GitOrigin-RevId: fcb7974d62
tags/v1.9.0
| @@ -13,6 +13,10 @@ genrule( | |||
| CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations conv2d --type simt $(@D) | |||
| CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations conv2d --type tensorop8816 $(@D) | |||
| CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations conv2d --type tensorop8832 $(@D) | |||
| CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_fprop --type simt $(@D) | |||
| CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_fprop --type tensorop884 $(@D) | |||
| CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_dgrad --type simt $(@D) | |||
| CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_dgrad --type tensorop884 $(@D) | |||
| """, | |||
| tools = ["//brain/megbrain/dnn/scripts/cutlass_generator:generator.py"], | |||
| visibility = ["//visibility:public"], | |||
| @@ -545,8 +545,9 @@ def GenerateConv2d( | |||
| epilogue: EpilogueFunctor, conv_kind: ConvKind | |||
| ) -> bool: | |||
| return ( | |||
| conv_kind == ConvKind.Dgrad | |||
| (conv_kind == ConvKind.Dgrad or conv_kind == ConvKind.Wgrad) | |||
| and epilogue != EpilogueFunctor.BiasAddLinearCombinationClamp | |||
| and epilogue != EpilogueFunctor.BiasAddLinearCombination | |||
| ) | |||
| # loop over all tile descriptions | |||
| @@ -3,6 +3,8 @@ from generator import ( | |||
| GenerateGemvOperations, | |||
| GenerateConv2dOperations, | |||
| GenerateDeconvOperations, | |||
| GenerateDwconv2dFpropOperations, | |||
| GenerateDwconv2dDgradOperations, | |||
| ) | |||
| @@ -21,6 +23,12 @@ def write_op_list(f, gen_op, gen_type): | |||
| operations = GenerateConv2dOperations(GenArg(gen_op, gen_type)) | |||
| elif gen_op == "deconv": | |||
| operations = GenerateDeconvOperations(GenArg(gen_op, gen_type)) | |||
| elif gen_op == "dwconv2d_fprop": | |||
| operations = GenerateDwconv2dFpropOperations(GenArg(gen_op, gen_type)) | |||
| elif gen_op == "dwconv2d_dgrad": | |||
| operations = GenerateDwconv2dDgradOperations(GenArg(gen_op, gen_type)) | |||
| elif gen_op == "dwconv2d_wgrad": | |||
| pass | |||
| for op in operations: | |||
| f.write(' "%s.cu",\n' % op.procedural_name()) | |||
| if gen_op != "gemv": | |||
| @@ -40,4 +48,8 @@ if __name__ == "__main__": | |||
| write_op_list(f, "conv2d", "simt") | |||
| write_op_list(f, "conv2d", "tensorop8816") | |||
| write_op_list(f, "conv2d", "tensorop8832") | |||
| write_op_list(f, "dwconv2d_fprop", "simt") | |||
| write_op_list(f, "dwconv2d_fprop", "tensorop884") | |||
| write_op_list(f, "dwconv2d_dgrad", "simt") | |||
| write_op_list(f, "dwconv2d_dgrad", "tensorop884") | |||
| f.write("]") | |||
| @@ -1056,7 +1056,8 @@ def GenerateGemm_Simt(args): | |||
| return operations | |||
| def GenerateDwconv2dFprop_Simt(args): | |||
| # | |||
| def GenerateDwconv2d_Simt(args, conv_kind): | |||
| ################################################################################ | |||
| # warps per threadblock | |||
| ################################################################################ | |||
| @@ -1121,10 +1122,10 @@ def GenerateDwconv2dFprop_Simt(args): | |||
| tile_descriptions = [ | |||
| TileDescription([128, 128, 8], 2, [4, 2, 1], math_inst, min_cc, max_cc), | |||
| TileDescription([128, 64, 8], 2, [2, 2, 1], math_inst, min_cc, max_cc), | |||
| TileDescription([64, 128, 8], 2, [1, 4, 1], math_inst, min_cc, max_cc), | |||
| TileDescription([64, 128, 8], 2, [2, 2, 1], math_inst, min_cc, max_cc), | |||
| TileDescription([128, 32, 8], 2, [2, 1, 1], math_inst, min_cc, max_cc), | |||
| TileDescription([32, 128, 8], 2, [1, 2, 1], math_inst, min_cc, max_cc), | |||
| TileDescription([64, 64, 8], 2, [1, 2, 1], math_inst, min_cc, max_cc), | |||
| TileDescription([64, 64, 8], 2, [2, 1, 1], math_inst, min_cc, max_cc), | |||
| TileDescription([32, 64, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), | |||
| TileDescription([64, 32, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), | |||
| TileDescription([32, 32, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), | |||
| @@ -1232,7 +1233,7 @@ def GenerateDwconv2dFprop_Simt(args): | |||
| for alignment_src in alignment_constraints: | |||
| operations += GenerateConv2d( | |||
| ConvType.DepthwiseConvolution, | |||
| ConvKind.Fprop, | |||
| conv_kind, | |||
| [tile], | |||
| layout[0], | |||
| layout[1], | |||
| @@ -1249,7 +1250,7 @@ def GenerateDwconv2dFprop_Simt(args): | |||
| # | |||
| def GenerateDwconv2dFprop_TensorOp_884(args): | |||
| def GenerateDwconv2d_TensorOp_884(args, conv_kind): | |||
| layouts = [(LayoutType.TensorNCHW, LayoutType.TensorNCHW)] | |||
| math_instructions = [ | |||
| @@ -1296,7 +1297,7 @@ def GenerateDwconv2dFprop_TensorOp_884(args): | |||
| for alignment_src in alignment_constraints: | |||
| operations += GenerateConv2d( | |||
| ConvType.DepthwiseConvolution, | |||
| ConvKind.Fprop, | |||
| conv_kind, | |||
| tile_descriptions, | |||
| layout[0], | |||
| layout[1], | |||
| @@ -1574,13 +1575,24 @@ def GenerateDeconvOperations(args): | |||
| def GenerateDwconv2dFpropOperations(args): | |||
| if args.type == "simt": | |||
| return GenerateDwconv2dFprop_Simt(args) | |||
| return GenerateDwconv2d_Simt(args, ConvKind.Fprop) | |||
| else: | |||
| assert args.type == "tensorop884", ( | |||
| "operation dwconv2d fprop only support" | |||
| "simt, tensorop884. (got:{})".format(args.type) | |||
| ) | |||
| return GenerateDwconv2dFprop_TensorOp_884(args) | |||
| return GenerateDwconv2d_TensorOp_884(args, ConvKind.Fprop) | |||
| def GenerateDwconv2dDgradOperations(args): | |||
| if args.type == "simt": | |||
| return GenerateDwconv2d_Simt(args, ConvKind.Dgrad) | |||
| else: | |||
| assert args.type == "tensorop884", ( | |||
| "operation dwconv2d fprop only support" | |||
| "simt, tensorop884. (got:{})".format(args.type) | |||
| ) | |||
| return GenerateDwconv2d_TensorOp_884(args, ConvKind.Dgrad) | |||
| def GenerateGemmOperations(args): | |||
| @@ -1655,7 +1667,7 @@ if __name__ == "__main__": | |||
| elif args.operations == "dwconv2d_fprop": | |||
| operations = GenerateDwconv2dFpropOperations(args) | |||
| elif args.operations == "dwconv2d_dgrad": | |||
| pass | |||
| operations = GenerateDwconv2dDgradOperations(args) | |||
| elif args.operations == "dwconv2d_wgrad": | |||
| pass | |||
| @@ -183,6 +183,8 @@ if(MGE_WITH_CUDA) | |||
| gen_cutlass_kimpl(conv2d tensorop8832 CUTLASS_SOURCES) | |||
| gen_cutlass_kimpl(dwconv2d_fprop simt CUTLASS_SOURCES) | |||
| gen_cutlass_kimpl(dwconv2d_fprop tensorop884 CUTLASS_SOURCES) | |||
| gen_cutlass_kimpl(dwconv2d_dgrad simt CUTLASS_SOURCES) | |||
| gen_cutlass_kimpl(dwconv2d_dgrad tensorop884 CUTLASS_SOURCES) | |||
| list(APPEND SOURCES ${CUTLASS_SOURCES}) | |||
| list(APPEND SOURCES ${CUSOURCES}) | |||
| endif() | |||
| @@ -304,12 +304,13 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||
| void ConvBiasForwardImpl::AlgoPack::fill_dwconv_algos() { | |||
| using AlgoParam = AlgoCutlassConvolutionBase::AlgoParam; | |||
| /// preferred algo | |||
| f32_implicit_bmm.emplace_back(AlgoParam{64, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | |||
| f32_implicit_bmm.emplace_back(AlgoParam{128, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | |||
| f32_implicit_bmm.emplace_back(AlgoParam{128, 64, 8, 64, 32, 8, 1, 1, 1, 2}); | |||
| f32_implicit_bmm.emplace_back(AlgoParam{128, 32, 8, 64, 32, 8, 1, 1, 1, 2}); | |||
| f32_implicit_bmm.emplace_back(AlgoParam{32, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | |||
| f32_implicit_bmm.emplace_back(AlgoParam{64, 128, 8, 64, 32, 8, 1, 1, 1, 2}); | |||
| f32_implicit_bmm.emplace_back(AlgoParam{64, 64, 8, 64, 32, 8, 1, 1, 1, 2}); | |||
| f32_implicit_bmm.emplace_back(AlgoParam{64, 64, 8, 32, 64, 8, 1, 1, 1, 2}); | |||
| f32_implicit_bmm.emplace_back(AlgoParam{32, 64, 8, 32, 64, 8, 1, 1, 1, 2}); | |||
| f32_implicit_bmm.emplace_back(AlgoParam{32, 32, 8, 32, 32, 8, 1, 1, 1, 2}); | |||
| f32_implicit_bmm.emplace_back(AlgoParam{64, 32, 8, 64, 32, 8, 1, 1, 1, 2}); | |||
| @@ -317,10 +318,11 @@ void ConvBiasForwardImpl::AlgoPack::fill_dwconv_algos() { | |||
| all_algos.push_back(&algo); | |||
| } | |||
| #if CUDA_VERSION >= 10020 | |||
| /// preferred algo | |||
| f16_implicit_bmm.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| f16_implicit_bmm.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| f16_implicit_bmm.emplace_back(AlgoParam{128, 256, 32, 64, 64, 32, 8, 8, 4, 2}); | |||
| f16_implicit_bmm.emplace_back(AlgoParam{128, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| f16_implicit_bmm.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| f16_implicit_bmm.emplace_back(AlgoParam{64, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| for (auto&& algo : f16_implicit_bmm) { | |||
| all_algos.push_back(&algo); | |||
| @@ -272,8 +272,10 @@ std::pair<int, int> get_tensor_alignment( | |||
| alignment_src /= src.dtype.size(1); | |||
| }; | |||
| /// TODO: need a better way to check whether tensor core instruction is used | |||
| if (format == Format::NCHW32 || format == Format::NCHW32_NCHW4 || | |||
| format == Format::NCHW64 || format == Format::NCHW64) { | |||
| format == Format::NCHW64 || format == Format::NCHW64 || | |||
| format == Format::NHWC) { | |||
| get_tensor_alignment_tensor_op(); | |||
| } else if ( | |||
| format == Format::NCHW4 || format == Format::NCHW4_NCHW || | |||
| @@ -23,6 +23,7 @@ bool ConvBiasForwardImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::is_available( | |||
| #define RETURN_IF_FALSE(stmt_) \ | |||
| if (!(stmt_)) \ | |||
| return false; | |||
| RETURN_IF_FALSE(is_compute_capability_required(7, 0)); | |||
| RETURN_IF_FALSE( | |||
| args.src_layout->is_contiguous() && args.dst_layout->is_contiguous()); | |||
| using Param = param::ConvBias; | |||
| @@ -41,6 +41,7 @@ ConvolutionBackwardDataImpl::AlgoPack::AlgoPack() { | |||
| all_algos.push_back(&algo); | |||
| int8_algos.push_back(&algo); | |||
| } | |||
| fill_dwconv_algos(); | |||
| int8_algos.push_back(&int8_nchw_dotprod); | |||
| all_algos.push_back(&int8_nchw_dotprod); | |||
| @@ -54,6 +55,39 @@ ConvolutionBackwardDataImpl::AlgoPack::AlgoPack() { | |||
| } | |||
| } | |||
| void ConvolutionBackwardDataImpl::AlgoPack::fill_dwconv_algos() { | |||
| { | |||
| using AlgoParam = AlgoFloat32NCHWFMAImplicitBatchedGemm::AlgoParam; | |||
| /// preferred algo | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{64, 128, 8, 32, 64, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{128, 128, 8, 32, 64, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{128, 64, 8, 64, 32, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{128, 32, 8, 64, 32, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{32, 128, 8, 32, 64, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{64, 64, 8, 32, 64, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{32, 64, 8, 32, 64, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{32, 32, 8, 32, 32, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{64, 32, 8, 64, 32, 8, 2}); | |||
| for (auto&& algo : implbmm_nchw_fma) { | |||
| all_algos.push_back(&algo); | |||
| } | |||
| } | |||
| #if CUDA_VERSION >= 10020 | |||
| { | |||
| using AlgoParam = AlgoFloat16NCHWHMMAImplicitBatchedGemm::AlgoParam; | |||
| /// preferred algo | |||
| implbmm_nchw_hmma.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| implbmm_nchw_hmma.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| implbmm_nchw_hmma.emplace_back(AlgoParam{128, 256, 32, 64, 64, 32, 8, 8, 4, 2}); | |||
| implbmm_nchw_hmma.emplace_back(AlgoParam{128, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| implbmm_nchw_hmma.emplace_back(AlgoParam{64, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| for (auto&& algo : implbmm_nchw_hmma) { | |||
| all_algos.push_back(&algo); | |||
| } | |||
| } | |||
| #endif | |||
| } | |||
| MEGDNN_DEF_GET_ALGO_FROM_DESC(ConvolutionBackwardDataImpl) | |||
| ConvolutionBackwardDataImpl::AlgoCUDNN* ConvolutionBackwardDataImpl::AlgoPack:: | |||
| @@ -41,7 +41,9 @@ public: | |||
| CUDA_GROUP_CONV_GENERAL, | |||
| CUDA_IMPLICIT_GEMM_NCHW4_DOTPROD_INT8, | |||
| CUDA_IMPLICIT_GEMM_NCHW_DOTPROD_INT8, | |||
| CUDA_IMPLICIT_GEMM_NHWC_IMMA_INT8 | |||
| CUDA_IMPLICIT_GEMM_NHWC_IMMA_INT8, | |||
| CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32, | |||
| CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16, | |||
| }; | |||
| using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>; | |||
| @@ -315,6 +317,82 @@ private: | |||
| std::string m_name; | |||
| }; | |||
| class ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm final | |||
| : public AlgoBase { | |||
| public: | |||
| struct AlgoParam { | |||
| int threadblock_m; | |||
| int threadblock_n; | |||
| int threadblock_k; | |||
| int warp_m; | |||
| int warp_n; | |||
| int warp_k; | |||
| int stage; | |||
| std::string to_string() { | |||
| return ssprintf( | |||
| "_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m, threadblock_n, | |||
| threadblock_k, warp_m, warp_n, warp_k, stage); | |||
| } | |||
| }; | |||
| AlgoFloat32NCHWFMAImplicitBatchedGemm(AlgoParam algo_param) | |||
| : m_algo_param{algo_param}, | |||
| m_name{ssprintf( | |||
| "FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM%s", | |||
| m_algo_param.to_string().c_str())} {} | |||
| bool is_available(const SizeArgs& args) const override; | |||
| size_t get_workspace_in_bytes(const SizeArgs& args) const override { return 0; } | |||
| void exec(const ExecArgs& args) const override; | |||
| const char* name() const override { return m_name.c_str(); } | |||
| AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
| MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32) | |||
| private: | |||
| const void* get_available_op(const SizeArgs& args) const; | |||
| AlgoParam m_algo_param; | |||
| std::string m_name; | |||
| }; | |||
| class ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm final | |||
| : public AlgoBase { | |||
| public: | |||
| /// add instruction shape as member of algo param, because f16 tensor core has 2 | |||
| /// different matrix shapes (i.e. mma.884 and mma.1688) | |||
| struct AlgoParam { | |||
| int threadblock_m; | |||
| int threadblock_n; | |||
| int threadblock_k; | |||
| int warp_m; | |||
| int warp_n; | |||
| int warp_k; | |||
| int instruction_m; | |||
| int instruction_n; | |||
| int instruction_k; | |||
| int stage; | |||
| std::string to_string() { | |||
| return ssprintf( | |||
| "_%dX%dX%d_%dX%dX%d_mma%dX%dX%d_%dstage", threadblock_m, | |||
| threadblock_n, threadblock_k, warp_m, warp_n, warp_k, instruction_m, | |||
| instruction_n, instruction_k, stage); | |||
| } | |||
| }; | |||
| AlgoFloat16NCHWHMMAImplicitBatchedGemm(AlgoParam algo_param) | |||
| : m_algo_param{algo_param}, | |||
| m_name{ssprintf( | |||
| "FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM%s", | |||
| m_algo_param.to_string().c_str())} {} | |||
| bool is_available(const SizeArgs& args) const override; | |||
| size_t get_workspace_in_bytes(const SizeArgs& args) const override { return 0; } | |||
| void exec(const ExecArgs& args) const override; | |||
| const char* name() const override { return m_name.c_str(); } | |||
| AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
| MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16) | |||
| private: | |||
| const void* get_available_op(const SizeArgs& args) const; | |||
| AlgoParam m_algo_param; | |||
| std::string m_name; | |||
| }; | |||
| class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj { | |||
| // defined in cudnn.cpp | |||
| void fill_cudnn_algos(); | |||
| @@ -322,6 +400,7 @@ class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj { | |||
| void fill_int8_dp4a_algos(); | |||
| // defined in implicit_gemm_int8_nhwc_imma.cpp | |||
| void fill_int8_imma_algos(); | |||
| void fill_dwconv_algos(); | |||
| AlgoBase::Mapper m_all_algos_map; | |||
| @@ -337,6 +416,8 @@ public: | |||
| std::vector<AlgoInt8NCHW4DotProdImplicitGemm> int8_nchw4_dotprod; | |||
| AlgoInt8NCHWDotProdImplicitGemm int8_nchw_dotprod; | |||
| std::vector<AlgoInt8NHWCIMMAImplicitGemm> int8_nhwc_imma; | |||
| std::vector<AlgoFloat32NCHWFMAImplicitBatchedGemm> implbmm_nchw_fma; | |||
| std::vector<AlgoFloat16NCHWHMMAImplicitBatchedGemm> implbmm_nchw_hmma; | |||
| std::vector<AlgoBase*> | |||
| //! all algorithms | |||
| @@ -0,0 +1,146 @@ | |||
| /** | |||
| * \file | |||
| * dnn/src/cuda/convolution/backward_data/implicit_batched_gemm_float16_nchw_hmma.cpp | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "src/cuda/convolution/backward_data/algo.h" | |||
| #include "src/cuda/cutlass/singleton.h" | |||
| #include "src/cuda/utils.h" | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| using namespace cutlass::library; | |||
| const void* ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm:: | |||
| get_available_op(const SizeArgs& args) const { | |||
| int alignment_diff = 0; | |||
| int wo = args.diff_layout->dtype.size(args.diff_layout->operator[](3)); | |||
| for (int candidate : {16, 4, 2}) { | |||
| if (wo % candidate == 0) | |||
| alignment_diff = candidate; | |||
| } | |||
| alignment_diff /= args.diff_layout->dtype.size(1); | |||
| NumericTypeID accumulator_dtype = | |||
| args.opr->param().compute_mode == param::Convolution::ComputeMode::DEFAULT | |||
| ? NumericTypeID::kF16 | |||
| : NumericTypeID::kF32; | |||
| ConvolutionKey key{ | |||
| cutlass::conv::Operator::kDgrad, | |||
| NumericTypeID::kF16, | |||
| LayoutTypeID::kTensorNCHW, | |||
| NumericTypeID::kF16, | |||
| LayoutTypeID::kTensorNCHW, | |||
| NumericTypeID::kF16, | |||
| LayoutTypeID::kTensorNCHW, | |||
| NumericTypeID::kF16, | |||
| LayoutTypeID::kTensorNCHW, | |||
| accumulator_dtype, | |||
| cutlass::conv::ConvType::kDepthwiseConvolution, | |||
| m_algo_param.threadblock_m, | |||
| m_algo_param.threadblock_n, | |||
| m_algo_param.threadblock_k, | |||
| m_algo_param.warp_m, | |||
| m_algo_param.warp_n, | |||
| m_algo_param.warp_k, | |||
| m_algo_param.instruction_m, | |||
| m_algo_param.instruction_n, | |||
| m_algo_param.instruction_k, | |||
| cutlass::epilogue::EpilogueType::kBiasAddLinearCombination, | |||
| m_algo_param.stage, | |||
| cutlass::conv::SpecialOptimizeDesc::NONE, | |||
| alignment_diff, | |||
| 1, | |||
| false}; | |||
| return (void*)Singleton::get().operation_table.find_op(key); | |||
| } | |||
| bool ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::is_available( | |||
| const SizeArgs& args) const { | |||
| #define RETURN_IF_FALSE(stmt_) \ | |||
| if (!(stmt_)) \ | |||
| return false; | |||
| RETURN_IF_FALSE(is_compute_capability_required(7, 0)); | |||
| RETURN_IF_FALSE( | |||
| args.diff_layout->is_contiguous() && args.grad_layout->is_contiguous()); | |||
| using Param = param::Convolution; | |||
| using Format = Param::Format; | |||
| using Sparse = Param::Sparse; | |||
| using Mode = Param::Mode; | |||
| auto&& param = args.opr->param(); | |||
| auto&& fm = args.filter_meta; | |||
| RETURN_IF_FALSE( | |||
| param.format == Format::NCHW && | |||
| args.diff_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
| args.filter_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
| args.grad_layout->dtype.enumv() == DTypeEnum::Float16); | |||
| RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||
| RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
| // check if channelwise convolution | |||
| RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
| const auto* op = get_available_op(args); | |||
| RETURN_IF_FALSE(op != nullptr); | |||
| return true; | |||
| #undef RETURN_IF_FALSE | |||
| } | |||
| void ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::exec( | |||
| const ExecArgs& args) const { | |||
| auto&& param = args.opr->param(); | |||
| auto&& fm = args.filter_meta; | |||
| int n = args.diff_layout->operator[](0), ho = args.diff_layout->operator[](2), | |||
| wo = args.diff_layout->operator[](3); | |||
| int hi = args.grad_layout->operator[](2), wi = args.grad_layout->operator[](3); | |||
| int co = fm.group, ci = co, groups = co; | |||
| int fh = fm.spatial[0], fw = fm.spatial[1]; | |||
| int sh = fm.stride[0], sw = fm.stride[1]; | |||
| int ph = fm.padding[0], pw = fm.padding[1]; | |||
| int dh = param.dilate_h, dw = param.dilate_w; | |||
| // check if channelwise convolution | |||
| megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||
| auto&& stream = cuda_stream(args.opr->handle()); | |||
| float alpha = 1.f; | |||
| float beta = 0.f; | |||
| float gamma = 0.f; | |||
| float delta = 0.f; | |||
| const Operation* op = (const Operation*)get_available_op(args); | |||
| cutlass::conv::Conv2dProblemSize problem_size{ | |||
| n, hi, wi, ci, co, fh, fw, ho, | |||
| wo, ph, pw, sh, sw, dh, dw, cutlass::conv::Mode::kCrossCorrelation, | |||
| 1, // split k slices, always 1 | |||
| groups, // groups | |||
| }; | |||
| cutlass::library::ConvolutionArguments conv_args{ | |||
| problem_size, | |||
| args.diff_tensor->raw_ptr(), | |||
| args.filter_tensor->raw_ptr(), | |||
| nullptr, | |||
| nullptr, | |||
| args.grad_tensor->raw_ptr(), | |||
| &alpha, | |||
| &beta, | |||
| &gamma, | |||
| &delta, | |||
| nullptr, | |||
| nullptr, | |||
| nullptr, | |||
| nullptr}; | |||
| cutlass_check(op->run(&conv_args, nullptr, stream)); | |||
| after_kernel_launch(); | |||
| } | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -0,0 +1,141 @@ | |||
| /** | |||
| * \file | |||
| * dnn/src/cuda/convolution/backward_data/implicit_batched_gemm_float32_nchw_fma.cpp | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "src/cuda/convolution/backward_data/algo.h" | |||
| #include "src/cuda/cutlass/singleton.h" | |||
| #include "src/cuda/utils.h" | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| using namespace cutlass::library; | |||
| const void* ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm:: | |||
| get_available_op(const SizeArgs& args) const { | |||
| int alignment_diff = 0; | |||
| int wo = args.diff_layout->dtype.size(args.diff_layout->operator[](3)); | |||
| for (int candidate : {16, 4}) { | |||
| if (wo % candidate == 0) | |||
| alignment_diff = candidate; | |||
| } | |||
| alignment_diff /= args.diff_layout->dtype.size(1); | |||
| ConvolutionKey key{ | |||
| cutlass::conv::Operator::kDgrad, | |||
| NumericTypeID::kF32, | |||
| LayoutTypeID::kTensorNCHW, | |||
| NumericTypeID::kF32, | |||
| LayoutTypeID::kTensorNCHW, | |||
| NumericTypeID::kF32, | |||
| LayoutTypeID::kTensorNCHW, | |||
| NumericTypeID::kF32, | |||
| LayoutTypeID::kTensorNCHW, | |||
| NumericTypeID::kF32, | |||
| cutlass::conv::ConvType::kDepthwiseConvolution, | |||
| m_algo_param.threadblock_m, | |||
| m_algo_param.threadblock_n, | |||
| m_algo_param.threadblock_k, | |||
| m_algo_param.warp_m, | |||
| m_algo_param.warp_n, | |||
| m_algo_param.warp_k, | |||
| 1, | |||
| 1, | |||
| 1, | |||
| cutlass::epilogue::EpilogueType::kBiasAddLinearCombination, | |||
| m_algo_param.stage, | |||
| cutlass::conv::SpecialOptimizeDesc::NONE, | |||
| alignment_diff, | |||
| 1, | |||
| false}; | |||
| return (void*)Singleton::get().operation_table.find_op(key); | |||
| } | |||
| bool ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::is_available( | |||
| const SizeArgs& args) const { | |||
| #define RETURN_IF_FALSE(stmt_) \ | |||
| if (!(stmt_)) \ | |||
| return false; | |||
| RETURN_IF_FALSE( | |||
| args.diff_layout->is_contiguous() && args.grad_layout->is_contiguous()); | |||
| using Param = param::Convolution; | |||
| using Format = Param::Format; | |||
| using Sparse = Param::Sparse; | |||
| using Mode = Param::Mode; | |||
| auto&& param = args.opr->param(); | |||
| auto&& fm = args.filter_meta; | |||
| RETURN_IF_FALSE( | |||
| param.format == Format::NCHW && | |||
| args.diff_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
| args.filter_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
| args.grad_layout->dtype.enumv() == DTypeEnum::Float32); | |||
| RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||
| RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
| // check if channelwise convolution | |||
| RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
| const auto* op = get_available_op(args); | |||
| RETURN_IF_FALSE(op != nullptr); | |||
| return true; | |||
| #undef RETURN_IF_FALSE | |||
| } | |||
| void ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::exec( | |||
| const ExecArgs& args) const { | |||
| auto&& param = args.opr->param(); | |||
| auto&& fm = args.filter_meta; | |||
| int n = args.diff_layout->operator[](0), ho = args.diff_layout->operator[](2), | |||
| wo = args.diff_layout->operator[](3); | |||
| int hi = args.grad_layout->operator[](2), wi = args.grad_layout->operator[](3); | |||
| int co = fm.group, ci = co, groups = co; | |||
| int fh = fm.spatial[0], fw = fm.spatial[1]; | |||
| int sh = fm.stride[0], sw = fm.stride[1]; | |||
| int ph = fm.padding[0], pw = fm.padding[1]; | |||
| int dh = param.dilate_h, dw = param.dilate_w; | |||
| // check if channelwise convolution | |||
| megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||
| auto&& stream = cuda_stream(args.opr->handle()); | |||
| float alpha = 1.f; | |||
| float beta = 0.f; | |||
| float gamma = 0.f; | |||
| float delta = 0.f; | |||
| const Operation* op = (const Operation*)get_available_op(args); | |||
| cutlass::conv::Conv2dProblemSize problem_size{ | |||
| n, hi, wi, ci, co, fh, fw, ho, | |||
| wo, ph, pw, sh, sw, dh, dw, cutlass::conv::Mode::kCrossCorrelation, | |||
| 1, // split k slices, always 1 | |||
| groups, // groups | |||
| }; | |||
| cutlass::library::ConvolutionArguments conv_args{ | |||
| problem_size, | |||
| args.diff_tensor->raw_ptr(), | |||
| args.filter_tensor->raw_ptr(), | |||
| nullptr, | |||
| nullptr, | |||
| args.grad_tensor->raw_ptr(), | |||
| &alpha, | |||
| &beta, | |||
| &gamma, | |||
| &delta, | |||
| nullptr, | |||
| nullptr, | |||
| nullptr, | |||
| nullptr}; | |||
| cutlass_check(op->run(&conv_args, nullptr, stream)); | |||
| after_kernel_launch(); | |||
| } | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -54,7 +54,7 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | |||
| m_algo_param.stage, | |||
| special_optimization, | |||
| 4, | |||
| 16, | |||
| 4, | |||
| false}; | |||
| return (void*)Singleton::get().operation_table.find_op(key); | |||
| } | |||
| @@ -102,6 +102,8 @@ public: | |||
| class AlgoInt8NCHW4DotProdImplicitGemm; | |||
| class AlgoInt8NCHWDotProdImplicitGemm; | |||
| class AlgoInt8NHWCIMMAImplicitGemm; | |||
| class AlgoFloat32NCHWFMAImplicitBatchedGemm; | |||
| class AlgoFloat16NCHWHMMAImplicitBatchedGemm; | |||
| class AlgoPack; | |||
| @@ -55,6 +55,7 @@ void initialize_all_gemm_simt_operations(Manifest& manifest); | |||
| void initialize_all_conv2d_simt_operations(Manifest& manifest); | |||
| void initialize_all_deconv_simt_operations(Manifest& manifest); | |||
| void initialize_all_dwconv2d_fprop_simt_operations(Manifest& manifest); | |||
| void initialize_all_dwconv2d_dgrad_simt_operations(Manifest& manifest); | |||
| #if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | |||
| void initialize_all_gemm_tensorop884_operations(Manifest& manifest); | |||
| void initialize_all_gemm_tensorop1688_operations(Manifest& manifest); | |||
| @@ -62,6 +63,7 @@ void initialize_all_conv2d_tensorop8816_operations(Manifest& manifest); | |||
| void initialize_all_conv2d_tensorop8832_operations(Manifest& manifest); | |||
| void initialize_all_deconv_tensorop8816_operations(Manifest& manifest); | |||
| void initialize_all_dwconv2d_fprop_tensorop884_operations(Manifest& manifest); | |||
| void initialize_all_dwconv2d_dgrad_tensorop884_operations(Manifest& manifest); | |||
| #endif | |||
| void initialize_all(Manifest& manifest) { | |||
| @@ -69,6 +71,7 @@ void initialize_all(Manifest& manifest) { | |||
| initialize_all_conv2d_simt_operations(manifest); | |||
| initialize_all_deconv_simt_operations(manifest); | |||
| initialize_all_dwconv2d_fprop_simt_operations(manifest); | |||
| initialize_all_dwconv2d_dgrad_simt_operations(manifest); | |||
| #if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | |||
| initialize_all_gemm_tensorop884_operations(manifest); | |||
| initialize_all_gemm_tensorop1688_operations(manifest); | |||
| @@ -76,6 +79,7 @@ void initialize_all(Manifest& manifest) { | |||
| initialize_all_conv2d_tensorop8832_operations(manifest); | |||
| initialize_all_deconv_tensorop8816_operations(manifest); | |||
| initialize_all_dwconv2d_fprop_tensorop884_operations(manifest); | |||
| initialize_all_dwconv2d_dgrad_tensorop884_operations(manifest); | |||
| #endif | |||
| } | |||
| @@ -569,6 +569,7 @@ public: | |||
| }); | |||
| return ret; | |||
| } | |||
| megdnn_assert(false, "Expected algo not found: %s\n", policy_name.name.c_str()); | |||
| return ret; | |||
| } | |||
| @@ -497,15 +497,15 @@ void check_chanwise(DType io_type, DType comp_type, Handle* handle, const char* | |||
| } | |||
| } // namespace | |||
| #define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL(cb) \ | |||
| cb(1, 128, 128, 8, 32, 64, 8); \ | |||
| cb(2, 128, 64, 8, 64, 32, 8); \ | |||
| cb(3, 128, 32, 8, 64, 32, 8); \ | |||
| cb(4, 64, 128, 8, 64, 32, 8); \ | |||
| cb(5, 32, 128, 8, 32, 64, 8); \ | |||
| cb(6, 64, 64, 8, 64, 32, 8); \ | |||
| cb(7, 32, 64, 8, 32, 64, 8); \ | |||
| cb(8, 32, 32, 8, 32, 32, 8); \ | |||
| #define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb) \ | |||
| cb(1, 128, 128, 8, 32, 64, 8); \ | |||
| cb(2, 128, 64, 8, 64, 32, 8); \ | |||
| cb(3, 128, 32, 8, 64, 32, 8); \ | |||
| cb(4, 64, 128, 8, 32, 64, 8); \ | |||
| cb(5, 32, 128, 8, 32, 64, 8); \ | |||
| cb(6, 64, 64, 8, 32, 64, 8); \ | |||
| cb(7, 32, 64, 8, 32, 64, 8); \ | |||
| cb(8, 32, 32, 8, 32, 32, 8); \ | |||
| cb(9, 64, 32, 8, 64, 32, 8); | |||
| #define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
| @@ -516,16 +516,29 @@ void check_chanwise(DType io_type, DType comp_type, Handle* handle, const char* | |||
| "_" #wm "X" #wn "X" #wk "_2stage"); \ | |||
| } | |||
| MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL(cb) | |||
| MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb) | |||
| #undef cb | |||
| #undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL | |||
| #define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL(cb) \ | |||
| cb(1, 128, 128, 32, 32, 32, 32); \ | |||
| cb(2, 128, 256, 32, 64, 64, 32); \ | |||
| cb(3, 128, 64, 32, 32, 32, 32); \ | |||
| cb(4, 64, 128, 32, 32, 32, 32); \ | |||
| #define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
| TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_DATA_CUTLASS_FMA_##tag) { \ | |||
| check_chanwise<ConvolutionBackwardData>( \ | |||
| dtype::Float32(), dtype::Float32(), handle_cuda(), \ | |||
| "FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
| "_" #wm "X" #wn "X" #wk "_2stage"); \ | |||
| } | |||
| MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb) | |||
| #undef cb | |||
| #undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL | |||
| #define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) \ | |||
| cb(1, 128, 128, 32, 32, 32, 32); \ | |||
| cb(2, 128, 256, 32, 64, 64, 32); \ | |||
| cb(3, 128, 64, 32, 32, 32, 32); \ | |||
| cb(4, 64, 128, 32, 32, 32, 32); \ | |||
| cb(5, 64, 64, 32, 32, 32, 32); | |||
| // check both ioc16 and io16xc32 | |||
| @@ -541,9 +554,26 @@ MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL(cb) | |||
| "_" #wm "X" #wn "X" #wk "_2stage"); \ | |||
| } | |||
| MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL(cb) | |||
| MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) | |||
| #undef cb | |||
| #define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
| TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_DATA_CUTLASS_HMMA_##tag) { \ | |||
| check_chanwise<ConvolutionBackwardData>( \ | |||
| dtype::Float16(), dtype::Float16(), handle_cuda(), \ | |||
| "FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
| "_" #wm "X" #wn "X" #wk "_mma8X8X4_2stage"); \ | |||
| check_chanwise<ConvolutionBackwardData>( \ | |||
| dtype::Float16(), dtype::Float32(), handle_cuda(), \ | |||
| "FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
| "_" #wm "X" #wn "X" #wk "_mma8X8X4_2stage"); \ | |||
| } | |||
| MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) | |||
| #undef cb | |||
| #undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL | |||
| #if MEGDNN_WITH_BENCHMARK | |||
| @@ -1324,6 +1354,81 @@ TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_FORWARD_LARGE_KERNEL) { | |||
| // clang-format on | |||
| } | |||
| TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BACKWARD_DATA_LARGE_KERNEL) { | |||
| CUBenchmarker<ConvolutionBackwardData> bencher(handle_cuda()); | |||
| size_t RUNS = 100; | |||
| bencher.set_display(false).set_times(RUNS); | |||
| std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{ | |||
| new OprProxy<ConvolutionBackwardData>{true}}; | |||
| bencher.set_proxy(proxy); | |||
| Convolution::Param param; | |||
| param.format = ConvBias::Param::Format::NCHW; | |||
| param.sparse = Convolution::Param::Sparse::GROUP; | |||
| NormalRNG rng; | |||
| auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) { | |||
| param.pad_h = f / 2; | |||
| param.pad_w = f / 2; | |||
| param.stride_h = s; | |||
| param.stride_w = s; | |||
| param.compute_mode = param::Convolution::ComputeMode::DEFAULT; | |||
| TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f}; | |||
| TensorLayout dst_layout; | |||
| auto opr = handle_cuda()->create_operator<Convolution>(); | |||
| opr->param() = param; | |||
| opr->deduce_layout( | |||
| {src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout); | |||
| float bandwith = static_cast<float>( | |||
| src.total_nr_elems() + filter.total_nr_elems() + | |||
| dst_layout.total_nr_elems()) / | |||
| (1024 * 1024 * 1024) * 1e3; | |||
| bencher.set_param(param) | |||
| .set_dtype(0, dtype::Float32()) | |||
| .set_dtype(1, dtype::Float32()) | |||
| .set_dtype(2, dtype::Float32()) | |||
| .set_rng(0, &rng) | |||
| .set_rng(1, &rng); | |||
| bencher.proxy()->target_execution_policy = {}; | |||
| auto time_in_ms_fp32 = bencher.execs({filter, src, src}) / RUNS; | |||
| bencher.set_param(param) | |||
| .set_dtype(0, dtype::Float16()) | |||
| .set_dtype(1, dtype::Float16()) | |||
| .set_dtype(2, dtype::Float16()) | |||
| .set_rng(0, &rng) | |||
| .set_rng(1, &rng); | |||
| bencher.proxy()->target_execution_policy = {}; | |||
| auto time_in_ms_fp16 = bencher.execs({filter, src, src}) / RUNS; | |||
| bencher.proxy()->target_execution_policy.algo.reset(); | |||
| param.compute_mode = param::Convolution::ComputeMode::FLOAT32; | |||
| bencher.set_param(param); | |||
| auto time_in_ms_pseudo_fp16 = bencher.execs({src, filter, {}}) / RUNS; | |||
| printf("stride=%zu src=%s, filter=%s, float32: %.2fms %.2fGB/s " | |||
| "float16: %.2fms %.2fGB/s " | |||
| "pseudo float16: %.2fms %.2fGB/s " | |||
| "speedup: " | |||
| "%0.2f (fp16/fp32) %.2f (fp16/pseudo fp16)\n", | |||
| s, src.to_string().c_str(), filter.to_string().c_str(), time_in_ms_fp32, | |||
| bandwith * 4 / time_in_ms_fp32, time_in_ms_fp16, | |||
| bandwith * 2 / time_in_ms_fp16, time_in_ms_pseudo_fp16, | |||
| bandwith * 2 / time_in_ms_pseudo_fp16, time_in_ms_fp32 / time_in_ms_fp16, | |||
| time_in_ms_pseudo_fp16 / time_in_ms_fp16); | |||
| }; | |||
| // clang-format off | |||
| for (size_t b : {32, 64}) | |||
| for (size_t f : {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}) { | |||
| run(b, 384, 32, 32, f, 1); | |||
| run(b, 384, 64, 64, f, 1); | |||
| } | |||
| // clang-format on | |||
| } | |||
| #endif | |||
| // vim: syntax=cpp.doxygen | |||