||
| //! get the layouts of weight_prerocess dst | |||
| virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||
| ConvBiasImpl*, const NCBKernSizeParam&) const { | |||
| const NCBKernSizeParam&) const { | |||
| return {}; | |||
| }; | |||
| //! get the workspace when weight_prerocess | |||
| virtual size_t get_preprocess_workspace(ConvBiasImpl*, | |||
| const NCBKernSizeParam&) const { | |||
| virtual size_t get_preprocess_workspace(const NCBKernSizeParam&) const { | |||
| return 0_z; | |||
| }; | |||
| //! Temporarily used to identify whether the matmul algorithm is | |||
| //! is_preferred. | |||
| virtual bool is_preferred(ConvBiasImpl*, | |||
| const NCBKernSizeParam&) const { | |||
| virtual bool is_preferred(const NCBKernSizeParam&) const { | |||
| return false; | |||
| } | |||
| bool usable_reproducible(ConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param, | |||
| bool usable_reproducible(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy, | |||
| bool reproducible = true) const { | |||
| return (!reproducible || is_reproducible()) && | |||
| usable(opr, param, algo_selection_strategy); | |||
| usable(param, algo_selection_strategy); | |||
| } | |||
| }; | |||
| @@ -501,9 +501,10 @@ public: | |||
| Strategy strategy = m_strategy; | |||
| SmallVector<NCBKern> kerns; | |||
| auto filter_process_kern = | |||
| [strategy, bundle, &preprocessed_dst]( | |||
| [strategy, bundle, &preprocessed_dst, this]( | |||
| const NCBKernParam& ncb_param, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| MEGDNN_MARK_USED_VAR(this); | |||
| MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common, | |||
| midout_iv("filter_preprocess"_hash)) { | |||
| bundle.set(ncb_param.workspace_ptr); | |||
| @@ -569,9 +570,10 @@ public: | |||
| param.filter_meta.format == param::ConvBias::Format::NCHW88 || | |||
| param.filter_meta.format == param::ConvBias::Format::NCHW44)) { | |||
| auto filter_process_kern = | |||
| [strategy = m_strategy, bundle_top, bundle_compute]( | |||
| [strategy = m_strategy, bundle_top, bundle_compute, this]( | |||
| const NCBKernParam& ncb_param, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| MEGDNN_MARK_USED_VAR(this); | |||
| MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common, | |||
| midout_iv("filter_process"_hash)) { | |||
| bundle_top.set(ncb_param.workspace_ptr); | |||
| @@ -594,9 +596,10 @@ public: | |||
| } | |||
| auto winograd_compute_kern = | |||
| [strategy = m_strategy, bundle_top, bundle_compute, matmul_algo, | |||
| matmul_param, unit_tile_size, | |||
| unit_oc_size](const NCBKernParam& ncb_param, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| matmul_param, unit_tile_size, unit_oc_size, | |||
| this](const NCBKernParam& ncb_param, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| MEGDNN_MARK_USED_VAR(this); | |||
| MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common, | |||
| midout_iv("winograd_compute"_hash)) { | |||
| bundle_top.set(ncb_param.workspace_ptr); | |||
| @@ -728,43 +731,43 @@ public: | |||
| } \ | |||
| MIDOUT_END(); | |||
| #define MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(_class, _strategy, _midout_flag, \ | |||
| _matmul_format) \ | |||
| size_t ConvBiasImpl::_class::get_workspace( \ | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \ | |||
| MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_workspace_size, \ | |||
| _strategy, _midout_flag, \ | |||
| _matmul_format); \ | |||
| return 0; \ | |||
| } \ | |||
| size_t ConvBiasImpl::_class::get_preprocess_workspace( \ | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \ | |||
| MEGDNN_WINOGRADS_ALGO_FUN_DEFINE( \ | |||
| _class, get_preprocess_workspace_size, _strategy, \ | |||
| _midout_flag, _matmul_format); \ | |||
| return 0; \ | |||
| } \ | |||
| SmallVector<TensorLayout> \ | |||
| ConvBiasImpl::_class::deduce_preprocessed_filter_layout( \ | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \ | |||
| MEGDNN_WINOGRADS_ALGO_FUN_DEFINE( \ | |||
| _class, deduce_preprocessed_filter_layout, _strategy, \ | |||
| _midout_flag, _matmul_format); \ | |||
| return {}; \ | |||
| } \ | |||
| SmallVector<ConvBiasImpl::NCBKern> \ | |||
| ConvBiasImpl::_class::dispatch_preprocess_kerns( \ | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \ | |||
| MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_preprocess_kerns, \ | |||
| _strategy, _midout_flag, \ | |||
| _matmul_format); \ | |||
| return {}; \ | |||
| } \ | |||
| SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::_class::dispatch_kerns( \ | |||
| fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \ | |||
| MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_kerns, _strategy, \ | |||
| _midout_flag, _matmul_format); \ | |||
| return {}; \ | |||
| #define MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(_class, _strategy, _midout_flag, \ | |||
| _matmul_format) \ | |||
| size_t ConvBiasImpl::_class::get_workspace(const NCBKernSizeParam& param) \ | |||
| const { \ | |||
| MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_workspace_size, \ | |||
| _strategy, _midout_flag, \ | |||
| _matmul_format); \ | |||
| return 0; \ | |||
| } \ | |||
| size_t ConvBiasImpl::_class::get_preprocess_workspace( \ | |||
| const NCBKernSizeParam& param) const { \ | |||
| MEGDNN_WINOGRADS_ALGO_FUN_DEFINE( \ | |||
| _class, get_preprocess_workspace_size, _strategy, \ | |||
| _midout_flag, _matmul_format); \ | |||
| return 0; \ | |||
| } \ | |||
| SmallVector<TensorLayout> \ | |||
| ConvBiasImpl::_class::deduce_preprocessed_filter_layout( \ | |||
| const NCBKernSizeParam& param) const { \ | |||
| MEGDNN_WINOGRADS_ALGO_FUN_DEFINE( \ | |||
| _class, deduce_preprocessed_filter_layout, _strategy, \ | |||
| _midout_flag, _matmul_format); \ | |||
| return {}; \ | |||
| } \ | |||
| SmallVector<ConvBiasImpl::NCBKern> \ | |||
| ConvBiasImpl::_class::dispatch_preprocess_kerns( \ | |||
| const NCBKernSizeParam& param) const { \ | |||
| MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_preprocess_kerns, \ | |||
| _strategy, _midout_flag, \ | |||
| _matmul_format); \ | |||
| return {}; \ | |||
| } \ | |||
| SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::_class::dispatch_kerns( \ | |||
| const NCBKernSizeParam& param) const { \ | |||
| MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_kerns, _strategy, \ | |||
| _midout_flag, _matmul_format); \ | |||
| return {}; \ | |||
| } | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -164,7 +164,7 @@ void kern_direct(const NCBKernParam& param) { | |||
| /* ===================== fallback algo ===================== */ | |||
| bool ConvolutionImpl::AlgoFallback::usable( | |||
| ConvolutionImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| auto&& fm = param.filter_meta; | |||
| return fm.format == param::Convolution::Format::NCHW && | |||
| @@ -175,7 +175,7 @@ bool ConvolutionImpl::AlgoFallback::usable( | |||
| } | |||
| size_t ConvolutionImpl::AlgoFallback::get_workspace( | |||
| ConvolutionImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto FH = param.filter_meta.spatial[0], FW = param.filter_meta.spatial[1]; | |||
| size_t nr_threads = param.nr_threads; | |||
| if (param.filter_meta.should_flip) { | |||
| @@ -190,11 +190,11 @@ size_t ConvolutionImpl::AlgoFallback::get_workspace( | |||
| SmallVector<ConvolutionImpl::NCBKern> | |||
| ConvolutionImpl::AlgoFallback::dispatch_kern( | |||
| ConvolutionImpl* opr, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| size_t group = param.filter_meta.group; | |||
| size_t N = param.n; | |||
| size_t nr_threads = param.nr_threads; | |||
| size_t workspace_per_thread = get_workspace(opr, param) / nr_threads; | |||
| size_t workspace_per_thread = get_workspace( param) / nr_threads; | |||
| auto kern_fallback = [workspace_per_thread](const NCBKernParam& p, | |||
| const NCBKernIndex& ncb_index) { | |||
| UNPACK_CONV_F32_NCB_KERN_SIZES(p); | |||
| @@ -218,7 +218,7 @@ ConvolutionImpl::AlgoFallback::dispatch_kern( | |||
| /* ===================== naive algo ===================== */ | |||
| bool ConvolutionImpl::AlgoNaive::usable( | |||
| ConvolutionImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| bool ret = false; | |||
| @@ -241,7 +241,7 @@ bool ConvolutionImpl::AlgoNaive::usable( | |||
| } | |||
| SmallVector<ConvolutionImpl::NCBKern> ConvolutionImpl::AlgoNaive::dispatch_kern( | |||
| ConvolutionImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| size_t N = param.n; | |||
| size_t group = param.filter_meta.group; | |||
| #define cb(dt, cmode, compute_type) \ | |||
| @@ -289,75 +289,42 @@ SmallVector<ConvolutionImpl::NCBKern> ConvolutionImpl::AlgoNaive::dispatch_kern( | |||
| /* ===================== default algo ===================== */ | |||
| ConvolutionImpl::AlgoDefault::AlgoDefault(fallback::ConvBiasImpl* conv_bias_opr, | |||
| ConvBiasImpl::AlgoBase* algorithm) | |||
| : m_conv_bias_opr(conv_bias_opr), m_algorithm(algorithm) { | |||
| ConvolutionImpl::AlgoDefault::AlgoDefault(ConvBiasImpl::AlgoBase* algorithm) | |||
| : m_algorithm(algorithm) { | |||
| megdnn_assert_internal(algorithm); | |||
| m_name = ssprintf("CONVOLUTION_DEFAULT_%s", m_algorithm->name()); | |||
| } | |||
| ConvBiasImpl::NCBKernSizeParam | |||
| ConvolutionImpl::AlgoDefault::AlgoDefault::init_convbias_opr_and_param( | |||
| ConvBiasImpl* conv_bias_opr, const NCBKernSizeParam& param) { | |||
| ConvolutionImpl::AlgoDefault::init_conv_bias_param( | |||
| const NCBKernSizeParam& param) { | |||
| DType bias_type = param.dst_type; | |||
| if (bias_type.category() == DTypeCategory::QUANTIZED) { | |||
| bias_type = dtype::QuantizedS32( | |||
| mul_scale(param.src_type, param.filter_type)); | |||
| } | |||
| ::ConvBiasImpl::NCBKernSizeParam conv_bias_size_param( | |||
| param, 0, param::MatrixMul::Format::DEFAULT, bias_type, 0, | |||
| BiasMode::NO_BIAS, param::ConvBias::NonlineMode::IDENTITY); | |||
| // nonline mode | |||
| conv_bias_opr->param().nonlineMode = conv_bias_size_param.nonlineMode; | |||
| // convolution mode | |||
| if (conv_bias_size_param.filter_meta.should_flip) { | |||
| conv_bias_opr->param().mode = param::ConvolutionV0::Mode::CONVOLUTION; | |||
| } else { | |||
| conv_bias_opr->param().mode = | |||
| param::ConvolutionV0::Mode::CROSS_CORRELATION; | |||
| } | |||
| // sparse | |||
| if (conv_bias_size_param.filter_meta.group > 1) { | |||
| conv_bias_opr->param().sparse = param::ConvolutionV0::Sparse::GROUP; | |||
| } else { | |||
| conv_bias_opr->param().sparse = param::ConvolutionV0::Sparse::DENSE; | |||
| } | |||
| // format | |||
| conv_bias_opr->param().format = conv_bias_size_param.filter_meta.format; | |||
| // pad stride dilate | |||
| conv_bias_opr->param().pad_h = conv_bias_size_param.filter_meta.padding[0]; | |||
| conv_bias_opr->param().pad_w = conv_bias_size_param.filter_meta.padding[1]; | |||
| conv_bias_opr->param().stride_h = | |||
| conv_bias_size_param.filter_meta.stride[0]; | |||
| conv_bias_opr->param().stride_w = | |||
| conv_bias_size_param.filter_meta.stride[1]; | |||
| conv_bias_opr->param().dilate_h = | |||
| conv_bias_size_param.filter_meta.dilation[0]; | |||
| conv_bias_opr->param().dilate_w = | |||
| conv_bias_size_param.filter_meta.dilation[1]; | |||
| // output_block_size | |||
| conv_bias_opr->param().output_block_size = | |||
| conv_bias_size_param.output_block_size; | |||
| // compute_mode | |||
| conv_bias_opr->param().compute_mode = conv_bias_size_param.compute_mode; | |||
| return conv_bias_size_param; | |||
| return {param, | |||
| 0, | |||
| param::MatrixMul::Format::DEFAULT, | |||
| bias_type, | |||
| 0, | |||
| BiasMode::NO_BIAS, | |||
| param::ConvBias::NonlineMode::IDENTITY}; | |||
| } | |||
| bool ConvolutionImpl::AlgoDefault::is_preferred( | |||
| ConvolutionImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| ::ConvBiasImpl::NCBKernSizeParam conv_bias_param = | |||
| init_convbias_opr_and_param(m_conv_bias_opr, param); | |||
| return m_algorithm->is_preferred(m_conv_bias_opr, conv_bias_param); | |||
| init_conv_bias_param(param); | |||
| return m_algorithm->is_preferred(conv_bias_param); | |||
| } | |||
| bool ConvolutionImpl::AlgoDefault::usable( | |||
| ConvolutionImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| ::ConvBiasImpl::NCBKernSizeParam conv_bias_param = | |||
| init_convbias_opr_and_param(m_conv_bias_opr, param); | |||
| return m_algorithm->usable(m_conv_bias_opr, conv_bias_param, | |||
| init_conv_bias_param(param); | |||
| return m_algorithm->usable(conv_bias_param, | |||
| static_cast<ConvBiasImpl::AlgoSelectionStrategy>( | |||
| algo_selection_strategy)); | |||
| } | |||
| @@ -365,69 +332,62 @@ bool ConvolutionImpl::AlgoDefault::usable( | |||
| WorkspaceBundle ConvolutionImpl::AlgoDefault::get_bundle( | |||
| const NCBKernSizeParam& param) const { | |||
| ::ConvBiasImpl::NCBKernSizeParam conv_bias_param = | |||
| init_convbias_opr_and_param(m_conv_bias_opr, param); | |||
| m_conv_bias_opr->execution_policy() = {m_algorithm}; | |||
| init_conv_bias_param(param); | |||
| return WorkspaceBundle(nullptr, {m_algorithm->get_workspace( | |||
| m_conv_bias_opr, conv_bias_param)}); | |||
| conv_bias_param)}); | |||
| } | |||
| size_t ConvolutionImpl::AlgoDefault::get_workspace( | |||
| ConvolutionImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| size_t ConvolutionImpl::AlgoDefault::get_preprocess_workspace( | |||
| ConvolutionImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| ::ConvBiasImpl::NCBKernSizeParam conv_bias_param = | |||
| init_convbias_opr_and_param(m_conv_bias_opr, param); | |||
| m_conv_bias_opr->execution_policy() = {m_algorithm}; | |||
| return m_algorithm->get_preprocess_workspace(m_conv_bias_opr, | |||
| conv_bias_param); | |||
| init_conv_bias_param(param); | |||
| return m_algorithm->get_preprocess_workspace(conv_bias_param); | |||
| } | |||
| SmallVector<TensorLayout> | |||
| ConvolutionImpl::AlgoDefault::deduce_preprocessed_filter_layout( | |||
| ConvolutionImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| ::ConvBiasImpl::NCBKernSizeParam conv_bias_param = | |||
| init_convbias_opr_and_param(m_conv_bias_opr, param); | |||
| m_conv_bias_opr->execution_policy() = {m_algorithm}; | |||
| return m_algorithm->deduce_preprocessed_filter_layout(m_conv_bias_opr, | |||
| conv_bias_param); | |||
| init_conv_bias_param( param); | |||
| return m_algorithm->deduce_preprocessed_filter_layout(conv_bias_param); | |||
| } | |||
| //! Return the implement preprocess kernel | |||
| SmallVector<ConvolutionImpl::NCBKern> | |||
| ConvolutionImpl::AlgoDefault::get_preprocess_kimpl( | |||
| ::ConvBiasImpl* conv_bias_opr, ConvBiasImpl::AlgoBase* algo, | |||
| ConvBiasImpl::AlgoBase* algo, | |||
| const NCBKernSizeParam& param) { | |||
| MIDOUT_BEGIN(megdnn_fallback_conv, midout_iv("get_preprocess_kimpl"_hash)) { | |||
| // construct the conv_bias kern param | |||
| ::ConvBiasImpl::NCBKernParam conv_bias_param; | |||
| ::ConvBiasImpl::NCBKernSizeParam conv_bias_size_param = | |||
| init_convbias_opr_and_param(conv_bias_opr, param); | |||
| static_cast<::ConvBiasImpl::NCBKernSizeParam&>(conv_bias_param) = | |||
| conv_bias_size_param; | |||
| init_conv_bias_param(param); | |||
| auto conv_bias_preprocess_kerns = | |||
| algo->dispatch_preprocess_kerns(conv_bias_opr, conv_bias_param); | |||
| algo->dispatch_preprocess_kerns(conv_bias_param); | |||
| SmallVector<ConvolutionImpl::NCBKern> convolution_preprocess_kerns; | |||
| //! Set the conv_bias param using convolution param | |||
| auto set_copy_param_filter_workspace_ptr = | |||
| auto set_param_filter_workspace_ptr = | |||
| [](const NCBKernParam& conv_param, | |||
| ::ConvBiasImpl::NCBKernParam& copied_param) { | |||
| copied_param.filter_ptr = conv_param.filter_ptr; | |||
| copied_param.workspace_ptr = conv_param.workspace_ptr; | |||
| copied_param.workspace_size = conv_param.workspace_size; | |||
| ::ConvBiasImpl::NCBKernParam& conv_bias_param) { | |||
| conv_bias_param.filter_ptr = conv_param.filter_ptr; | |||
| conv_bias_param.workspace_ptr = conv_param.workspace_ptr; | |||
| conv_bias_param.workspace_size = conv_param.workspace_size; | |||
| }; | |||
| for (size_t i = 0; i < conv_bias_preprocess_kerns.size(); i++) { | |||
| auto kernel = conv_bias_preprocess_kerns[i]; | |||
| //! If the kerenl batch parallel | |||
| auto run = [=](const NCBKernParam& p, | |||
| const NCBKernIndex& ncb_index) { | |||
| auto copy_param = conv_bias_param; | |||
| set_copy_param_filter_workspace_ptr(p, copy_param); | |||
| kernel.kern(copy_param, | |||
| {ncb_index.thread_id, ncb_index.ndrange_id}); | |||
| auto run = [param = conv_bias_param, kernel, | |||
| &set_param_filter_workspace_ptr]( | |||
| const NCBKernParam& p, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| set_param_filter_workspace_ptr(p, param); | |||
| kernel.kern(param, {ncb_index.thread_id, ncb_index.ndrange_id}); | |||
| }; | |||
| convolution_preprocess_kerns.push_back({run, kernel.global_size}); | |||
| } | |||
| @@ -438,38 +398,35 @@ ConvolutionImpl::AlgoDefault::get_preprocess_kimpl( | |||
| //! Return the implement kernel | |||
| SmallVector<ConvolutionImpl::NCBKern> ConvolutionImpl::AlgoDefault::get_kimpl( | |||
| ::ConvBiasImpl* conv_bias_opr, ConvBiasImpl::AlgoBase* algo, | |||
| ConvBiasImpl::AlgoBase* algo, | |||
| const NCBKernSizeParam& param) { | |||
| MIDOUT_BEGIN(megdnn_fallback_conv, midout_iv(0)) { | |||
| // construct the conv_bias kern param | |||
| ::ConvBiasImpl::NCBKernParam conv_bias_param; | |||
| ::ConvBiasImpl::NCBKernSizeParam conv_bias_size_param = | |||
| init_convbias_opr_and_param(conv_bias_opr, param); | |||
| static_cast<::ConvBiasImpl::NCBKernSizeParam&>(conv_bias_param) = | |||
| conv_bias_size_param; | |||
| auto conv_bias_kerns = | |||
| algo->dispatch_kerns(conv_bias_opr, conv_bias_param); | |||
| init_conv_bias_param(param); | |||
| auto&& conv_bias_kerns = algo->dispatch_kerns(conv_bias_param); | |||
| SmallVector<ConvolutionImpl::NCBKern> convolution_kerns; | |||
| //! Set the conv_bias param using convolution param | |||
| auto set_copy_param_compute_address = | |||
| [](const NCBKernParam& conv_param, | |||
| ::ConvBiasImpl::NCBKernParam& copied_param) { | |||
| copied_param.src_ptr = conv_param.src_ptr; | |||
| copied_param.filter_ptr = conv_param.filter_ptr; | |||
| copied_param.dst_ptr = conv_param.dst_ptr; | |||
| copied_param.workspace_ptr = conv_param.workspace_ptr; | |||
| copied_param.workspace_size = conv_param.workspace_size; | |||
| ::ConvBiasImpl::NCBKernParam& conv_bias_param) { | |||
| conv_bias_param.src_ptr = conv_param.src_ptr; | |||
| conv_bias_param.filter_ptr = conv_param.filter_ptr; | |||
| conv_bias_param.dst_ptr = conv_param.dst_ptr; | |||
| conv_bias_param.workspace_ptr = conv_param.workspace_ptr; | |||
| conv_bias_param.workspace_size = conv_param.workspace_size; | |||
| }; | |||
| for (size_t i = 0; i < conv_bias_kerns.size(); i++) { | |||
| auto kernel = conv_bias_kerns[i]; | |||
| auto&& kernel = conv_bias_kerns[i]; | |||
| //! If the kerenl batch parallel | |||
| auto run = [=](const NCBKernParam& p, | |||
| const NCBKernIndex& ncb_index) { | |||
| auto copy_param = conv_bias_param; | |||
| set_copy_param_compute_address(p, copy_param); | |||
| kernel.kern(copy_param, | |||
| {ncb_index.thread_id, ncb_index.ndrange_id}); | |||
| auto run = [param = conv_bias_param, kernel, | |||
| &set_copy_param_compute_address]( | |||
| const NCBKernParam& p, | |||
| const NCBKernIndex& ncb_index) mutable { | |||
| set_copy_param_compute_address(p, param); | |||
| kernel.kern(param, {ncb_index.thread_id, ncb_index.ndrange_id}); | |||
| }; | |||
| convolution_kerns.push_back({run, kernel.global_size}); | |||
| } | |||
| @@ -6,7 +6,8 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #pragma once | |||
| @@ -35,10 +36,10 @@ void kern_naive_forward(const ConvolutionImpl::NCBKernParam& p, | |||
| src.layout.dtype = p.src_type; | |||
| dst.layout.dtype = p.dst_type; | |||
| if (p.filter_meta.format == param::Convolution::Format::NCHW) { | |||
| istrd *= p.isz[0] * p.isz[1]; | |||
| ostrd *= p.osz[0] * p.osz[1]; | |||
| src.layout.init_contiguous_stride({1, IC, IH, IW}); | |||
| dst.layout.init_contiguous_stride({1, OC, OH, OW}); | |||
| istrd *= p.isz[0] * p.isz[1]; | |||
| ostrd *= p.osz[0] * p.osz[1]; | |||
| src.layout.init_contiguous_stride({1, IC, IH, IW}); | |||
| dst.layout.init_contiguous_stride({1, OC, OH, OW}); | |||
| } else { | |||
| // Must be NHWC | |||
| megdnn_assert( | |||
| @@ -75,14 +76,12 @@ class ConvolutionImpl::AlgoFallback final : public AlgoBase { | |||
| public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "FALLBACK_ALGO"; } | |||
| bool usable(ConvolutionImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(ConvolutionImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kern( | |||
| ConvolutionImpl* /*opr*/, | |||
| const NCBKernSizeParam& /*param*/) const override; | |||
| }; | |||
| @@ -90,66 +89,55 @@ class ConvolutionImpl::AlgoNaive final : public AlgoBase { | |||
| public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "NAIVE_ALGO"; } | |||
| bool usable(ConvolutionImpl* /*opr*/, const NCBKernSizeParam& /*param*/, | |||
| bool usable(const NCBKernSizeParam& /*param*/, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(ConvolutionImpl*, | |||
| const NCBKernSizeParam&) const override { | |||
| return 0; | |||
| }; | |||
| size_t get_workspace(const NCBKernSizeParam&) const override { return 0; }; | |||
| SmallVector<NCBKern> dispatch_kern( | |||
| ConvolutionImpl* /*opr*/, | |||
| const NCBKernSizeParam& /*param*/) const override; | |||
| }; | |||
| class ConvolutionImpl::AlgoDefault final : public AlgoBase { | |||
| static ConvBiasImpl::NCBKernSizeParam init_convbias_opr_and_param( | |||
| ConvBiasImpl* conv_bias_opr, const NCBKernSizeParam& param); | |||
| static ConvBiasImpl::NCBKernSizeParam init_conv_bias_param( | |||
| const NCBKernSizeParam& param); | |||
| WorkspaceBundle get_bundle(const NCBKernSizeParam& param) const; | |||
| static SmallVector<NCBKern> get_kimpl(ConvBiasImpl* conv_bias_opr, | |||
| ConvBiasImpl::AlgoBase* algo, | |||
| static SmallVector<NCBKern> get_kimpl(ConvBiasImpl::AlgoBase* algo, | |||
| const NCBKernSizeParam& param); | |||
| static SmallVector<NCBKern> get_preprocess_kimpl( | |||
| ConvBiasImpl* conv_bias_opr, ConvBiasImpl::AlgoBase* algo, | |||
| const NCBKernSizeParam& param); | |||
| ConvBiasImpl::AlgoBase* algo, const NCBKernSizeParam& param); | |||
| public: | |||
| AlgoDefault(fallback::ConvBiasImpl* conv_bias_opr, ConvBiasImpl::AlgoBase*); | |||
| AlgoDefault(ConvBiasImpl::AlgoBase*); | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return m_name.c_str(); } | |||
| bool usable(ConvolutionImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(ConvolutionImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| size_t get_preprocess_workspace(ConvolutionImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| size_t get_preprocess_workspace(const NCBKernSizeParam&) const override; | |||
| SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||
| ConvolutionImpl*, const NCBKernSizeParam&) const override; | |||
| const NCBKernSizeParam&) const override; | |||
| SmallVector<NCBKern> dispatch_preprocess_kern( | |||
| ConvolutionImpl*, const NCBKernSizeParam& param) const override { | |||
| return get_preprocess_kimpl(m_conv_bias_opr, m_algorithm, param); | |||
| const NCBKernSizeParam& param) const override { | |||
| return get_preprocess_kimpl(m_algorithm, param); | |||
| } | |||
| SmallVector<NCBKern> dispatch_kern( | |||
| ConvolutionImpl* /*opr*/, | |||
| const NCBKernSizeParam& param) const override { | |||
| return get_kimpl(m_conv_bias_opr, m_algorithm, param); | |||
| return get_kimpl(m_algorithm, param); | |||
| } | |||
| void* type() const override { return sm_fallback_conv_algo_type; } | |||
| //! select matmul to the highest preference | |||
| bool is_preferred(ConvolutionImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| private: | |||
| std::string m_name; | |||
| fallback::ConvBiasImpl* m_conv_bias_opr; | |||
| ConvBiasImpl::AlgoBase* m_algorithm; | |||
| }; | |||
| @@ -59,8 +59,7 @@ public: | |||
| static_cast<ConvBiasImpl*>(conv_bias_opr)->algo_pack(); | |||
| for (auto&& algorithm : conv_bias_algo) { | |||
| // fallback algo | |||
| refhold.emplace_back(new AlgoDefault( | |||
| static_cast<ConvBiasImpl*>(conv_bias_opr), algorithm)); | |||
| refhold.emplace_back(new AlgoDefault(algorithm)); | |||
| all_algos.emplace_back(refhold.back().get()); | |||
| } | |||
| @@ -82,7 +81,7 @@ bool ConvolutionImpl::is_naive_algo(ConvolutionImpl::Algorithm* algo) { | |||
| } | |||
| #define NCB_ALGO_FUNC(name, algo, param) \ | |||
| static_cast<AlgoBase*>(algo)->name(this, fparam) | |||
| static_cast<AlgoBase*>(algo)->name(param) | |||
| void ConvolutionImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter, | |||
| _megdnn_tensor_out dst, | |||
| @@ -131,7 +130,7 @@ size_t ConvolutionImpl::get_workspace_in_bytes( | |||
| return naive::ConvolutionForwardImpl::get_workspace_in_bytes( | |||
| src, filter, dst, preprocessed_filter); | |||
| } else { | |||
| return static_cast<AlgoBase*>(algo)->get_workspace(this, fparam); | |||
| return NCB_ALGO_FUNC(get_workspace, algo, fparam); | |||
| } | |||
| } | |||
| @@ -144,8 +143,7 @@ size_t ConvolutionImpl::get_preprocess_workspace_in_bytes( | |||
| return naive::ConvolutionForwardImpl::get_preprocess_workspace_in_bytes( | |||
| src, filter, dst); | |||
| } else { | |||
| return static_cast<AlgoBase*>(algo)->get_preprocess_workspace(this, | |||
| fparam); | |||
| return NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam); | |||
| } | |||
| } | |||
| @@ -158,8 +156,7 @@ SmallVector<TensorLayout> ConvolutionImpl::deduce_preprocessed_filter_layout( | |||
| return naive::ConvolutionForwardImpl::deduce_preprocessed_filter_layout( | |||
| src, filter, dst); | |||
| } else { | |||
| return static_cast<AlgoBase*>(algo)->deduce_preprocessed_filter_layout( | |||
| this, fparam); | |||
| return NCB_ALGO_FUNC(deduce_preprocessed_filter_layout, algo, fparam); | |||
| } | |||
| } | |||
| @@ -251,8 +248,7 @@ ConvolutionImpl::NCBKernParam ConvolutionImpl::make_ncb_kern_param( | |||
| void ConvolutionImpl::exec_preprocess_with_ncb_kern(const NCBKernParam& param, | |||
| Algorithm* algo) { | |||
| auto kerns = | |||
| static_cast<AlgoBase*>(algo)->dispatch_preprocess_kern(this, param); | |||
| auto kerns = NCB_ALGO_FUNC(dispatch_preprocess_kern, algo, param); | |||
| auto fallback_handle = handle(); | |||
| for (auto kernel : kerns) { | |||
| megdnn_assert( | |||
| @@ -272,14 +268,15 @@ void ConvolutionImpl::exec_preprocess_with_ncb_kern(const NCBKernParam& param, | |||
| void ConvolutionImpl::exec_with_ncb_kern(const NCBKernParam& param, | |||
| Algorithm* algo) { | |||
| auto kerns = static_cast<AlgoBase*>(algo)->dispatch_kern(this, param); | |||
| auto kerns = NCB_ALGO_FUNC(dispatch_kern, algo, param); | |||
| auto fallback_handle = handle(); | |||
| for (auto kernel : kerns) { | |||
| megdnn_assert(param.filter_meta.format == Param::Format::NCHW || | |||
| param.filter_meta.format == Param::Format::NHWC || | |||
| param.filter_meta.format == Param::Format::NCHW88 || | |||
| param.filter_meta.format == Param::Format::NCHW44, | |||
| "invalid conv format"); | |||
| megdnn_assert( | |||
| param.filter_meta.format == Param::Format::NCHW || | |||
| param.filter_meta.format == Param::Format::NHWC || | |||
| param.filter_meta.format == Param::Format::NCHW88 || | |||
| param.filter_meta.format == Param::Format::NCHW44, | |||
| "invalid conv format"); | |||
| auto run = [param, kernel](size_t index, size_t thread_id) { | |||
| CpuNDRange ndrange_id(kernel.global_size, index); | |||
| kernel.kern(param, {thread_id, ndrange_id}); | |||
| @@ -293,13 +290,11 @@ ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm_heuristic_with_ncb( | |||
| const NCBKernSizeParam& param, size_t workspace_limit_in_bytes, | |||
| bool reproducible) { | |||
| for (auto i : get_all_algorithms_with_ncb(param)) { | |||
| size_t need_workspace = | |||
| static_cast<AlgoBase*>(i)->get_workspace(this, param); | |||
| bool usable_reproducible = | |||
| static_cast<AlgoBase*>(i)->usable_reproducible( | |||
| this, param, AlgoSelectionStrategy::HEURISTIC, | |||
| reproducible); | |||
| if (usable_reproducible && need_workspace <= workspace_limit_in_bytes) { | |||
| param, AlgoSelectionStrategy::HEURISTIC, reproducible); | |||
| if (usable_reproducible && NCB_ALGO_FUNC(get_workspace, i, param) <= | |||
| workspace_limit_in_bytes) { | |||
| return i; | |||
| } | |||
| } | |||
| @@ -311,8 +306,8 @@ ConvolutionImpl::get_all_algorithms_with_ncb(const NCBKernSizeParam& param) { | |||
| std::vector<Algorithm*> ret; | |||
| std::vector<Algorithm*> prefer_algos; | |||
| for (auto&& i : algo_pack()) { | |||
| if (i->usable(this, param, AlgoSelectionStrategy::FULL_RUN)) { | |||
| if (i->is_preferred(this, param)) { | |||
| if (i->usable(param, AlgoSelectionStrategy::FULL_RUN)) { | |||
| if (i->is_preferred(param)) { | |||
| prefer_algos.push_back(i); | |||
| } else { | |||
| ret.push_back(i); | |||
| @@ -178,42 +178,38 @@ public: | |||
| class AlgoBase : public Algorithm { | |||
| public: | |||
| virtual ~AlgoBase() = default; | |||
| virtual bool usable(ConvolutionImpl* opr, const NCBKernSizeParam& param, | |||
| virtual bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const = 0; | |||
| virtual size_t get_workspace(ConvolutionImpl* opr, | |||
| const NCBKernSizeParam& param) const = 0; | |||
| virtual size_t get_workspace(const NCBKernSizeParam& param) const = 0; | |||
| virtual SmallVector<NCBKern> dispatch_kern( | |||
| ConvolutionImpl* opr, const NCBKernSizeParam& param) const = 0; | |||
| const NCBKernSizeParam& param) const = 0; | |||
| virtual SmallVector<NCBKern> dispatch_preprocess_kern( | |||
| ConvolutionImpl*, const NCBKernSizeParam&) const { | |||
| const NCBKernSizeParam&) const { | |||
| return {}; | |||
| }; | |||
| //! get the layouts of weight_prerocess dst | |||
| virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||
| ConvolutionImpl*, const NCBKernSizeParam&) const { | |||
| const NCBKernSizeParam&) const { | |||
| return {}; | |||
| }; | |||
| //! get the workspace when weight_prerocess | |||
| virtual size_t get_preprocess_workspace(ConvolutionImpl*, | |||
| const NCBKernSizeParam&) const { | |||
| virtual size_t get_preprocess_workspace(const NCBKernSizeParam&) const { | |||
| return 0_z; | |||
| }; | |||
| //! Temporarily used to identify whether the matmul algorithm is | |||
| //! is_preferred. | |||
| virtual bool is_preferred(ConvolutionImpl*, | |||
| const NCBKernSizeParam&) const { | |||
| virtual bool is_preferred(const NCBKernSizeParam&) const { | |||
| return false; | |||
| } | |||
| bool usable_reproducible(ConvolutionImpl* opr, | |||
| const NCBKernSizeParam& param, | |||
| bool usable_reproducible(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy, | |||
| bool reproducible = true) const { | |||
| return (!reproducible || is_reproducible()) && | |||
| usable(opr, param, algo_selection_strategy); | |||
| usable(param, algo_selection_strategy); | |||
| } | |||
| }; | |||
| @@ -6,7 +6,8 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "src/x86/conv_bias/f32/algos.h" | |||
| @@ -104,7 +105,7 @@ void get_rectified_size(size_t IH, size_t IW, size_t OH, size_t OW, size_t FH, | |||
| /* ===================== direct algo ===================== */ | |||
| bool ConvBiasImpl::AlgoDirect::usable( | |||
| FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| auto&& fm = param.filter_meta; | |||
| bool aviliable = fm.format == Param::Format::NCHW && fm.spatial_ndim == 2 && | |||
| @@ -142,7 +143,7 @@ WorkspaceBundle ConvBiasImpl::AlgoDirect::get_bundle( | |||
| return {nullptr, {part0, part1}}; | |||
| } | |||
| size_t ConvBiasImpl::AlgoDirect::get_workspace( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| @@ -280,7 +281,8 @@ void ConvBiasImpl::AlgoDirect::do_conv_kern(const WorkspaceBundle& bundle, | |||
| size_t workspace_group_id = workspace_ids[0], | |||
| workspace_batch_id = workspace_ids[1], oc = workspace_ids[2]; | |||
| const float* sptr = kern_param.src<float>(batch_id, group_id); | |||
| const float* filter = kern_param.filter<float>(group_id) + oc * FH * FW * IC; | |||
| const float* filter = | |||
| kern_param.filter<float>(group_id) + oc * FH * FW * IC; | |||
| const float* bias_ptr = | |||
| kern_param.bias<float>(batch_id, group_id) + oc * bias_offset; | |||
| float* dst = kern_param.dst<float>(batch_id, group_id) + oc * OH * OW; | |||
| @@ -318,7 +320,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoDirect::get_kimpls( | |||
| } | |||
| /* ===================== direct-stride2 algo ===================== */ | |||
| bool ConvBiasImpl::AlgoDirectStride2::usable( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const { | |||
| auto&& fm = param.filter_meta; | |||
| auto FH = fm.spatial[0]; | |||
| @@ -363,7 +365,7 @@ WorkspaceBundle ConvBiasImpl::AlgoDirectStride2::get_bundle( | |||
| } | |||
| size_t ConvBiasImpl::AlgoDirectStride2::get_workspace( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| //! Process one input channel copy padding | |||
| @@ -528,7 +530,7 @@ WorkspaceBundle ConvBiasImpl::AlgoMatrixMul::get_bundle( | |||
| } | |||
| bool ConvBiasImpl::AlgoMatrixMul::is_preferred( | |||
| FallbackConvBiasImpl* opr, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| auto&& fm = param.filter_meta; | |||
| if (fm.dilation[0] != 1 || fm.dilation[1] != 1) { | |||
| return false; | |||
| @@ -550,7 +552,7 @@ bool ConvBiasImpl::AlgoMatrixMul::is_preferred( | |||
| int ic = find_nearest_elem<int>(fm.icpg, {4, 8, 16, 32, 64, 96, 128}); | |||
| int on = std::round(geometric_mean(param.osz[0], param.osz[1])); | |||
| ProfileElement cur(f, oc, ic, on); | |||
| auto H = static_cast<HandleImpl*>(opr->handle()); | |||
| auto H = static_cast<HandleImpl*>(inplace_cpu_handle().get()); | |||
| auto&& target = std::lower_bound(H->profile_cache().begin(), | |||
| H->profile_cache().end(), cur); | |||
| megdnn_assert_internal(target->f == cur.f); | |||
| @@ -6,7 +6,8 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #pragma once | |||
| @@ -37,14 +38,13 @@ public: | |||
| return m_large_group ? "X86_CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP" | |||
| : "X86_CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP"; | |||
| } | |||
| bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override { | |||
| return get_kimpls(param); | |||
| } | |||
| @@ -74,14 +74,13 @@ public: | |||
| return m_large_group ? "X86_CONV_BIAS_DIRECT_STRIDE2_LARGE_GROUP" | |||
| : "X86_CONV_BIAS_DIRECT_STRIDE2_SMALL_GROUP"; | |||
| } | |||
| bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override { | |||
| return get_kimpls(param); | |||
| } | |||
| @@ -131,7 +130,7 @@ public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "X86_CONV_BIAS_MATMUL"; } | |||
| bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const override { | |||
| auto&& fm = param.filter_meta; | |||
| return fm.format == Param::Format::NCHW && fm.spatial_ndim == 2 && | |||
| @@ -145,15 +144,12 @@ public: | |||
| param.nr_threads == 1_z; | |||
| } | |||
| bool is_preferred(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam&) const override; | |||
| bool is_preferred(const NCBKernSizeParam&) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| SmallVector<NCBKern> dispatch_kerns( | |||
| FallbackConvBiasImpl* /*opr*/, | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t group = param.filter_meta.group; | |||
| return {{kimpl, {group, 1_z, 1_z}}}; | |||
| @@ -171,7 +167,7 @@ public: | |||
| AlgoMkldnnConv() {} | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "MKLDNN_CONV_FP32"; } | |||
| bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const override { | |||
| auto&& fm = param.filter_meta; | |||
| @@ -184,13 +180,9 @@ public: | |||
| return ok; | |||
| }; | |||
| size_t get_workspace(FallbackConvBiasImpl* /*opr*/, | |||
| const NCBKernSizeParam&) const override { | |||
| return 0; | |||
| } | |||
| size_t get_workspace(const NCBKernSizeParam&) const override { return 0; } | |||
| SmallVector<NCBKern> dispatch_kerns( | |||
| FallbackConvBiasImpl* /*opr*/, | |||
| const NCBKernSizeParam& /*param*/) const override { | |||
| auto kern = [](const NCBKernParam& param, | |||
| const NCBKernIndex& ncb_index) { | |||
| @@ -6,16 +6,17 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "src/x86/conv_bias/f32/algos.h" | |||
| #include "src/common/utils.h" | |||
| #include "src/x86/conv_bias/f32/algos.h" | |||
| #include "src/x86/conv_bias/f32/strategy.h" | |||
| #include "src/x86/conv_bias/opr_impl.h" | |||
| #include "src/x86/conv_bias/postprocess_helper.h" | |||
| #include "src/x86/handle.h" | |||
| #include "src/x86/profile.h" | |||
| #include "src/x86/conv_bias/f32/strategy.h" | |||
| #include "midout.h" | |||
| @@ -27,10 +28,9 @@ using namespace x86; | |||
| /* ======================= AlgoFP32WinogradF63_8*8 ======================== */ | |||
| bool ConvBiasImpl::AlgoFP32WinogradF63_8x8::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_x86_winograd_fp32, 1, 0) { | |||
| //! TODO: now nchw88 winograd only support Dense mode | |||
| if (param.filter_meta.icpg % 8 != 0 || | |||
| @@ -44,13 +44,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF63_8x8::usable( | |||
| strategy, m_tile_size, param) | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| (opr->param().format == param::ConvBias::Format::NCHW88 || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW88 || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW88_WINOGRAD && | |||
| opr->param().output_block_size == 6 && | |||
| param.output_block_size == 6 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::MK8)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -74,10 +74,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63_8x8, | |||
| /* ======================= AlgoFP32WinogradF23_8*8 ======================== */ | |||
| bool ConvBiasImpl::AlgoFP32WinogradF23_8x8::usable( | |||
| fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| MEGDNN_MARK_USED_VAR(param); | |||
| MEGDNN_MARK_USED_VAR(opr); | |||
| MIDOUT_BEGIN(megdnn_x86_winograd_fp32, 2, 0) { | |||
| //! TODO: now nchw88 winograd only support Dense mode | |||
| if (param.filter_meta.icpg % 8 != 0 || | |||
| @@ -91,13 +90,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF23_8x8::usable( | |||
| strategy, m_tile_size, param) | |||
| .get_matmul_kern_param(param); | |||
| return m_matmul_algo->usable(matmul_param) && | |||
| (opr->param().format == param::ConvBias::Format::NCHW88 || | |||
| (opr->param().format == | |||
| (param.filter_meta.format == param::ConvBias::Format::NCHW88 || | |||
| (param.filter_meta.format == | |||
| param::ConvBias::Format::NCHW88_WINOGRAD && | |||
| opr->param().output_block_size == 2 && | |||
| param.output_block_size == 2 && | |||
| param.winograd_matmul_format == | |||
| param::MatrixMul::Format::MK8)) && | |||
| opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION && | |||
| !param.filter_meta.should_flip && | |||
| (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] && | |||
| param.filter_meta.spatial[0] == 3) && | |||
| (param.filter_meta.stride[0] == param.filter_meta.stride[1] && | |||
| @@ -36,7 +36,7 @@ using namespace megdnn; | |||
| using namespace x86; | |||
| bool ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::usable( | |||
| FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| return chanwise_avx2_stride1_qint8_usable(param); | |||
| } | |||
| @@ -66,7 +66,7 @@ WorkspaceBundle ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::get_bundle( | |||
| } | |||
| size_t ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::get_workspace( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| @@ -78,12 +78,12 @@ ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::get_kimpls( | |||
| } | |||
| bool ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::is_preferred( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return chanwise_avx2_stride1_qint8_preferred(param); | |||
| } | |||
| bool ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::usable( | |||
| FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| return chanwise_avx2_stride2_qint8_usable(param); | |||
| } | |||
| @@ -113,7 +113,7 @@ WorkspaceBundle ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::get_bundle( | |||
| } | |||
| size_t ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::get_workspace( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| @@ -125,12 +125,12 @@ ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::get_kimpls( | |||
| } | |||
| bool ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::is_preferred( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return chanwise_avx2_stride2_qint8_preferred(param); | |||
| } | |||
| bool ConvBiasImpl::AlgoDirectAvx2Stride1Int8::usable( | |||
| FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param, | |||
| const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy /*algo_selection_strategy*/) const { | |||
| return direct_avx2_stride1_int8_usable(param); | |||
| } | |||
| @@ -170,7 +170,7 @@ WorkspaceBundle ConvBiasImpl::AlgoDirectAvx2Stride1Int8::get_bundle( | |||
| } | |||
| size_t ConvBiasImpl::AlgoDirectAvx2Stride1Int8::get_workspace( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| @@ -182,14 +182,13 @@ ConvBiasImpl::AlgoDirectAvx2Stride1Int8::get_kimpls( | |||
| } | |||
| bool ConvBiasImpl::AlgoDirectAvx2Stride1Int8::is_preferred( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return direct_avx2_stride1_int8_preferred(param); | |||
| } | |||
| /* ===================== avx2 int8 stride 2 ===================== */ | |||
| bool ConvBiasImpl::AlgoAVX2DirectConvStride2::usable( | |||
| FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const { | |||
| const NCBKernSizeParam& param, AlgoSelectionStrategy) const { | |||
| return direct_avx2_stride2_int8_usable(param); | |||
| } | |||
| @@ -229,7 +228,7 @@ WorkspaceBundle ConvBiasImpl::AlgoAVX2DirectConvStride2::get_bundle( | |||
| } | |||
| size_t ConvBiasImpl::AlgoAVX2DirectConvStride2::get_workspace( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| @@ -241,13 +240,12 @@ ConvBiasImpl::AlgoAVX2DirectConvStride2::get_kimpls( | |||
| } | |||
| bool ConvBiasImpl::AlgoAVX2DirectConvStride2::is_preferred( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return direct_avx2_stride2_int8_preferred(param); | |||
| } | |||
| #if MEGDNN_X86_WITH_MKL_DNN | |||
| bool ConvBiasImpl::AlgoMkldnnQint8::usable(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param, | |||
| bool ConvBiasImpl::AlgoMkldnnQint8::usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const { | |||
| return mkldnn_qint8_usable(param); | |||
| } | |||
| @@ -426,19 +424,18 @@ void ConvBiasImpl::AlgoMkldnnQint8::kern_mkldnn_s8x8x32( | |||
| #undef REORDER_MEMORY | |||
| bool ConvBiasImpl::AlgoMkldnnQint8::is_preferred( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return mkldnn_qint8_preferred(param); | |||
| } | |||
| /* ===================== mkldnn qint8 matmul algo ===================== */ | |||
| bool ConvBiasImpl::AlgoMkldnnMatmulQint8::usable(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param, | |||
| bool ConvBiasImpl::AlgoMkldnnMatmulQint8::usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const { | |||
| return mkldnn_matmul_qint8_usable(param); | |||
| } | |||
| bool ConvBiasImpl::AlgoMkldnnMatmulQint8::is_preferred( | |||
| FallbackConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
| const NCBKernSizeParam& param) const { | |||
| return mkldnn_matmul_qint8_preferred(param); | |||
| } | |||
| @@ -25,18 +25,15 @@ public: | |||
| const char* name() const override { | |||
| return "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE1"; | |||
| } | |||
| bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override { | |||
| return get_kimpls(param); | |||
| } | |||
| void* type() const override; | |||
| bool is_preferred(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| }; | |||
| /* ===================== avx2 stride2 chanwise algo ===================== */ | |||
| @@ -49,18 +46,15 @@ public: | |||
| const char* name() const override { | |||
| return "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE2"; | |||
| } | |||
| bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override { | |||
| return get_kimpls(param); | |||
| } | |||
| void* type() const override; | |||
| bool is_preferred(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| }; | |||
| /* ===================== avx2 stride1 direct algo ===================== */ | |||
| @@ -73,18 +67,15 @@ public: | |||
| const char* name() const override { | |||
| return "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1"; | |||
| } | |||
| bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| virtual SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override { | |||
| return get_kimpls(param); | |||
| } | |||
| void* type() const override; | |||
| bool is_preferred(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| }; | |||
| /* ================== avx2 int8 direct conv stride2 algo ================== */ | |||
| @@ -97,18 +88,15 @@ public: | |||
| const char* name() const override { | |||
| return "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2"; | |||
| } | |||
| bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy algo_selection_strategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl* opr, | |||
| const NCBKernSizeParam& param) const override; | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override; | |||
| SmallVector<NCBKern> dispatch_kerns( | |||
| fallback::ConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override { | |||
| return get_kimpls(param); | |||
| } | |||
| void* type() const override; | |||
| bool is_preferred(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| }; | |||
| #if MEGDNN_X86_WITH_MKL_DNN | |||
| @@ -122,16 +110,14 @@ public: | |||
| AlgoMkldnnQint8() {} | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "MKLDNN_INT8"; } | |||
| bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl* /*opr*/, | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override { | |||
| size_t nr_threads = param.nr_threads; | |||
| return get_bundle(param).total_size_in_bytes() * nr_threads; | |||
| } | |||
| SmallVector<NCBKern> dispatch_kerns( | |||
| FallbackConvBiasImpl* /*opr*/, | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t group = param.filter_meta.group; | |||
| size_t n = param.n; | |||
| @@ -147,8 +133,7 @@ public: | |||
| return {{kern, {group, n, 1_z}}}; | |||
| } | |||
| void* type() const override; | |||
| bool is_preferred(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| }; | |||
| /* ===================== mkldnn qint8 matmul algo ===================== */ | |||
| class ConvBiasImpl::AlgoMkldnnMatmulQint8 final : public AlgoBase { | |||
| @@ -160,22 +145,19 @@ class ConvBiasImpl::AlgoMkldnnMatmulQint8 final : public AlgoBase { | |||
| public: | |||
| bool is_reproducible() const override { return true; } | |||
| const char* name() const override { return "MKLDNN_MATMUL_INT8"; } | |||
| bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
| bool usable(const NCBKernSizeParam& param, | |||
| AlgoSelectionStrategy) const override; | |||
| size_t get_workspace(FallbackConvBiasImpl* /*opr*/, | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t get_workspace(const NCBKernSizeParam& param) const override { | |||
| return get_bundle(param).total_size_in_bytes(); | |||
| } | |||
| SmallVector<NCBKern> dispatch_kerns( | |||
| FallbackConvBiasImpl* /*opr*/, | |||
| const NCBKernSizeParam& param) const override { | |||
| size_t group = param.filter_meta.group; | |||
| return {{kern_mkldnn_matmul_s8x8x32, {group, 1_z, 1_z}}}; | |||
| } | |||
| //! select matmul to the highest preference | |||
| bool is_preferred(FallbackConvBiasImpl*, | |||
| const NCBKernSizeParam& param) const override; | |||
| bool is_preferred(const NCBKernSizeParam& param) const override; | |||
| void* type() const override; | |||
| }; | |||
| @@ -163,7 +163,7 @@ const char* ConvBiasImpl::get_algorithm_set_name() const { | |||
| } | |||
| bool ConvBiasImpl::is_matmul_quantized_prefer( | |||
| const ConvBiasImpl::NCBKernSizeParam& param) { | |||
| const ConvBiasImpl::NCBKernSizeParam& param) const { | |||
| bool conv_direct_chanwise_mkldnn_usable = true; | |||
| if (param.dst_type.enumv() == DTypeEnum::QuantizedS8 || | |||
| param.dst_type.enumv() == DTypeEnum::QuantizedS32) { | |||
| @@ -55,7 +55,7 @@ public: | |||
| const char* get_algorithm_set_name() const override; | |||
| bool is_matmul_quantized_prefer( | |||
| const ConvBiasImpl::NCBKernSizeParam& ncb_param) override; | |||
| const ConvBiasImpl::NCBKernSizeParam& ncb_param) const override; | |||
| }; | |||
| } // namespace x86 | |||