GitOrigin-RevId: 86282709b3
tags/v1.5.0
| @@ -511,6 +511,12 @@ protected: | |||
| const TensorLayout& bias, const TensorLayout& z, | |||
| const TensorLayout& dst, size_t workspace_in_bytes, | |||
| const PreprocessedFilter* preprocessed_filter); | |||
| CanonizedFilterMeta check_exec_allow_noncontiguous( | |||
| const TensorLayout& src, const TensorLayout& filter, | |||
| const TensorLayout& bias, const TensorLayout& z, | |||
| const TensorLayout& dst, size_t workspace_in_bytes, | |||
| const PreprocessedFilter* preprocessed_filter); | |||
| }; | |||
| using ConvBias = ConvBiasForward; | |||
| @@ -11,30 +11,18 @@ | |||
| */ | |||
| #include "src/common/conv_bias.h" | |||
| #include "megdnn/oprs/nn.h" | |||
| #include "src/common/utils.h" | |||
| #include "src/common/opr_delegate.h" | |||
| namespace megdnn { | |||
| namespace { | |||
| void ConvBiasForward::deduce_dtype(DType src, DType filter, DType /* bias */, | |||
| DType /* z */, DType& dst) { | |||
| check_or_deduce_dtype_fwd(src, filter, dst); | |||
| } | |||
| void ConvBiasForward::deduce_layout(const TensorLayout& src, | |||
| const TensorLayout& filter, | |||
| const TensorLayout& /* bias */, | |||
| const TensorLayout& /* z */, | |||
| TensorLayout& dst) { | |||
| deduce_layout_fwd(src, filter, dst); | |||
| } | |||
| ConvBiasForward::CanonizedFilterMeta ConvBiasForward::check_exec( | |||
| const TensorLayout& src, const TensorLayout& filter, | |||
| const TensorLayout& bias, const TensorLayout& z, | |||
| const TensorLayout& dst, size_t workspace_in_bytes, | |||
| const PreprocessedFilter* preprocessed_filter) { | |||
| void do_check_exec_common( | |||
| ConvBiasForward* opr, const TensorLayout& src, | |||
| const TensorLayout& filter, const TensorLayout& bias, | |||
| const TensorLayout& z, const TensorLayout& dst, | |||
| size_t workspace_in_bytes, | |||
| const ConvBiasForward::PreprocessedFilter* preprocessed_filter) { | |||
| megdnn_assert((src.dtype.enumv() == filter.dtype.enumv()) || | |||
| (src.dtype.enumv() == DTypeEnum::Quantized4Asymm && | |||
| filter.dtype.enumv() == DTypeEnum::QuantizedS4)); | |||
| @@ -52,9 +40,8 @@ ConvBiasForward::CanonizedFilterMeta ConvBiasForward::check_exec( | |||
| } | |||
| } | |||
| auto ret = check_layout_fwd(src, filter, dst); | |||
| megdnn_assert_contiguous(bias); | |||
| auto required_workspace_in_bytes = get_workspace_in_bytes( | |||
| auto required_workspace_in_bytes = opr->get_workspace_in_bytes( | |||
| src, filter, bias, z, dst, preprocessed_filter); | |||
| megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes, | |||
| "worksapce have size of %zu, but need %zu", | |||
| @@ -68,55 +55,58 @@ ConvBiasForward::CanonizedFilterMeta ConvBiasForward::check_exec( | |||
| return bias.eq_layout(dst); | |||
| } | |||
| }; | |||
| if (check_eq(bias, dst)) | |||
| return ret; | |||
| if (param().format == param::ConvBias::Format::NCHW || | |||
| param().format == param::ConvBias::Format::NCHW4_NCHW) { | |||
| if (check_eq(bias, dst)) { | |||
| return; | |||
| } | |||
| if (opr->param().format == param::ConvBias::Format::NCHW || | |||
| opr->param().format == param::ConvBias::Format::NCHW4_NCHW) { | |||
| megdnn_assert(bias.shape[0] == 1); | |||
| megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s", | |||
| bias.to_string().c_str(), dst.to_string().c_str()); | |||
| megdnn_assert(bias.shape[2] == 1); | |||
| megdnn_assert(bias.shape[3] == 1); | |||
| } else if (param().format == param::ConvBias::Format::NHWC) { | |||
| } else if (opr->param().format == param::ConvBias::Format::NHWC) { | |||
| megdnn_assert(bias.shape[0] == 1); | |||
| megdnn_assert(bias.shape[1] == 1); | |||
| megdnn_assert(bias.shape[2] == 1); | |||
| megdnn_assert(bias.shape[3] == dst.shape[3], "bias:%s, dst:%s", | |||
| bias.to_string().c_str(), dst.to_string().c_str()); | |||
| } else if (param().format == param::ConvBias::Format::NCHW4 || | |||
| param().format == param::ConvBias::Format::NCHW44 || | |||
| param().format == param::ConvBias::Format::NCHW44_DOT || | |||
| param().format == param::ConvBias::Format::NCHW32_NCHW4) { | |||
| } else if (opr->param().format == param::ConvBias::Format::NCHW4 || | |||
| opr->param().format == param::ConvBias::Format::NCHW44 || | |||
| opr->param().format == param::ConvBias::Format::NCHW44_DOT || | |||
| opr->param().format == | |||
| param::ConvBias::Format::NCHW32_NCHW4) { | |||
| megdnn_assert(bias.shape[0] == 1); | |||
| megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s", | |||
| bias.to_string().c_str(), dst.to_string().c_str()); | |||
| megdnn_assert(bias.shape[2] == 1); | |||
| megdnn_assert(bias.shape[3] == 1); | |||
| megdnn_assert(bias.shape[4] == 4); | |||
| } else if (param().format == param::ConvBias::Format::NCHW8 || | |||
| param().format == param::ConvBias::Format::NCHW88 ) { | |||
| } else if (opr->param().format == param::ConvBias::Format::NCHW8 || | |||
| opr->param().format == param::ConvBias::Format::NCHW88) { | |||
| megdnn_assert(bias.shape[0] == 1); | |||
| megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s", | |||
| bias.to_string().c_str(), dst.to_string().c_str()); | |||
| megdnn_assert(bias.shape[2] == 1); | |||
| megdnn_assert(bias.shape[3] == 1); | |||
| megdnn_assert(bias.shape[4] == 8); | |||
| } else if (param().format == param::ConvBias::Format::NCHW32 || | |||
| param().format == param::ConvBias::Format::NCHW4_NCHW32) { | |||
| } else if (opr->param().format == param::ConvBias::Format::NCHW32 || | |||
| opr->param().format == | |||
| param::ConvBias::Format::NCHW4_NCHW32) { | |||
| megdnn_assert(bias.shape[0] == 1); | |||
| megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s", | |||
| bias.to_string().c_str(), dst.to_string().c_str()); | |||
| megdnn_assert(bias.shape[2] == 1); | |||
| megdnn_assert(bias.shape[3] == 1); | |||
| megdnn_assert(bias.shape[4] == 32); | |||
| } else if (param().format == param::ConvBias::Format::CHWN4) { | |||
| } else if (opr->param().format == param::ConvBias::Format::CHWN4) { | |||
| megdnn_assert(bias.shape[0] == dst.shape[0], "bias:%s, dst:%s", | |||
| bias.to_string().c_str(), dst.to_string().c_str()); | |||
| megdnn_assert(bias.shape[1] == 1); | |||
| megdnn_assert(bias.shape[2] == 1); | |||
| megdnn_assert(bias.shape[3] == 1); | |||
| megdnn_assert(bias.shape[4] == 4); | |||
| } else if (param().format == param::ConvBias::Format::NCHW64) { | |||
| } else if (opr->param().format == param::ConvBias::Format::NCHW64) { | |||
| megdnn_assert(bias.shape[0] == 1); | |||
| megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s", | |||
| bias.to_string().c_str(), dst.to_string().c_str()); | |||
| @@ -124,7 +114,8 @@ ConvBiasForward::CanonizedFilterMeta ConvBiasForward::check_exec( | |||
| megdnn_assert(bias.shape[3] == 1); | |||
| megdnn_assert(bias.shape[4] == 64); | |||
| } else { | |||
| megdnn_assert(param().format == param::ConvBias::Format::NHWCD4); | |||
| megdnn_assert(opr->param().format == | |||
| param::ConvBias::Format::NHWCD4); | |||
| megdnn_assert(bias.shape[0] == 1); | |||
| megdnn_assert(bias.shape[1] == 1); | |||
| megdnn_assert(bias.shape[2] == dst.shape[2], "bias:%s, dst:%s", | |||
| @@ -135,11 +126,53 @@ ConvBiasForward::CanonizedFilterMeta ConvBiasForward::check_exec( | |||
| } | |||
| if (z.ndim != 0) { | |||
| megdnn_assert(param().format != param::ConvBias::Format::NCHW4_NCHW32); | |||
| megdnn_assert(param().format != param::ConvBias::Format::NCHW32_NCHW4); | |||
| megdnn_assert(opr->param().format != | |||
| param::ConvBias::Format::NCHW4_NCHW32); | |||
| megdnn_assert(opr->param().format != | |||
| param::ConvBias::Format::NCHW32_NCHW4); | |||
| megdnn_assert(z.dtype.enumv() == dst.dtype.enumv()); | |||
| megdnn_assert(z.eq_shape(dst)); | |||
| } | |||
| } | |||
| } // namespace | |||
| void ConvBiasForward::deduce_dtype(DType src, DType filter, DType /* bias */, | |||
| DType /* z */, DType& dst) { | |||
| check_or_deduce_dtype_fwd(src, filter, dst); | |||
| } | |||
| void ConvBiasForward::deduce_layout(const TensorLayout& src, | |||
| const TensorLayout& filter, | |||
| const TensorLayout& /* bias */, | |||
| const TensorLayout& /* z */, | |||
| TensorLayout& dst) { | |||
| deduce_layout_fwd(src, filter, dst); | |||
| } | |||
| ConvBiasForward::CanonizedFilterMeta ConvBiasForward::check_exec( | |||
| const TensorLayout& src, const TensorLayout& filter, | |||
| const TensorLayout& bias, const TensorLayout& z, | |||
| const TensorLayout& dst, size_t workspace_in_bytes, | |||
| const PreprocessedFilter* preprocessed_filter) { | |||
| do_check_exec_common(this, src, filter, bias, z, dst, workspace_in_bytes, | |||
| preprocessed_filter); | |||
| auto ret = check_layout_fwd(src, filter, dst); | |||
| return ret; | |||
| } | |||
| ConvBiasForward::CanonizedFilterMeta | |||
| ConvBiasForward::check_exec_allow_noncontiguous( | |||
| const TensorLayout& src, const TensorLayout& filter, | |||
| const TensorLayout& bias, const TensorLayout& z, | |||
| const TensorLayout& dst, size_t workspace_in_bytes, | |||
| const PreprocessedFilter* preprocessed_filter) { | |||
| do_check_exec_common(this, src, filter, bias, z, dst, workspace_in_bytes, | |||
| preprocessed_filter); | |||
| TensorLayout dst_expected; | |||
| dst_expected.dtype = dst.dtype; | |||
| auto ret = deduce_layout_fwd(src, filter, dst_expected); | |||
| megdnn_assert_eq_shape(dst_expected, dst); | |||
| return ret; | |||
| } | |||
| @@ -12,6 +12,7 @@ | |||
| #include "megdnn/handle.h" | |||
| #include "megdnn/opr_param_defs.h" | |||
| #include "megdnn/oprs/general.h" | |||
| #include "megdnn/oprs/nn.h" | |||
| #include "megdnn/oprs/nn_int.h" | |||
| #include "src/common/utils.h" | |||
| @@ -595,8 +595,6 @@ ConvolutionBase<Parameter>::deduce_layout_fwd(const TensorLayout& src, | |||
| TensorLayout& dst) const { | |||
| auto errmsg = [&]() { return get_errmsg(src, filter, dst, param()); }; | |||
| MEGDNN_MARK_USED_VAR(errmsg); | |||
| megdnn_assert_contiguous(src); | |||
| megdnn_assert_contiguous(filter); | |||
| megdnn_assert(src.ndim >= 3_z, "%s", errmsg().c_str()); | |||
| megdnn_assert(((src.dtype.enumv() == filter.dtype.enumv()) || | |||
| (src.dtype.enumv() == DTypeEnum::Quantized4Asymm && | |||
| @@ -976,6 +974,8 @@ ConvolutionBase<param::Convolution>::CanonizedFilterMeta | |||
| ConvolutionBase<param::Convolution>::check_layout_fwd( | |||
| const TensorLayout& src, const TensorLayout& filter, | |||
| const TensorLayout& dst) const { | |||
| megdnn_assert_contiguous(src); | |||
| megdnn_assert_contiguous(filter); | |||
| TensorLayout dst_expected; | |||
| dst_expected.dtype = dst.dtype; | |||
| @@ -989,6 +989,8 @@ ConvolutionBase<param::ConvBias>::CanonizedFilterMeta | |||
| ConvolutionBase<param::ConvBias>::check_layout_fwd( | |||
| const TensorLayout& src, const TensorLayout& filter, | |||
| const TensorLayout& dst) const { | |||
| megdnn_assert_contiguous(src); | |||
| megdnn_assert_contiguous(filter); | |||
| TensorLayout dst_expected; | |||
| dst_expected.dtype = dst.dtype; | |||
| @@ -1002,6 +1004,8 @@ ConvolutionBase<param::BatchConvBias>::CanonizedFilterMeta | |||
| ConvolutionBase<param::BatchConvBias>::check_layout_fwd( | |||
| const TensorLayout& src, const TensorLayout& filter, | |||
| const TensorLayout& dst) const { | |||
| megdnn_assert_contiguous(src); | |||
| megdnn_assert_contiguous(filter); | |||
| TensorLayout dst_expected; | |||
| dst_expected.dtype = dst.dtype; | |||
| @@ -116,8 +116,9 @@ ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs( | |||
| const TensorLayout& filter, const TensorLayout& bias, | |||
| const TensorLayout& z, const TensorLayout& dst, | |||
| const PreprocessedFilter* preprocessed_filter) | |||
| : SizeArgs(o, src, filter, o->check_layout_fwd(src, filter, dst), bias, | |||
| z, dst, preprocessed_filter) {} | |||
| : SizeArgs(o, src, filter, | |||
| o->make_canonized_filter_meta(src.ndim, filter), bias, z, | |||
| dst, preprocessed_filter) {} | |||
| ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs( | |||
| ConvBiasForwardImpl* o, const TensorLayout& src, | |||
| @@ -75,8 +75,8 @@ ConvBiasForwardImpl::AlgoBatchedMatmul::get_subopr_list( | |||
| const TensorLayoutArray& layouts, const OperatorBase* opr) const { | |||
| const ConvBiasForwardImpl* conv_bias_opr = | |||
| static_cast<const ConvBiasForwardImpl*>(opr); | |||
| CanonizedFilterMeta fm = | |||
| conv_bias_opr->check_layout_fwd(layouts[0], layouts[1], layouts[4]); | |||
| CanonizedFilterMeta fm = conv_bias_opr->make_canonized_filter_meta( | |||
| layouts[0].ndim, layouts[1]); | |||
| auto&& config = sub_opr_config(fm, layouts[0], layouts[1], layouts[4], | |||
| conv_bias_opr); | |||
| @@ -20,6 +20,10 @@ using namespace conv_bias; | |||
| bool ConvBiasForwardImpl::AlgoChanwise::is_available( | |||
| const SizeArgs& args) const { | |||
| if (!args.src_layout->is_contiguous() || | |||
| !args.dst_layout->is_contiguous()) { | |||
| return false; | |||
| } | |||
| if (args.src_layout->dtype == args.filter_layout->dtype && | |||
| args.src_layout->dtype == dtype::BFloat16()) { | |||
| return false; | |||
| @@ -21,6 +21,10 @@ using namespace conv_bias; | |||
| bool ConvBiasForwardImpl::AlgoChanwise8x8x32::is_available( | |||
| const SizeArgs& args) const { | |||
| if (!args.src_layout->is_contiguous() || | |||
| !args.dst_layout->is_contiguous()) { | |||
| return false; | |||
| } | |||
| if (args.z_layout->ndim > 0) | |||
| return false; | |||
| using NonlineMode = param::ConvBias::NonlineMode; | |||
| @@ -30,6 +30,10 @@ inline bool is_available_small(const chanwise::Param& param) { | |||
| bool ConvBiasForwardImpl::AlgoChanwiseSmall::is_available( | |||
| const SizeArgs& args) const { | |||
| if (!args.src_layout->is_contiguous() || | |||
| !args.dst_layout->is_contiguous()) { | |||
| return false; | |||
| } | |||
| if (args.src_layout->dtype == args.filter_layout->dtype && | |||
| args.src_layout->dtype == dtype::BFloat16()) { | |||
| return false; | |||
| @@ -63,6 +63,10 @@ void ConvBiasForwardImpl::AlgoFallbackNCHWQS8::make_inner_layout( | |||
| bool ConvBiasForwardImpl::AlgoFallbackNCHWQS8::is_available( | |||
| const SizeArgs& args) const { | |||
| if (!args.src_layout->is_contiguous() || | |||
| !args.dst_layout->is_contiguous()) { | |||
| return false; | |||
| } | |||
| auto&& param = args.opr->param(); | |||
| bool is_format_ok = param.format == param::ConvBias::Format::NCHW; | |||
| bool is_version_ok = CUDNN_VERSION >= 7500; | |||
| @@ -24,6 +24,10 @@ using namespace conv_bias; | |||
| bool ConvBiasForwardImpl::AlgoCUDNNConvBiasActivation::is_available( | |||
| const SizeArgs& args) const { | |||
| if (!args.src_layout->is_contiguous() || | |||
| !args.dst_layout->is_contiguous()) { | |||
| return false; | |||
| } | |||
| if ((args.src_layout->dtype.enumv() == DTypeEnum::QuantizedS4 || | |||
| args.src_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) && | |||
| args.filter_layout->dtype.enumv() == DTypeEnum::QuantizedS4) | |||
| @@ -74,6 +74,10 @@ void dispatch_kernel(const int8_t* d_src, const int8_t* d_filter, | |||
| bool ConvBiasForwardImpl::AlgoInt8CHWN4DotProdImplicitGemm::is_available( | |||
| const SizeArgs& args) const { | |||
| if (!args.src_layout->is_contiguous() || | |||
| !args.dst_layout->is_contiguous()) { | |||
| return false; | |||
| } | |||
| if (args.bias_layout->ndim <= 0) | |||
| return false; | |||
| @@ -62,6 +62,10 @@ void dispatch_kernel(const int8_t* d_src, const int8_t* d_filter, | |||
| bool ConvBiasForwardImpl::AlgoInt8CHWN4IMMAImplicitGemm::is_available( | |||
| const SizeArgs& args) const { | |||
| if (!args.src_layout->is_contiguous() || | |||
| !args.dst_layout->is_contiguous()) { | |||
| return false; | |||
| } | |||
| if (args.bias_layout->ndim <= 0) | |||
| return false; | |||
| @@ -109,6 +109,10 @@ INST(PerChannelBiasVisitor); | |||
| bool ConvBiasForwardImpl::AlgoInt8CHWN4IMMAImplicitGemmReorderFilter:: | |||
| is_available(const SizeArgs& args) const { | |||
| if (!args.src_layout->is_contiguous() || | |||
| !args.dst_layout->is_contiguous()) { | |||
| return false; | |||
| } | |||
| if (args.bias_layout->ndim <= 0) | |||
| return false; | |||
| @@ -109,6 +109,10 @@ INST(PerChannelBiasVisitor); | |||
| bool ConvBiasForwardImpl::AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth:: | |||
| is_available(const SizeArgs& args) const { | |||
| if (!args.src_layout->is_contiguous() || | |||
| !args.dst_layout->is_contiguous()) { | |||
| return false; | |||
| } | |||
| if (args.bias_layout->ndim <= 0) | |||
| return false; | |||
| @@ -23,6 +23,10 @@ using namespace convolution; | |||
| #if CUDA_VERSION >= 10020 | |||
| bool ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::is_available( | |||
| const SizeArgs& args) const { | |||
| if (!args.src_layout->is_contiguous() || | |||
| !args.dst_layout->is_contiguous()) { | |||
| return false; | |||
| } | |||
| if (args.bias_layout->ndim <= 0) | |||
| return false; | |||
| @@ -20,6 +20,10 @@ using namespace cuda; | |||
| bool ConvBiasForwardImpl::AlgoInt8NCHW4DotProdImplicitGemm::is_available( | |||
| const SizeArgs& args) const { | |||
| if (!args.src_layout->is_contiguous() || | |||
| !args.dst_layout->is_contiguous()) { | |||
| return false; | |||
| } | |||
| if (args.bias_layout->ndim <= 0) | |||
| return false; | |||
| @@ -20,6 +20,10 @@ using namespace cuda; | |||
| #if CUDA_VERSION >= 10000 | |||
| bool ConvBiasForwardImpl::AlgoInt8NCHW4IMMAImplicitGemm::is_available( | |||
| const SizeArgs& args) const { | |||
| if (!args.src_layout->is_contiguous() || | |||
| !args.dst_layout->is_contiguous()) { | |||
| return false; | |||
| } | |||
| if (args.bias_layout->ndim <= 0) | |||
| return false; | |||
| @@ -61,8 +61,8 @@ ConvBiasForwardImpl::AlgoMatmul::get_subopr_list( | |||
| const TensorLayoutArray& layouts, const OperatorBase* opr) const { | |||
| const ConvBiasForwardImpl* conv_bias_opr = | |||
| static_cast<const ConvBiasForwardImpl*>(opr); | |||
| CanonizedFilterMeta fm = | |||
| conv_bias_opr->check_layout_fwd(layouts[0], layouts[1], layouts[4]); | |||
| CanonizedFilterMeta fm = conv_bias_opr->make_canonized_filter_meta( | |||
| layouts[0].ndim, layouts[1]); | |||
| auto&& config = sub_opr_config(fm, layouts[0], layouts[1], layouts[4], | |||
| conv_bias_opr); | |||
| @@ -16,6 +16,7 @@ | |||
| #include "src/cuda/handle.h" | |||
| #include "src/cuda/utils.h" | |||
| #include "src/common/conv_bias.h" | |||
| #include "src/common/algo_chooser.h" | |||
| #include "src/cuda/cudnn_with_check.h" | |||
| @@ -28,8 +29,9 @@ void ConvBiasForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter, | |||
| _megdnn_tensor_out dst, | |||
| const PreprocessedFilter* preprocessed_filter, | |||
| _megdnn_workspace workspace) { | |||
| check_exec(src.layout, filter.layout, bias.layout, z.layout, dst.layout, | |||
| workspace.size, preprocessed_filter); | |||
| check_exec_allow_noncontiguous(src.layout, filter.layout, bias.layout, | |||
| z.layout, dst.layout, workspace.size, | |||
| preprocessed_filter); | |||
| AlgoBase::ExecArgs args(this, src, filter, bias, z, dst, workspace, | |||
| preprocessed_filter); | |||
| auto algo = get_algorithm(this, src.layout, filter.layout, bias.layout, | |||
| @@ -87,6 +87,7 @@ public: | |||
| const AlgoAttribute& negative_attr) override; | |||
| private: | |||
| static AlgoPack sm_algo_pack; | |||
| }; | |||
| @@ -25,6 +25,10 @@ using namespace activation_u4; | |||
| #if CUDA_VERSION >= 10000 | |||
| bool ConvBiasForwardImpl::AlgoQUInt4x4x32WMMA::is_available( | |||
| const SizeArgs& args) const { | |||
| if (!args.src_layout->is_contiguous() || | |||
| !args.dst_layout->is_contiguous()) { | |||
| return false; | |||
| } | |||
| if (args.z_layout->ndim > 0) | |||
| return false; | |||
| @@ -233,9 +233,9 @@ void ConvBiasForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter, | |||
| dt_byte* workspace_ptr = workspace.raw_ptr; | |||
| // ============================w * f + b================================ | |||
| auto filter_meta = | |||
| check_exec(src.layout, filter.layout, bias.layout, z.layout, | |||
| dst.layout, workspace.size, preprocessed_filter); | |||
| auto filter_meta = check_exec_allow_noncontiguous( | |||
| src.layout, filter.layout, bias.layout, z.layout, dst.layout, | |||
| workspace.size, preprocessed_filter); | |||
| auto sfb = dst; | |||
| if (bias.layout.dtype.enumv() != dst.layout.dtype.enumv()) { | |||
| // intermediate result | |||
| @@ -749,6 +749,18 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_CUDNN_CONVOLUTION) { | |||
| .set_param(arg.param) | |||
| .execs({arg.src, arg.filter, arg.bias, {}, {}}); | |||
| } | |||
| //! noncontiguous case | |||
| { | |||
| param::ConvBias param; | |||
| param.pad_h = param.pad_w = 1; | |||
| checker.set_param(param).execl(TensorLayoutArray{ | |||
| {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, | |||
| {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}, | |||
| {{}, {}, dtype::Float32()}, | |||
| {{}, {}, dtype::Float32()}, | |||
| {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, | |||
| }); | |||
| } | |||
| } | |||
| TEST_F(CUDA, CONV_BIAS_FORWARD_INPLACE_MATMUL) { | |||
| @@ -791,6 +803,18 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_INPLACE_MATMUL) { | |||
| .execs({{2, 3, 3, 16}, {5, 3, 3, 3}, {1, 5, 1, 1}, {}, {}}) | |||
| .execs({{2, 2, 8, 3}, {3, 2, 3, 3}, {1, 3, 1, 1}, {}, {}}); | |||
| } | |||
| //! noncontiguous case | |||
| { | |||
| param::ConvBias param; | |||
| param.pad_h = param.pad_w = 1; | |||
| checker.set_param(param).execl(TensorLayoutArray{ | |||
| {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, | |||
| {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}, | |||
| {{}, {}, dtype::Float32()}, | |||
| {{}, {}, dtype::Float32()}, | |||
| {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, | |||
| }); | |||
| } | |||
| } | |||
| TEST_F(CUDA, CONV_BIAS_FORWARD_MATMUL) { | |||
| @@ -835,6 +859,18 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_MATMUL) { | |||
| .execs({{2, 3, 3, 16}, {5, 3, 3, 3}, {1, 5, 1, 1}, {}, {}}) | |||
| .execs({{2, 2, 8, 3}, {3, 2, 3, 3}, {1, 3, 1, 1}, {}, {}}); | |||
| } | |||
| //! noncontiguous case | |||
| { | |||
| param::ConvBias param; | |||
| param.pad_h = param.pad_w = 1; | |||
| checker.set_param(param).execl(TensorLayoutArray{ | |||
| {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, | |||
| {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}, | |||
| {{}, {}, dtype::Float32()}, | |||
| {{}, {}, dtype::Float32()}, | |||
| {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, | |||
| }); | |||
| } | |||
| } | |||
| TEST_F(CUDA, CONV_BIAS_FORWARD_MATMUL_8x8x32) { | |||
| @@ -880,6 +916,21 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_MATMUL_8x8x32) { | |||
| .execs({{2, 3, 16, 3}, {5, 3, 3, 3}, {1, 1, 1, 5}, {}, {}}) | |||
| .execs({{2, 8, 3, 2}, {3, 3, 3, 2}, {1, 1, 1, 3}, {}, {}}); | |||
| } | |||
| //! noncontiguous case | |||
| { | |||
| param::ConvBias param; | |||
| param.pad_h = param.pad_w = 1; | |||
| param.format = param::ConvBias::Format::NHWC; | |||
| checker.set_param(param).execl(TensorLayoutArray{ | |||
| {{2, 7, 7, 16}, {1568, 224, 32, 1}, dtype::QuantizedS8{1.2f}}, | |||
| {{16, 3, 3, 16}, {144, 48, 16, 1}, dtype::QuantizedS8{1.3f}}, | |||
| {{}, {}, dtype::QuantizedS32{1.2f * 1.3f}}, | |||
| {{}, {}, dtype::QuantizedS8{1.1f}}, | |||
| {{2, 7, 7, 16}, | |||
| {1568, 224, 32, 1}, | |||
| dtype::QuantizedS32{1.2f * 1.3f}}, | |||
| }); | |||
| } | |||
| } | |||
| TEST_F(CUDA, CONV_BIAS_FORWARD_MATMUL_NCHW4) { | |||
| @@ -913,6 +964,21 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_MATMUL_NCHW4) { | |||
| checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {1, 4, 1, 1, 4}, {}, {}}); | |||
| checker.exec( | |||
| {{8, 64, 12, 12, 4}, {256, 64, 3, 3, 4}, {1, 64, 1, 1, 4}, {}, {}}); | |||
| //! noncontiguous case | |||
| { | |||
| param::ConvBias param; | |||
| param.pad_h = param.pad_w = 1; | |||
| param.format = ConvBias::Param::Format::NCHW4; | |||
| checker.set_param(param).execl(TensorLayoutArray{ | |||
| {{2, 4, 7, 7, 4}, {1568, 196, 28, 4, 1}, dtype::QuantizedS8{1.2f}}, | |||
| {{16, 4, 3, 3, 4}, {144, 36, 12, 4, 1}, dtype::QuantizedS8{1.3f}}, | |||
| {{}, {}, dtype::QuantizedS32{1.2f * 1.3f}}, | |||
| {{}, {}, dtype::QuantizedS8{1.1f}}, | |||
| {{2, 4, 7, 7, 4}, | |||
| {1568, 196, 28, 4, 1}, | |||
| dtype::QuantizedS32{1.2f * 1.3f}}, | |||
| }); | |||
| } | |||
| } | |||
| TEST_F(CUDA, CONV_BIAS_FORWARD_BATCHED_MATMUL) { | |||
| @@ -939,6 +1005,17 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_BATCHED_MATMUL) { | |||
| checker.set_param(arg.param); | |||
| checker.execs({arg.src, arg.filter, arg.bias, {}, {}}); | |||
| } | |||
| //! noncontiguous case | |||
| { | |||
| param::ConvBias param; | |||
| checker.set_param(param).execl(TensorLayoutArray{ | |||
| {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, | |||
| {{16, 16, 1, 1}, {16, 1, 1, 1}, dtype::Float32()}, | |||
| {{}, {}, dtype::Float32()}, | |||
| {{}, {}, dtype::Float32()}, | |||
| {{2, 16, 7, 7}, {784, 49, 7, 1}, dtype::Float32()}, | |||
| }); | |||
| } | |||
| } | |||
| TEST_F(CUDA, CONV_BIAS_FORWARD_GROUP) { | |||