GitOrigin-RevId: bc56f09037
tags/v0.4.0
| @@ -469,22 +469,23 @@ using Split = SplitForward; | |||
| * large number of inputs and can handle alignment requirements. Axis is also | |||
| * not supported. | |||
| * | |||
| * The table can be generated by gen_table(). The \p srcs in ParamPackSplit and | |||
| * The offsets can be generated by gen_offsets(). The \p srcs in ParamPackSplit and | |||
| * \p dsts in ParamPackConcat must be on CPU, and must remain valid until the | |||
| * execution stream is synchronized. | |||
| */ | |||
| class ParamPackConcatSplitBase : public OperatorBase { | |||
| protected: | |||
| void check_exec(const TensorLayout& concated, const TensorLayout& table, | |||
| void check_exec(const TensorLayout& concated, const TensorLayout& offsets, | |||
| const TensorLayout& parts); | |||
| public: | |||
| using Param = megdnn::param::Empty; | |||
| ParamPackConcatSplitBase(Handle* handle) : OperatorBase(handle) {} | |||
| //! generate table to be used with ParamPackConcat and ParamPackSplit | |||
| static std::vector<dt_int32> gen_table(const TensorShapeArray& shapes, | |||
| size_t alignment, size_t dtype_size); | |||
| //! generate offsets to be used with ParamPackConcat and ParamPackSplit | |||
| static std::vector<dt_int32> gen_offsets(const TensorShapeArray& shapes, | |||
| size_t alignment, | |||
| size_t dtype_size); | |||
| }; | |||
| /** | |||
| @@ -29,7 +29,7 @@ void ParamPackConcatSplitBase::check_exec(const TensorLayout& concated, | |||
| "concated=%zu table=%zu", concated.shape[0], table.shape[0]); | |||
| } | |||
| std::vector<dt_int32> ParamPackConcatSplitBase::gen_table( | |||
| std::vector<dt_int32> ParamPackConcatSplitBase::gen_offsets( | |||
| const TensorShapeArray& shapes, size_t alignment, size_t dtype_size) { | |||
| megdnn_assert(alignment && (alignment & (alignment - 1)) == 0, | |||
| "alignment must be power of 2: %zu", alignment); | |||
| @@ -46,30 +46,13 @@ std::vector<dt_int32> ParamPackConcatSplitBase::gen_table( | |||
| return v + ((alignment - mod) & (alignment - 1)); | |||
| }; | |||
| std::vector<dt_int32> offsets(shapes.size()); | |||
| size_t offset = 0; | |||
| for (auto&& i : shapes) { | |||
| offset = get_aligned(offset) + i.total_nr_elems(); | |||
| for (size_t i = 0; i < shapes.size(); i++) { | |||
| offsets[i] = offset; | |||
| offset = get_aligned(offset) + shapes[i].total_nr_elems(); | |||
| } | |||
| std::vector<dt_int32> table(offset * 2); | |||
| auto outer_table = table.data(), inner_table = outer_table + offset; | |||
| offset = 0; | |||
| for (size_t i = 0; i < shapes.size(); ++i) { | |||
| auto aligned = get_aligned(offset); | |||
| for (size_t j = offset; j < aligned; ++j) { | |||
| inner_table[j] = outer_table[j] = -1; | |||
| } | |||
| offset = aligned; | |||
| auto cur_size = shapes[i].total_nr_elems(); | |||
| for (size_t j = 0; j < cur_size; ++j) { | |||
| outer_table[offset + j] = i; | |||
| inner_table[offset + j] = j; | |||
| } | |||
| offset += cur_size; | |||
| } | |||
| megdnn_assert(offset * 2 == table.size()); | |||
| return table; | |||
| return offsets; | |||
| } | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -112,8 +112,8 @@ void test_param_pack_split(Handle* handle, const TensorShapeArray& shapes, | |||
| std::vector<int32_t> table = | |||
| create_table<T>(shapes, handle->alignment_requirement()); | |||
| ASSERT_EQ(table, | |||
| ParamPackSplit::gen_table(shapes, handle->alignment_requirement(), | |||
| sizeof(T))); | |||
| ParamPackSplit::gen_offsets( | |||
| shapes, handle->alignment_requirement(), sizeof(T))); | |||
| size_t pack_size = table.size() / 2; | |||
| int32_t* table_gpu = create_device_data<int32_t>(handle, table.data(), | |||
| table.size()); | |||
| @@ -47,19 +47,19 @@ SymbolVarArray _Opr::param_pack_split( | |||
| shapearr[i] = npy::vec2shape(shapes[i]); | |||
| } | |||
| auto cn = src.node()->comp_node(); | |||
| auto table_val = megdnn::ParamPackSplit::gen_offsets( | |||
| shapearr, cn.get_mem_addr_alignment(), src.dtype().size()); | |||
| if (!table.node()) { | |||
| auto cn = src.node()->comp_node(); | |||
| if (config.has_comp_node_set()) { | |||
| cn = config.get_single_comp_node(); | |||
| } | |||
| auto table_val = megdnn::ParamPackSplit::gen_table( | |||
| shapearr, cn.get_mem_addr_alignment(), src.dtype().size()); | |||
| HostTensorND hv{cn, TensorShape{table_val.size()}, dtype::Int32{}}; | |||
| HostTensorND hv{cn, TensorShape{{table_val.size()}}, dtype::Int32{}}; | |||
| memcpy(hv.raw_ptr(), table_val.data(), table_val.size() * sizeof(int)); | |||
| table = opr::ImmutableTensor::make(*src.node()->owner_graph(), hv); | |||
| } | |||
| return mgb::opr::ParamPackSplit::make(src, table, shapearr, config); | |||
| return mgb::opr::ParamPackSplit::make(src, table, table_val, shapearr, config); | |||
| } | |||
| #if MGB_ENABLE_OPR_MM | |||
| @@ -1430,20 +1430,22 @@ void ParamPackConcat::on_output_comp_node_stream_changed(){ | |||
| /* f{{{ ======================= ParamPackSplit ======================= */ | |||
| MGB_DYN_TYPE_OBJ_FINAL_IMPL(ParamPackSplit); | |||
| ParamPackSplit::ParamPackSplit(VarNode* src, VarNode* table, | |||
| TensorShapeArray& shapes, const OperatorNodeConfig& config) | |||
| : Super{src->owner_graph(), config, "ParamPackSplit", {src, table}}, | |||
| m_shapes(shapes){ | |||
| mgb_assert(src->comp_node() == table->comp_node()); | |||
| ParamPackSplit::ParamPackSplit(VarNode* src, VarNode* offsets, | |||
| const std::vector<dt_int32> offsets_val, | |||
| TensorShapeArray& shapes, | |||
| const OperatorNodeConfig& config) | |||
| : Super{src->owner_graph(), config, "ParamPackSplit", {src, offsets}}, | |||
| m_shapes(shapes), m_offsets(offsets_val) { | |||
| mgb_assert(src->comp_node() == offsets->comp_node()); | |||
| add_input({src}); | |||
| add_input({table}); | |||
| add_input({offsets}); | |||
| m_mem_fwd_success.resize(m_shapes.size()); | |||
| for (size_t i = 0; i < shapes.size(); i++) { | |||
| mgb_assert(shapes[i].total_nr_elems(), "empty param is not allowed!"); | |||
| add_output(ssprintf("param_pack_o%zu", i))->dtype(src->dtype()); | |||
| add_output(ssprintf("param_pack_o%zu", i)) | |||
| ->dtype(src->dtype()).shape(shapes[i]); | |||
| } | |||
| cg::add_workspace_output(this); | |||
| } | |||
| void ParamPackSplit::add_input_layout_constraint(){ | |||
| @@ -1451,17 +1453,19 @@ void ParamPackSplit::add_input_layout_constraint(){ | |||
| } | |||
| SymbolVarArray ParamPackSplit::make(const SymbolVar& src, | |||
| const SymbolVar& table, | |||
| const SymbolVar& offsets, | |||
| const std::vector<dt_int32> offsets_val, | |||
| TensorShapeArray shapes, | |||
| const OperatorNodeConfig& config) { | |||
| auto&& out = src.node() | |||
| ->owner_graph() | |||
| ->insert_opr(std::make_unique<ParamPackSplit>( | |||
| src.node(), table.node(), shapes, config)) | |||
| src.node(), offsets.node(), offsets_val, | |||
| shapes, config)) | |||
| ->output(); | |||
| SymbolVarArray ret; | |||
| ret.resize(out.size() - 1); // do not return workspace | |||
| ret.resize(out.size()); | |||
| for (size_t i = 0; i < ret.size(); ++i) { | |||
| ret[i] = out[i]; | |||
| } | |||
| @@ -1469,41 +1473,25 @@ SymbolVarArray ParamPackSplit::make(const SymbolVar& src, | |||
| } | |||
| void ParamPackSplit::scn_do_execute() { | |||
| mgb_assert(m_opr.comp_node() == comp_node()); | |||
| megdnn::TensorND src = input(0)->dev_tensor().as_megdnn(), | |||
| table = input(1)->dev_tensor().as_megdnn(); | |||
| auto outputs = output(); | |||
| m_inp_ptr.resize(outputs.size() - 1); | |||
| auto ptr = m_inp_ptr.data(); | |||
| for (size_t i = 0; i < outputs.size() - 1; i++) { | |||
| ptr[i] = outputs[i]->dev_tensor().as_megdnn().raw_ptr; | |||
| } | |||
| megdnn::TensorND dsts( | |||
| ptr, megdnn::TensorLayout({outputs.size() - 1}, dtype::Int32())); | |||
| m_opr->exec(src, table, dsts, | |||
| get_megdnn_workspace_from_var(outputs.back())); | |||
| } | |||
| void ParamPackSplit::on_output_comp_node_stream_changed() { | |||
| Super::on_output_comp_node_stream_changed(); | |||
| init_megdnn_opr(); | |||
| } | |||
| void ParamPackSplit::init_megdnn_opr(){ | |||
| m_opr = intl::create_megdnn_opr<megdnn::ParamPackSplit>(comp_node()); | |||
| } | |||
| void ParamPackSplit::init_output_dtype() { | |||
| // already initialized in constructor | |||
| } | |||
| void ParamPackSplit::mem_plan_fwd_in2out_readonly() { | |||
| mgb_assert(m_offsets.size() == output().size()); | |||
| for (size_t i = 0; i < output().size(); i++) { | |||
| auto layout = output(i)->layout(); | |||
| auto spec = SubTensorSpec::make_from_offset_elem(layout, m_offsets[i]); | |||
| m_mem_fwd_success[i] = output(i)->set_fwd_in2out_readonly( | |||
| input(0), spec); | |||
| mgb_assert(m_mem_fwd_success[i]); | |||
| } | |||
| } | |||
| bool ParamPackSplit::infer_shape(size_t index, TensorShape& dest, | |||
| const cg::static_infer::InpVal& inp) { | |||
| if (!m_opr.get()){ | |||
| init_megdnn_opr(); | |||
| } | |||
| dest = m_shapes[index]; | |||
| return true; | |||
| } | |||
| @@ -1515,33 +1503,19 @@ void ParamPackSplit::init_output_static_infer_desc() { | |||
| DepVal shp_deps{{input(0), DepType::SHAPE}, {input(1), DepType::SHAPE}}; | |||
| auto infer_wk = [this](TensorShape &dst, const InpVal &inp){ | |||
| dst.ndim = 1; | |||
| if(!m_opr.get()){ | |||
| init_megdnn_opr(); | |||
| } | |||
| dst.shape[0] = m_opr->get_workspace_in_bytes( | |||
| inp.val.at(0).shape(), inp.val.at(1).shape(), m_shapes); | |||
| return true; | |||
| }; | |||
| for (size_t i = 0; i < output().size() - 1; i++) { | |||
| for (size_t i = 0; i < output().size(); i++) { | |||
| auto ov = output(i); | |||
| mgr.register_shape_infer( | |||
| ov, {SourceType::DEP, shp_deps, | |||
| std::bind(&ParamPackSplit::infer_shape, this, i, _1, _2)}); | |||
| } | |||
| mgr.register_shape_infer( | |||
| output().back(), {SourceType::DEP, shp_deps, infer_wk}); | |||
| } | |||
| MGB_IMPL_OPR_GRAD(ParamPackSplit) { | |||
| mgb_assert(out_grad.size() == opr.output().size()); | |||
| SmallVector<SymbolVar> grad; | |||
| // last var is workspace, ignore it | |||
| for (size_t i = 0; i < out_grad.size() - 1; ++i) { | |||
| for (size_t i = 0; i < out_grad.size(); ++i) { | |||
| auto gval = out_grad[i]; | |||
| if (!gval) { | |||
| gval = SymbolVar{opr.output(i)}.fill_retain_dtype(0).node(); | |||
| @@ -185,9 +185,10 @@ namespace opr { | |||
| const cg::OperatorNodeBase &opr_, const VarNodeArray &inputs, | |||
| const OperatorNodeConfig &config){ | |||
| auto &&opr = opr_.cast_final_safe<ParamPackSplit>(); | |||
| auto &&offsets = opr.get_offsets(); | |||
| auto &&shape = opr.get_output_shapes(); | |||
| return ParamPackSplit::make(inputs[0], inputs[1], shape, config).at(0). | |||
| return ParamPackSplit::make(inputs[0], inputs[1], offsets, shape, config).at(0). | |||
| node()->owner_opr(); | |||
| } | |||
| @@ -570,31 +570,31 @@ public: | |||
| * \brief Opr used to split parameter | |||
| */ | |||
| MGB_DEFINE_OPR_CLASS(ParamPackSplit, cg::SingleCNOperatorNodeBase) // { | |||
| //! input pointer buffer | |||
| SmallVector<void*> m_inp_ptr; | |||
| intl::UniqPtrWithCN<megdnn::ParamPackSplit> m_opr; | |||
| TensorShapeArray m_shapes; | |||
| std::vector<dt_int32> m_offsets; | |||
| std::vector<bool> m_mem_fwd_success; | |||
| void scn_do_execute() override; | |||
| void init_output_static_infer_desc() override; | |||
| void on_output_comp_node_stream_changed() override; | |||
| bool infer_shape(size_t index, TensorShape &dest, | |||
| const cg::static_infer::InpVal &inp); | |||
| void init_output_dtype() override; | |||
| void mem_plan_fwd_in2out_readonly() override; | |||
| void add_input_layout_constraint() override; | |||
| void init_megdnn_opr(); | |||
| public: | |||
| ParamPackSplit(VarNode* src, VarNode* table, TensorShapeArray& shapes, | |||
| const OperatorNodeConfig &config); | |||
| ParamPackSplit(VarNode* src, VarNode* offsets, | |||
| const std::vector<dt_int32> offsets_val, | |||
| TensorShapeArray& shapes, const OperatorNodeConfig& config); | |||
| static SymbolVarArray make(const SymbolVar& src, const SymbolVar& offsets, | |||
| const std::vector<dt_int32> offsets_val, | |||
| TensorShapeArray shapes, | |||
| const OperatorNodeConfig& config = {}); | |||
| static SymbolVarArray make(const SymbolVar &src, const SymbolVar &table, | |||
| TensorShapeArray shapes, const OperatorNodeConfig &config = {}); | |||
| const std::vector<dt_int32>& get_offsets() const { | |||
| return m_offsets; | |||
| } | |||
| const TensorShapeArray& get_output_shapes() const { | |||
| return m_shapes; | |||
| @@ -1898,7 +1898,7 @@ void test_param_pack_concat(const TensorShapeArray &shapes, DType type){ | |||
| srcs.push_back(nd); | |||
| } | |||
| auto host_table_gen = megdnn::ParamPackSplit::gen_table(shapes, | |||
| auto host_table_gen = megdnn::ParamPackSplit::gen_offsets(shapes, | |||
| cn.get_mem_addr_alignment(), 4); | |||
| ASSERT_EQ(host_table_gen.size(), size * 2); | |||
| auto host_table = std::make_shared<HostTensorND>(); | |||
| @@ -1944,7 +1944,7 @@ void test_param_pack_split(const TensorShapeArray& shapes) { | |||
| auto make_graph = [&](const typename Checker::SymInpArray& inputs) -> | |||
| typename Checker::SymOutArray { | |||
| auto table_val = megdnn::ParamPackSplit::gen_table( | |||
| auto table_val = megdnn::ParamPackSplit::gen_offsets( | |||
| shapes, cn.get_mem_addr_alignment(), 4); | |||
| HostTensorND table; | |||
| std::copy_n(table_val.data(), table_val.size(), | |||
| @@ -1954,7 +1954,8 @@ void test_param_pack_split(const TensorShapeArray& shapes) { | |||
| .ptr<dt_int32>()); | |||
| auto sym_table = opr::SharedDeviceTensor::make( | |||
| *inputs[0].node()->owner_graph(), table); | |||
| auto out = opr::ParamPackSplit::make(inputs[0], sym_table, shapes); | |||
| auto out = opr::ParamPackSplit::make(inputs[0], sym_table, table_val, | |||
| shapes); | |||
| mgb_assert(out.size() == nr_out); | |||
| typename Checker::SymOutArray ret; | |||
| for (size_t i = 0; i < nr_out; ++i) { | |||