GitOrigin-RevId: b72517bfe9
tags/v1.11.1
| @@ -19,11 +19,11 @@ logger = get_logger(__name__) | |||
| backwarding_grad_manager = None | |||
| def get_backwarding_grad_manager(): | |||
| def _get_backwarding_grad_manager(): | |||
| return backwarding_grad_manager | |||
| class AttachSpec: | |||
| class _AttachSpec: | |||
| __slots__ = "tensor", "callbacks" | |||
| @@ -118,7 +118,7 @@ class GradManager: | |||
| """ | |||
| def __init__(self): | |||
| self._attach_specs = {} # id(Tensor) -> AttachSpec | |||
| self._attach_specs = {} # id(Tensor) -> _AttachSpec | |||
| self._recording = False | |||
| self._grad = None | |||
| self._after_backward_callback = [] | |||
| @@ -200,7 +200,7 @@ class GradManager: | |||
| if self is not None: | |||
| del self._attach_specs[key] | |||
| spec = AttachSpec() | |||
| spec = _AttachSpec() | |||
| spec.tensor = weakref.ref(tensor, deleter) | |||
| spec.callbacks = [] | |||
| return spec | |||
| @@ -354,22 +354,22 @@ class GradManager: | |||
| def __or__(self, other): | |||
| if isinstance(other, GradManager): | |||
| return GradManagerGroup([self, other]) | |||
| return _GradManagerGroup([self, other]) | |||
| return NotImplemented | |||
| __ror__ = __or__ | |||
| class GradManagerGroup: | |||
| class _GradManagerGroup: | |||
| def __init__(self, gms) -> None: | |||
| self._gms = list(gms) | |||
| def merge_with(self, other): | |||
| if isinstance(other, GradManager): | |||
| other = GradManagerGroup([other]) | |||
| elif not isinstance(other, GradManagerGroup): | |||
| other = _GradManagerGroup([other]) | |||
| elif not isinstance(other, _GradManagerGroup): | |||
| return NotImplemented | |||
| return GradManagerGroup([*self._gms, *other._gms]) | |||
| return _GradManagerGroup([*self._gms, *other._gms]) | |||
| __or__ = merge_with | |||
| __ror__ = merge_with | |||
| @@ -35,7 +35,7 @@ logger = get_logger(__name__) | |||
| GLOBAL_TIMEOUT = 5 | |||
| def raise_timeout_error(): | |||
| def _raise_timeout_error(): | |||
| raise RuntimeError("dataloader timeout") | |||
| @@ -95,7 +95,7 @@ class DataLoader: | |||
| collator: Collator = None, | |||
| num_workers: int = 0, | |||
| timeout: int = 0, | |||
| timeout_event: Callable = raise_timeout_error, | |||
| timeout_event: Callable = _raise_timeout_error, | |||
| divide: bool = False, | |||
| preload: bool = False, | |||
| ): | |||
| @@ -188,7 +188,7 @@ class DataLoader: | |||
| return len(self.sampler) | |||
| class PreLoader: | |||
| class _PreLoader: | |||
| def __init__(self, preload): | |||
| if preload: | |||
| self.default_device = get_default_device() | |||
| @@ -237,7 +237,7 @@ class PreLoader: | |||
| return out | |||
| class _BaseMapDataLoaderIter(PreLoader): | |||
| class _BaseMapDataLoaderIter(_PreLoader): | |||
| def __init__(self, loader, preload): | |||
| super().__init__(preload) | |||
| self.dataset = loader.dataset | |||
| @@ -454,7 +454,7 @@ class _ParallelMapDataLoaderIter(_BaseMapDataLoaderIter): | |||
| self._shutdown() | |||
| class _BaseStreamDataLoaderIter(PreLoader): | |||
| class _BaseStreamDataLoaderIter(_PreLoader): | |||
| def __init__(self, loader, preload): | |||
| super().__init__(preload) | |||
| self.dataset = loader.dataset | |||
| @@ -21,7 +21,7 @@ def _count_visible_keypoints(anno): | |||
| return sum(sum(1 for v in ann["keypoints"][2::3] if v > 0) for ann in anno) | |||
| def has_valid_annotation(anno, order): | |||
| def _has_valid_annotation(anno, order): | |||
| # if it"s empty, there is no annotation | |||
| if len(anno) == 0: | |||
| return False | |||
| @@ -101,7 +101,7 @@ class COCO(VisionDataset): | |||
| anno = [ | |||
| obj for obj in anno if obj["bbox"][2] > 0 and obj["bbox"][3] > 0 | |||
| ] | |||
| if has_valid_annotation(anno, order): | |||
| if _has_valid_annotation(anno, order): | |||
| ids.append(img_id) | |||
| self.img_to_anns[img_id] = anno | |||
| else: | |||
| @@ -140,17 +140,17 @@ class MNIST(VisionDataset): | |||
| # load raw files and transform them into meta data and datasets Tuple(np.array) | |||
| logger.info("process the raw files of %s set...", "train" if train else "test") | |||
| if train: | |||
| meta_data_images, images = parse_idx3( | |||
| meta_data_images, images = _parse_idx3( | |||
| os.path.join(self.root, self.raw_file_name[0]) | |||
| ) | |||
| meta_data_labels, labels = parse_idx1( | |||
| meta_data_labels, labels = _parse_idx1( | |||
| os.path.join(self.root, self.raw_file_name[1]) | |||
| ) | |||
| else: | |||
| meta_data_images, images = parse_idx3( | |||
| meta_data_images, images = _parse_idx3( | |||
| os.path.join(self.root, self.raw_file_name[2]) | |||
| ) | |||
| meta_data_labels, labels = parse_idx1( | |||
| meta_data_labels, labels = _parse_idx1( | |||
| os.path.join(self.root, self.raw_file_name[3]) | |||
| ) | |||
| @@ -161,7 +161,7 @@ class MNIST(VisionDataset): | |||
| self.arrays = (images, labels.astype(np.int32)) | |||
| def parse_idx3(idx3_file): | |||
| def _parse_idx3(idx3_file): | |||
| # parse idx3 file to meta data and data in numpy array (images) | |||
| logger.debug("parse idx3 file %s ...", idx3_file) | |||
| assert idx3_file.endswith(".gz") | |||
| @@ -187,7 +187,7 @@ def parse_idx3(idx3_file): | |||
| return meta_data, images | |||
| def parse_idx1(idx1_file): | |||
| def _parse_idx1(idx1_file): | |||
| # parse idx1 file to meta data and data in numpy array (labels) | |||
| logger.debug("parse idx1 file %s ...", idx1_file) | |||
| assert idx1_file.endswith(".gz") | |||
| @@ -7,7 +7,7 @@ import cv2 | |||
| import numpy as np | |||
| from megengine.data.transform import Transform | |||
| from megengine.data.transform.vision import functional as F | |||
| from megengine.data.transform.vision import _functional as F | |||
| __all__ = [ | |||
| "VisionTransform", | |||
| @@ -2,7 +2,6 @@ | |||
| from mprop import mproperty | |||
| from ..core._imperative_rt.core2 import group_end, group_start | |||
| from . import group | |||
| from .group import ( | |||
| WORLD, | |||
| Group, | |||
| @@ -20,7 +19,7 @@ from .group import ( | |||
| ) | |||
| from .helper import bcast_list_, make_allreduce_cb, synchronized | |||
| from .launcher import launcher | |||
| from .server import Client, Server | |||
| from .server import Server | |||
| @mproperty | |||
| @@ -7,10 +7,10 @@ from mprop import mproperty | |||
| from ..device import _sh, set_default_device, what_is_xpu | |||
| from ..random import seed | |||
| from .server import Client, Server | |||
| from .server import Server, _Client | |||
| class StaticData: | |||
| class _StaticData: | |||
| server = None | |||
| client = None | |||
| master_ip = None | |||
| @@ -139,13 +139,13 @@ def init_process_group( | |||
| global _sd | |||
| assert _sd is None, "init_process_group should be called only once" | |||
| _sd = StaticData() | |||
| _sd = _StaticData() | |||
| assert world_size > 1 | |||
| assert rank >= 0 and rank < world_size | |||
| assert port > 0 | |||
| _sd.client = Client(master_ip, port) | |||
| _sd.client = _Client(master_ip, port) | |||
| _sd.master_ip = master_ip | |||
| _sd.py_server_port = port | |||
| _sd.mm_server_port = _sd.client.get_mm_server_port() | |||
| @@ -225,7 +225,7 @@ def get_mm_server_addr() -> Tuple[str, int]: | |||
| return _sd.master_ip, _sd.mm_server_port | |||
| def get_client() -> Client: | |||
| def get_client() -> _Client: | |||
| r"""Get client of python XML RPC server.""" | |||
| assert _sd is not None, "please call init_process_group first" | |||
| return _sd.client | |||
| @@ -7,7 +7,7 @@ from weakref import WeakSet | |||
| import numpy as np | |||
| from megengine.autodiff.grad_manager import GradManager, get_backwarding_grad_manager | |||
| from megengine.autodiff.grad_manager import GradManager, _get_backwarding_grad_manager | |||
| from ..core._imperative_rt.core2 import apply | |||
| from ..core.ops.builtin import ParamPackConcat, ParamPackSplit | |||
| @@ -78,7 +78,7 @@ def param_pack_concat(inps: list, offsets: Tensor, offsets_val: list): | |||
| return apply(op, *inps, offsets)[0] | |||
| def get_offsets(shapes): | |||
| def _get_offsets(shapes): | |||
| offsets = [] | |||
| offset = 0 | |||
| for shape in shapes: | |||
| @@ -108,7 +108,7 @@ def _check_enable_p2p(): | |||
| def pack_allreduce_split(pack_list, shapes, group, reduce_method): | |||
| offsets_val = get_offsets(shapes) | |||
| offsets_val = _get_offsets(shapes) | |||
| offsets = Tensor(offsets_val) | |||
| packed_grads = param_pack_concat(pack_list, offsets, offsets_val) | |||
| @@ -119,7 +119,7 @@ def pack_allreduce_split(pack_list, shapes, group, reduce_method): | |||
| return grads | |||
| class TensorFuture(Future): | |||
| class _TensorFuture(Future): | |||
| def device(self): | |||
| raise "Sorry, this tensor is not ready" | |||
| @@ -234,13 +234,13 @@ class AllreduceCallback: | |||
| self._packing_size[dtype] = 0 | |||
| def __call__(self, param, grad): | |||
| gm = get_backwarding_grad_manager() | |||
| gm = _get_backwarding_grad_manager() | |||
| assert isinstance(gm, GradManager) | |||
| if gm not in self._marked_gm: | |||
| gm._register_after_backward_callback(self._flush) | |||
| self._marked_gm.add(gm) | |||
| self._params.append(param) | |||
| self._futures_dict[param] = TensorFuture(ack=False) | |||
| self._futures_dict[param] = _TensorFuture(ack=False) | |||
| self._gradients_dict[param] = grad | |||
| self._grad_origin_device[param] = str(grad.device) | |||
| @@ -10,7 +10,7 @@ from ..device import get_device_count | |||
| from ..logger import get_logger | |||
| from .group import _set_machine_ranks, group_barrier, init_process_group | |||
| from .helper import _check_device_initialized, _check_interpreter_status | |||
| from .server import Client, Server | |||
| from .server import Server | |||
| WARN_SUBPROCESS_EXIT_WITHOUT_RETURN = ( | |||
| "subprocess exited with code 0 but did not return a value" | |||
| @@ -12,7 +12,7 @@ from ..core._imperative_rt.utils import create_mm_server | |||
| from ..utils.future import Future | |||
| class Methods: | |||
| class _Methods: | |||
| r"""Distributed Server Method. | |||
| Used for exchange information between distributed nodes. | |||
| @@ -149,7 +149,7 @@ class Methods: | |||
| return ret | |||
| class ThreadXMLRPCServer(ThreadingMixIn, SimpleXMLRPCServer): | |||
| class _ThreadXMLRPCServer(ThreadingMixIn, SimpleXMLRPCServer): | |||
| pass | |||
| @@ -163,10 +163,10 @@ def _start_server(py_server_port, queue): | |||
| """ | |||
| try: | |||
| mm_server_port = create_mm_server("0.0.0.0", 0) | |||
| server = ThreadXMLRPCServer( | |||
| server = _ThreadXMLRPCServer( | |||
| ("0.0.0.0", py_server_port), logRequests=False, allow_none=True | |||
| ) | |||
| server.register_instance(Methods(mm_server_port)) | |||
| server.register_instance(_Methods(mm_server_port)) | |||
| _, py_server_port = server.server_address | |||
| queue.put((py_server_port, mm_server_port)) | |||
| server.serve_forever() | |||
| @@ -196,7 +196,7 @@ class Server: | |||
| self.proc.terminate() | |||
| class Client: | |||
| class _Client: | |||
| r"""Distributed Client for distributed training. | |||
| Args: | |||
| @@ -298,10 +298,10 @@ class Client: | |||
| return self.proxy.bcast_val(val, key, size) | |||
| def main(port=0, verbose=True): | |||
| def _main(port=0, verbose=True): | |||
| mm_server_port = create_mm_server("0.0.0.0", 0) | |||
| server = ThreadXMLRPCServer(("0.0.0.0", port), logRequests=verbose) | |||
| server.register_instance(Methods(mm_server_port)) | |||
| server = _ThreadXMLRPCServer(("0.0.0.0", port), logRequests=verbose) | |||
| server.register_instance(_Methods(mm_server_port)) | |||
| _, port = server.server_address | |||
| print("serving on port", port) | |||
| server.serve_forever() | |||
| @@ -314,4 +314,4 @@ if __name__ == "__main__": | |||
| ap.add_argument("-p", "--port", type=int, default=0) | |||
| ap.add_argument("-v", "--verbose", type=bool, default=True) | |||
| args = ap.parse_args() | |||
| main(port=args.port, verbose=args.verbose) | |||
| _main(port=args.port, verbose=args.verbose) | |||
| @@ -91,7 +91,7 @@ __all__ = [ | |||
| ] | |||
| def expand_hw(x): | |||
| def _expand_hw(x): | |||
| # judge int is 5 times faster than judge Sequence | |||
| if isinstance(x, int): | |||
| return x, x | |||
| @@ -100,7 +100,7 @@ def expand_hw(x): | |||
| return int(x), int(x) | |||
| def expand_dhw(x): | |||
| def _expand_dhw(x): | |||
| if isinstance(x, int): | |||
| return x, x, x | |||
| if isinstance(x, Sequence): | |||
| @@ -242,9 +242,9 @@ def conv2d( | |||
| or conv_mode.name == "CROSS_CORRELATION" | |||
| ) | |||
| stride_h, stride_w = expand_hw(stride) | |||
| pad_h, pad_w = expand_hw(padding) | |||
| dilate_h, dilate_w = expand_hw(dilation) | |||
| stride_h, stride_w = _expand_hw(stride) | |||
| pad_h, pad_w = _expand_hw(padding) | |||
| dilate_h, dilate_w = _expand_hw(dilation) | |||
| sparse_type = "dense" if groups == 1 else "group" | |||
| compute_mode = _config._get_actual_op_param(compute_mode, _config.__compute_mode) | |||
| @@ -304,9 +304,9 @@ def conv3d( | |||
| D, H, W = 0, 1, 2 | |||
| pad = expand_dhw(padding) | |||
| stride = expand_dhw(stride) | |||
| dilate = expand_dhw(dilation) | |||
| pad = _expand_dhw(padding) | |||
| stride = _expand_dhw(stride) | |||
| dilate = _expand_dhw(dilation) | |||
| sparse_type = "dense" if groups == 1 else "group" | |||
| op = builtin.Convolution3D( | |||
| @@ -374,10 +374,10 @@ def conv_transpose2d( | |||
| or conv_mode.name == "CROSS_CORRELATION" | |||
| ) | |||
| stride_h, stride_w = expand_hw(stride) | |||
| pad_h, pad_w = expand_hw(padding) | |||
| output_pad_h, output_pad_w = expand_hw(output_padding) | |||
| dilate_h, dilate_w = expand_hw(dilation) | |||
| stride_h, stride_w = _expand_hw(stride) | |||
| pad_h, pad_w = _expand_hw(padding) | |||
| output_pad_h, output_pad_w = _expand_hw(output_padding) | |||
| dilate_h, dilate_w = _expand_hw(dilation) | |||
| compute_mode = _config._get_actual_op_param(compute_mode, _config.__compute_mode) | |||
| sparse_type = "dense" if groups == 1 else "group" | |||
| @@ -475,9 +475,9 @@ def deformable_conv2d( | |||
| offset = offset.astype("float32") | |||
| mask = mask.astype("float32") | |||
| stride_h, stride_w = expand_hw(stride) | |||
| pad_h, pad_w = expand_hw(padding) | |||
| dilate_h, dilate_w = expand_hw(dilation) | |||
| stride_h, stride_w = _expand_hw(stride) | |||
| pad_h, pad_w = _expand_hw(padding) | |||
| dilate_h, dilate_w = _expand_hw(dilation) | |||
| compute_mode = _config._get_actual_op_param(compute_mode, _config.__compute_mode) | |||
| sparse_type = "dense" if groups == 1 else "group" | |||
| @@ -529,9 +529,9 @@ def local_conv2d( | |||
| or conv_mode.name == "CROSS_CORRELATION" | |||
| ) | |||
| stride_h, stride_w = expand_hw(stride) | |||
| pad_h, pad_w = expand_hw(padding) | |||
| dilate_h, dilate_w = expand_hw(dilation) | |||
| stride_h, stride_w = _expand_hw(stride) | |||
| pad_h, pad_w = _expand_hw(padding) | |||
| dilate_h, dilate_w = _expand_hw(dilation) | |||
| # local conv only support "dense" mode, but weight could contain group dimension. | |||
| op = builtin.GroupLocal( | |||
| @@ -585,10 +585,10 @@ def conv_transpose3d( | |||
| output tensor. | |||
| """ | |||
| D, H, W = 0, 1, 2 | |||
| pad = expand_dhw(padding) | |||
| stride = expand_dhw(stride) | |||
| dilate = expand_dhw(dilation) | |||
| output_padding = expand_dhw(output_padding) | |||
| pad = _expand_dhw(padding) | |||
| stride = _expand_dhw(stride) | |||
| dilate = _expand_dhw(dilation) | |||
| output_padding = _expand_dhw(output_padding) | |||
| sparse_type = "dense" if groups == 1 else "group" | |||
| op = builtin.Convolution3DBackwardData( | |||
| @@ -667,9 +667,9 @@ def max_pool2d( | |||
| """ | |||
| if stride is None: | |||
| stride = kernel_size | |||
| window_h, window_w = expand_hw(kernel_size) | |||
| stride_h, stride_w = expand_hw(stride) | |||
| padding_h, padding_w = expand_hw(padding) | |||
| window_h, window_w = _expand_hw(kernel_size) | |||
| stride_h, stride_w = _expand_hw(stride) | |||
| padding_h, padding_w = _expand_hw(padding) | |||
| op = builtin.Pooling( | |||
| window_h=window_h, | |||
| @@ -717,9 +717,9 @@ def avg_pool2d( | |||
| """ | |||
| if stride is None: | |||
| stride = kernel_size | |||
| window_h, window_w = expand_hw(kernel_size) | |||
| stride_h, stride_w = expand_hw(stride) | |||
| padding_h, padding_w = expand_hw(padding) | |||
| window_h, window_w = _expand_hw(kernel_size) | |||
| stride_h, stride_w = _expand_hw(stride) | |||
| padding_h, padding_w = _expand_hw(padding) | |||
| op = builtin.Pooling( | |||
| window_h=window_h, | |||
| @@ -1708,10 +1708,10 @@ def sliding_window( | |||
| stride: stride of the window. Default: 1 | |||
| dilation: dilation of the window. Default: 1 | |||
| """ | |||
| padding_h, padding_w = expand_hw(padding) | |||
| stride_h, stride_w = expand_hw(stride) | |||
| dilation_h, dilation_w = expand_hw(dilation) | |||
| window_h, window_w = expand_hw(kernel_size) | |||
| padding_h, padding_w = _expand_hw(padding) | |||
| stride_h, stride_w = _expand_hw(stride) | |||
| dilation_h, dilation_w = _expand_hw(dilation) | |||
| window_h, window_w = _expand_hw(kernel_size) | |||
| op = builtin.Images2Neibs( | |||
| pad_h=padding_h, | |||
| @@ -1747,11 +1747,11 @@ def sliding_window_transpose( | |||
| stride: stride of the window. Default: 1 | |||
| dilation: dilation of the window. Default: 1 | |||
| """ | |||
| output_h, output_w = expand_hw(output_size) | |||
| padding_h, padding_w = expand_hw(padding) | |||
| stride_h, stride_w = expand_hw(stride) | |||
| dilation_h, dilation_w = expand_hw(dilation) | |||
| window_h, window_w = expand_hw(kernel_size) | |||
| output_h, output_w = _expand_hw(output_size) | |||
| padding_h, padding_w = _expand_hw(padding) | |||
| stride_h, stride_w = _expand_hw(stride) | |||
| dilation_h, dilation_w = _expand_hw(dilation) | |||
| window_h, window_w = _expand_hw(kernel_size) | |||
| expected_h = ( | |||
| output_h + 2 * padding_h - dilation_h * (window_h - 1) - 1 | |||
| @@ -1904,7 +1904,7 @@ def _get_layerPixelShuffle(device, dtype, dim_order): | |||
| return layerPixelShuffle | |||
| def layerPixelShuffle_traceable(inp, upscale_factor): | |||
| def _layerPixelShuffle_traceable(inp, upscale_factor): | |||
| assert upscale_factor > 0, "upscale_factor should larger than 0" | |||
| assert inp.ndim >= 3, "the input dimension of pixel_shuffle should be larger than 3" | |||
| assert ( | |||
| @@ -1955,7 +1955,7 @@ def pixel_shuffle(inp: Tensor, upscale_factor: int) -> Tensor: | |||
| :param upscale_factor: upscale factor of pixel_shuffle. | |||
| :return: output tensor. | |||
| """ | |||
| return pixel_shuffle_cpp(inp, upscale_factor, layerPixelShuffle_traceable) | |||
| return pixel_shuffle_cpp(inp, upscale_factor, _layerPixelShuffle_traceable) | |||
| from .quantized import conv_bias_activation # isort:skip | |||
| @@ -1,12 +1,12 @@ | |||
| from ..core._imperative_rt.core2 import Const | |||
| from ..jit.tracing import is_tracing | |||
| from ..jit.tracing import _is_tracing | |||
| small_tensor_cache = {} | |||
| def _get_scalar_tensor_with_value(value, dtype=None, device=None): | |||
| global small_tensor_cache | |||
| if is_tracing(): | |||
| if _is_tracing(): | |||
| ret = Const(value, dtype, device) | |||
| else: | |||
| cache_key = (value, dtype, device) | |||
| @@ -36,7 +36,7 @@ pattern = re.compile( | |||
| ) | |||
| class RepoFetcherBase: | |||
| class _RepoFetcherBase: | |||
| @classmethod | |||
| def fetch( | |||
| cls, | |||
| @@ -84,7 +84,7 @@ class RepoFetcherBase: | |||
| return hashlib.sha1(repo_dir.encode()).hexdigest()[:16] | |||
| class GitSSHFetcher(RepoFetcherBase): | |||
| class GitSSHFetcher(_RepoFetcherBase): | |||
| @classmethod | |||
| @synchronized | |||
| def fetch( | |||
| @@ -193,7 +193,7 @@ class GitSSHFetcher(RepoFetcherBase): | |||
| ) | |||
| class GitHTTPSFetcher(RepoFetcherBase): | |||
| class GitHTTPSFetcher(_RepoFetcherBase): | |||
| @classmethod | |||
| @synchronized | |||
| def fetch( | |||
| @@ -49,7 +49,7 @@ active_trace = None | |||
| skip_tracing = False | |||
| def is_tracing(): | |||
| def _is_tracing(): | |||
| if active_trace is None: | |||
| return False | |||
| else: | |||
| @@ -73,7 +73,7 @@ def exclude_from_trace(): | |||
| skip_tracing = False | |||
| def array_comparator(lhs, rhs): | |||
| def _array_comparator(lhs, rhs): | |||
| return np.all(lhs == rhs) | |||
| @@ -184,7 +184,7 @@ class trace: | |||
| self._trace.no_exec = record_only | |||
| self._trace.options_visitor = apply_options | |||
| self._trace.profile = profiling | |||
| self._trace.array_comparator = array_comparator | |||
| self._trace.array_comparator = _array_comparator | |||
| self._trace.record_input_shapes = _input_node_use_static_shape() | |||
| def __call__(self, *args, **kwargs): | |||
| @@ -18,10 +18,10 @@ def set_log_file(fout, mode="a"): | |||
| """ | |||
| if isinstance(fout, str): | |||
| fout = open(fout, mode) | |||
| MegEngineLogFormatter.log_fout = fout | |||
| _MegEngineLogFormatter.log_fout = fout | |||
| class MegEngineLogFormatter(logging.Formatter): | |||
| class _MegEngineLogFormatter(logging.Formatter): | |||
| log_fout = None | |||
| date_full = "[%(asctime)s %(lineno)d@%(filename)s:%(name)s] " | |||
| date = "%(asctime)s " | |||
| @@ -71,7 +71,7 @@ class MegEngineLogFormatter(logging.Formatter): | |||
| if self.log_fout: | |||
| self.__set_fmt(self.date_full + mtxt + self.msg) | |||
| formatted = super(MegEngineLogFormatter, self).format(record) | |||
| formatted = super(_MegEngineLogFormatter, self).format(record) | |||
| nr_line = formatted.count("\n") + 1 | |||
| if nr_line >= self.max_lines: | |||
| head, body = formatted.split("\n", 1) | |||
| @@ -88,7 +88,7 @@ class MegEngineLogFormatter(logging.Formatter): | |||
| self.log_fout.flush() | |||
| self.__set_fmt(self._color_date(self.date) + mcl(mtxt + self.msg)) | |||
| formatted = super(MegEngineLogFormatter, self).format(record) | |||
| formatted = super(_MegEngineLogFormatter, self).format(record) | |||
| if record.exc_text or record.exc_info: | |||
| # handle exception format | |||
| @@ -125,7 +125,7 @@ class MegEngineLogFormatter(logging.Formatter): | |||
| self._style._fmt = fmt | |||
| def get_logger(name=None, formatter=MegEngineLogFormatter): | |||
| def get_logger(name=None, formatter=_MegEngineLogFormatter): | |||
| r"""Gets megengine logger with given name.""" | |||
| logger = logging.getLogger(name) | |||
| @@ -167,16 +167,16 @@ try: | |||
| from .core._imperative_rt.utils import Logger as _imperative_rt_logger | |||
| class MegBrainLogFormatter(MegEngineLogFormatter): | |||
| class _MegBrainLogFormatter(_MegEngineLogFormatter): | |||
| date = "%(asctime)s[mgb] " | |||
| def _color_date(self, msg): | |||
| return "\x1b[33m{}\x1b[0m".format(msg) | |||
| _megbrain_logger = get_logger("megbrain", MegBrainLogFormatter) | |||
| _megbrain_logger = get_logger("megbrain", _MegBrainLogFormatter) | |||
| _imperative_rt_logger.set_log_handler(_megbrain_logger) | |||
| def set_mgb_log_level(level): | |||
| def _set_mgb_log_level(level): | |||
| r"""Sets megbrain log level | |||
| Args: | |||
| @@ -200,30 +200,30 @@ try: | |||
| ) | |||
| return rst | |||
| set_mgb_log_level(_default_level) | |||
| _set_mgb_log_level(_default_level) | |||
| except ImportError as exc: | |||
| def set_mgb_log_level(level): | |||
| def _set_mgb_log_level(level): | |||
| raise NotImplementedError("imperative_rt has not been imported") | |||
| @contextlib.contextmanager | |||
| def replace_mgb_log_level(level): | |||
| def _replace_mgb_log_level(level): | |||
| r"""Replaces megbrain log level in a block and restore after exiting. | |||
| Args: | |||
| level: new log level | |||
| """ | |||
| old = set_mgb_log_level(level) | |||
| old = _set_mgb_log_level(level) | |||
| try: | |||
| yield | |||
| finally: | |||
| set_mgb_log_level(old) | |||
| _set_mgb_log_level(old) | |||
| def enable_debug_log(): | |||
| r"""Sets logging level to debug for all components.""" | |||
| set_log_level(logging.DEBUG) | |||
| set_mgb_log_level(logging.DEBUG) | |||
| _set_mgb_log_level(logging.DEBUG) | |||
| @@ -15,12 +15,12 @@ from . import init | |||
| from .module import Module | |||
| class RNNCellBase(Module): | |||
| class _RNNCellBase(Module): | |||
| def __init__( | |||
| self, input_size: int, hidden_size: int, bias: bool, num_chunks: int, | |||
| ) -> None: | |||
| # num_chunks indicates the number of gates | |||
| super(RNNCellBase, self).__init__() | |||
| super(_RNNCellBase, self).__init__() | |||
| self.input_size = input_size | |||
| self.hidden_size = hidden_size | |||
| @@ -57,7 +57,7 @@ class RNNCellBase(Module): | |||
| raise NotImplementedError("forward not implemented !") | |||
| class RNNCell(RNNCellBase): | |||
| class RNNCell(_RNNCellBase): | |||
| r"""An Elman RNN cell with tanh or ReLU non-linearity. | |||
| @@ -135,7 +135,7 @@ class RNNCell(RNNCellBase): | |||
| )[0] | |||
| class LSTMCell(RNNCellBase): | |||
| class LSTMCell(_RNNCellBase): | |||
| r"""A long short-term memory (LSTM) cell. | |||
| @@ -216,7 +216,7 @@ class LSTMCell(RNNCellBase): | |||
| )[:2] | |||
| class RNNBase(Module): | |||
| class _RNNBase(Module): | |||
| def __init__( | |||
| self, | |||
| input_size: int, | |||
| @@ -228,7 +228,7 @@ class RNNBase(Module): | |||
| bidirectional: bool = False, | |||
| proj_size: int = 0, | |||
| ) -> None: | |||
| super(RNNBase, self).__init__() | |||
| super(_RNNBase, self).__init__() | |||
| self.input_size = input_size | |||
| self.hidden_size = hidden_size | |||
| self.num_layers = num_layers | |||
| @@ -323,7 +323,7 @@ class RNNBase(Module): | |||
| return output, h | |||
| class RNN(RNNBase): | |||
| class RNN(_RNNBase): | |||
| r"""Applies a multi-layer Elman RNN with :math:`\tanh` or :math:`\text{ReLU}` non-linearity to an | |||
| input sequence. | |||
| @@ -453,7 +453,7 @@ class RNN(RNNBase): | |||
| return output, h | |||
| class LSTM(RNNBase): | |||
| class LSTM(_RNNBase): | |||
| r"""Applies a multi-layer long short-term memory LSTM to an input | |||
| sequence. | |||
| @@ -7,7 +7,7 @@ import numpy as np | |||
| from .. import functional as F | |||
| from ..core.tensor.dtype import QuantDtypeMeta, _builtin_quant_dtypes | |||
| from ..distributed import WORLD, get_rank, is_distributed | |||
| from ..distributed import WORLD, is_distributed | |||
| from ..functional.distributed import all_reduce_max, all_reduce_min | |||
| from ..logger import get_logger | |||
| from ..module import Module | |||
| @@ -27,7 +27,7 @@ def save(obj, f, pickle_module=pickle, pickle_protocol=pickle.DEFAULT_PROTOCOL): | |||
| pickle_module.dump(obj, f, pickle_protocol) | |||
| class dmap: | |||
| class _dmap: | |||
| def __init__(self, map_location): | |||
| self.map_location = map_location | |||
| @@ -101,5 +101,5 @@ def load(f, map_location=None, pickle_module=pickle): | |||
| map_location = _get_callable_map_location(map_location) # callable map_location | |||
| with dmap(map_location) as dm: | |||
| with _dmap(map_location) as dm: | |||
| return pickle_module.load(f) | |||
| @@ -11,11 +11,11 @@ from .. import functional as F | |||
| from .. import get_logger | |||
| from .. import module as M | |||
| from ..core.tensor.dtype import get_dtype_bit | |||
| from ..logger import MegEngineLogFormatter | |||
| from ..logger import _MegEngineLogFormatter | |||
| from .module_utils import set_module_mode_safe | |||
| try: | |||
| MegEngineLogFormatter.max_lines = float("inf") | |||
| _MegEngineLogFormatter.max_lines = float("inf") | |||
| except AttributeError as e: | |||
| raise ValueError("set logger max lines failed") | |||
| @@ -2,14 +2,14 @@ | |||
| import logging | |||
| from megengine.core._imperative_rt import Logger | |||
| from megengine.logger import _imperative_rt_logger, set_mgb_log_level | |||
| from megengine.logger import _imperative_rt_logger, _set_mgb_log_level | |||
| def test_logger(): | |||
| orig_level = Logger().set_log_level(Logger.LogLevel.Debug) | |||
| assert Logger().set_log_level(Logger.LogLevel.Debug) == Logger.LogLevel.Debug | |||
| Logger().set_log_level(orig_level) | |||
| orig_level = set_mgb_log_level(logging.DEBUG) | |||
| orig_level = _set_mgb_log_level(logging.DEBUG) | |||
| assert ( | |||
| _imperative_rt_logger.set_log_level(Logger.LogLevel.Debug) | |||
| == Logger.LogLevel.Debug | |||
| @@ -50,7 +50,7 @@ def test_init_process_group(backend): | |||
| assert mm_server_addr[0] == "localhost" | |||
| assert mm_server_addr[1] > 0 | |||
| assert isinstance(dist.get_client(), dist.Client) | |||
| assert isinstance(dist.get_client(), dist.server._Client) | |||
| procs = [] | |||
| for rank in range(world_size): | |||