GitOrigin-RevId: dfb401a945
tags/v1.6.0
| @@ -18,6 +18,7 @@ import megengine.amp as amp | |||
| import megengine.core.ops.builtin as builtin | |||
| import megengine.core.tensor.dtype as dtype | |||
| import megengine.functional as F | |||
| import megengine.jit as jit | |||
| from megengine import Parameter, Tensor, is_cuda_available, tensor | |||
| from megengine.core._trace_option import use_symbolic_shape | |||
| from megengine.core.autodiff.grad import Grad | |||
| @@ -859,6 +860,35 @@ def test_condtake(): | |||
| np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0]) | |||
| # @pytest.mark.parametrize("is_symbolic", [None, False, True]) | |||
| def test_condtake(is_symbolic=None): | |||
| shapes = [ | |||
| (3, 3, 3), | |||
| (0,), | |||
| (3, 0, 3), | |||
| ] | |||
| def fn(mask, data): | |||
| return F.cond_take(mask, data) | |||
| if is_symbolic is not None: | |||
| fn = jit.trace(symbolic=is_symbolic)(fn) | |||
| for shp in shapes: | |||
| x_np = np.random.randn(*shp).astype("float32") | |||
| mask_np = x_np > 0 | |||
| x = tensor(x_np) | |||
| mask = tensor(mask_np) | |||
| ref_out = x_np[mask_np] | |||
| ref_idx = mask_np.flatten().nonzero()[0] | |||
| for i in range(3): | |||
| out, idx = fn(mask, x) | |||
| np.testing.assert_equal(out.numpy(), ref_out) | |||
| np.testing.assert_equal(idx.numpy(), ref_idx) | |||
| if is_symbolic is None: | |||
| break | |||
| def test_condtake_is_same(): | |||
| op1 = builtin.CondTake() | |||
| op2 = builtin.CondTake() | |||
| @@ -45,25 +45,30 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
| auto&& inp = inputs[0]; | |||
| auto&& msk = inputs[1]; | |||
| SmallVector<TensorPtr> out; | |||
| mgb_assert(inp->layout().eq_shape(msk->layout()), | |||
| "input shape does not match mask shape"); | |||
| mgb_assert(msk->get_value().dtype().enumv() == DTypeEnum::Bool, | |||
| "mask dtype must be bool"); | |||
| DnnOprCaller<megdnn::CondTake> dnn_op(inp->comp_node()); | |||
| dnn_op.op->param().val = 1; | |||
| TensorLayout m_layout({dnn_op.op->get_workspace_in_bytes(inp->layout())}, | |||
| dtype::Byte()); | |||
| auto dnn_workspace = dnn_op.create_workspace(m_layout); | |||
| MegDNNDynOutMallocImpl<2> policy{inp->comp_node()}; | |||
| dnn_op.op->exec(inp->dev_tensor().as_megdnn(), | |||
| msk->dev_tensor().as_megdnn(), | |||
| dnn_workspace, | |||
| &policy); | |||
| SmallVector<TensorPtr> out; | |||
| if (inp->layout().is_empty()) { | |||
| // empty tensor | |||
| policy.alloc_output(0, inp->layout().dtype, {0}, nullptr); | |||
| policy.alloc_output(1, dtype::Int32(), {0}, nullptr); | |||
| } else { | |||
| DnnOprCaller<megdnn::CondTake> dnn_op(inp->comp_node()); | |||
| dnn_op.op->param().val = 1; | |||
| TensorLayout m_layout({dnn_op.op->get_workspace_in_bytes(inp->layout())}, | |||
| dtype::Byte()); | |||
| auto dnn_workspace = dnn_op.create_workspace(m_layout); | |||
| dnn_op.op->exec(inp->dev_tensor().as_megdnn(), | |||
| msk->dev_tensor().as_megdnn(), | |||
| dnn_workspace, | |||
| &policy); | |||
| } | |||
| out.push_back(policy.at(0)); | |||
| out.push_back(policy.at(1)); | |||
| return out; | |||
| @@ -264,6 +264,15 @@ CondTake::CondTake(VarNode *data, VarNode *mask, | |||
| } | |||
| } | |||
| CondTake::NodeProp* CondTake::do_make_node_prop() const { | |||
| auto ret = Super::do_make_node_prop(); | |||
| ret->add_dep_type_existing_var(input(0), | |||
| NodeProp::DepType::VALUE_ALLOW_EMPTY); | |||
| ret->add_dep_type_existing_var(input(1), | |||
| NodeProp::DepType::VALUE_ALLOW_EMPTY); | |||
| return ret; | |||
| } | |||
| #if MGB_ENABLE_GRAD | |||
| MGB_IMPL_OPR_GRAD(CondTake) { | |||
| mgb_assert(out_grad.size() == 3 && !out_grad[2]); | |||
| @@ -305,11 +314,21 @@ void CondTake::add_input_layout_constraint() { | |||
| } | |||
| void CondTake::scn_do_execute() { | |||
| auto&& data = input(0)->dev_tensor(); | |||
| auto&& mask = input(1)->dev_tensor(); | |||
| intl::MegDNNDynOutMallocImpl dyn_malloc{this, comp_node()}; | |||
| megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(), | |||
| input(1)->dev_tensor().as_megdnn(), | |||
| intl::get_megdnn_workspace_from_var(output().back()), | |||
| &dyn_malloc); | |||
| if (data.layout().is_empty()) { | |||
| mgb_assert(data.layout().eq_shape(mask.layout()), | |||
| "CondTake shape differs: data=%s mask=%s", | |||
| data.layout().TensorShape::to_string().c_str(), | |||
| mask.layout().TensorShape::to_string().c_str()); | |||
| dyn_malloc.alloc_output(0, data.layout().dtype, {0}, nullptr); | |||
| dyn_malloc.alloc_output(1, dtype::Int32(), {0}, nullptr); | |||
| } else { | |||
| megdnn_opr()->exec(data.as_megdnn(), mask.as_megdnn(), | |||
| intl::get_megdnn_workspace_from_var(output().back()), | |||
| &dyn_malloc); | |||
| } | |||
| } | |||
| /* ================= TopK ================= */ | |||
| @@ -151,6 +151,7 @@ MGB_DEFINE_OPR_CLASS(CondTake, intl::CondTakeBase) // { | |||
| void init_output_static_infer_desc() override; | |||
| void scn_do_execute() override; | |||
| void add_input_layout_constraint() override; | |||
| NodeProp* do_make_node_prop() const override; | |||
| public: | |||
| CondTake(VarNode *data, VarNode *mask, | |||
| @@ -256,20 +256,25 @@ TEST(TestOprMisc, CondTake) { | |||
| run(mki({100})); | |||
| } | |||
| TEST(TestOprMisc, CondTakeEmptyOut) { | |||
| TEST(TestOprMisc, CondTakeEmptyIO) { | |||
| using Param = opr::CondTake::Param; | |||
| HostTensorGenerator<> gen; | |||
| auto host_x = gen({1}); | |||
| host_x->ptr<float>()[0] = 1; | |||
| auto graph = ComputingGraph::make(); | |||
| auto x = opr::Host2DeviceCopy::make(*graph, host_x); | |||
| auto out = opr::CondTake::make(x, x, {Param::Mode::LT}); | |||
| HostTensorND host_out0, host_out1; | |||
| auto func = graph->compile({make_callback_copy(out[0], host_out0), | |||
| make_callback_copy(out[1], host_out1)}); | |||
| func->execute(); | |||
| ASSERT_EQ(TensorShape{0}, host_out0.shape()); | |||
| ASSERT_EQ(TensorShape{0}, host_out1.shape()); | |||
| auto check = [&](const TensorShape& shp) { | |||
| auto host_x = gen(shp); | |||
| auto graph = ComputingGraph::make(); | |||
| auto x = opr::Host2DeviceCopy::make(*graph, host_x); | |||
| auto y = x + 1; | |||
| auto out = opr::CondTake::make(x, y, {Param::Mode::EQ}); | |||
| HostTensorND host_out0, host_out1; | |||
| auto func = graph->compile({make_callback_copy(out[0], host_out0), | |||
| make_callback_copy(out[1], host_out1)}); | |||
| func->execute(); | |||
| ASSERT_EQ(TensorShape{0}, host_out0.shape()); | |||
| ASSERT_EQ(TensorShape{0}, host_out1.shape()); | |||
| }; | |||
| check({1}); | |||
| check({0}); | |||
| check({1, 0}); | |||
| } | |||
| TEST(TestOprMisc, TopKValueOnly) { | |||