| @@ -14,6 +14,7 @@ | |||
| #include <functional> | |||
| #include <string> | |||
| #include <tuple> | |||
| #include "megdnn/oprs/base.h" | |||
| #include "src/common/utils.h" | |||
| @@ -83,6 +84,29 @@ public: | |||
| } | |||
| }; | |||
| template <std::size_t I = 0, typename Opr, typename... Tp> | |||
| inline typename std::enable_if<I == sizeof...(Tp), void>::type | |||
| set_sub_execution_policy(const Opr*, std::tuple<Tp...>&) {} | |||
| template <std::size_t I = 0, typename Opr, typename... Tp> | |||
| inline typename std::enable_if < | |||
| I<sizeof...(Tp), void>::type set_sub_execution_policy( | |||
| const Opr* opr, std::tuple<Tp...>& t) { | |||
| std::get<I>(t)->execution_policy() = opr->execution_policy().sub_policy[I]; | |||
| set_sub_execution_policy<I + 1, Tp...>(opr, t); | |||
| } | |||
| template <typename Opr, typename... SubOpr> | |||
| void set_execution_policy(const Opr* opr, SubOpr... sub_oprs) { | |||
| if (opr->execution_policy().algo.valid() && | |||
| !opr->execution_policy().sub_policy.empty()) { | |||
| megdnn_assert(opr->execution_policy().sub_policy.size() == | |||
| sizeof...(sub_oprs)); | |||
| auto&& sub = std::make_tuple(sub_oprs...); | |||
| set_sub_execution_policy<sizeof...(sub_oprs), Opr, SubOpr...>(opr, sub); | |||
| } | |||
| } | |||
| } // namespace megdnn | |||
| namespace std { | |||
| @@ -8,9 +8,12 @@ | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| */ | |||
| #include <algorithm> | |||
| #include <memory> | |||
| #include "./algo.h" | |||
| #include "megdnn/opr_param_defs.h" | |||
| #include "src/common/algo_chooser.h" | |||
| #include "src/common/algo_base.h" | |||
| #include "src/cuda/handle.h" | |||
| #include "src/cuda/utils.h" | |||
| @@ -27,6 +30,20 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config( | |||
| return {{mm_layout_a, mm_layout_b, mm_layout_c}, opr->param()}; | |||
| } | |||
| std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr( | |||
| const BatchedMatrixMulForwardImpl::AlgoBase::SizeArgs& args) { | |||
| auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
| set_execution_policy<BatchedMatrixMulForward, MatrixMulForward*>( | |||
| args.opr, matmul_opr.get()); | |||
| auto&& config = sub_opr_config(args.layout_a, args.layout_b, args.layout_c, | |||
| args.opr); | |||
| matmul_opr->param() = config.second; | |||
| return {config.first, std::move(matmul_opr)}; | |||
| } | |||
| } // namespace | |||
| std::vector<Algorithm::SearchItem> | |||
| @@ -43,51 +60,23 @@ BatchedMatrixMulForwardImpl::AlgoBruteForce::get_subopr_list( | |||
| bool BatchedMatrixMulForwardImpl::AlgoBruteForce::is_available( | |||
| const SizeArgs& args) const { | |||
| auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid() && | |||
| !args.opr->execution_policy().sub_policy.empty()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| matmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto config = prepare_sub_opr(args); | |||
| auto&& config = sub_opr_config(args.layout_a, args.layout_b, args.layout_c, | |||
| args.opr); | |||
| matmul_opr->param() = config.second; | |||
| return get_algorithm(static_cast<MatrixMulForwardImpl*>(matmul_opr.get()), | |||
| config.first[0], config.first[1], config.first[2]); | |||
| return get_algorithm( | |||
| static_cast<MatrixMulForwardImpl*>(config.second.get()), | |||
| config.first[0], config.first[1], config.first[2]); | |||
| } | |||
| size_t BatchedMatrixMulForwardImpl::AlgoBruteForce::get_workspace_in_bytes( | |||
| const SizeArgs& args) const { | |||
| auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid() && | |||
| !args.opr->execution_policy().sub_policy.empty()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| matmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = sub_opr_config(args.layout_a, args.layout_b, args.layout_c, | |||
| args.opr); | |||
| matmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| return matmul_opr->get_workspace_in_bytes(config.first[0], config.first[1], | |||
| config.first[2]); | |||
| return config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2]); | |||
| } | |||
| void BatchedMatrixMulForwardImpl::AlgoBruteForce::exec( | |||
| const ExecArgs& args) const { | |||
| auto N = args.layout_a.shape[0]; | |||
| auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| matmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = sub_opr_config(args.layout_a, args.layout_b, args.layout_c, | |||
| args.opr); | |||
| matmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| rep(n, N) { | |||
| TensorND A_, B_, C_; | |||
| @@ -100,6 +89,6 @@ void BatchedMatrixMulForwardImpl::AlgoBruteForce::exec( | |||
| tensor_n_from_batch(args.tensor_a, A_); | |||
| tensor_n_from_batch(args.tensor_b, B_); | |||
| tensor_n_from_batch(args.tensor_c, C_); | |||
| matmul_opr->exec(A_, B_, C_, args.workspace); | |||
| config.second->exec(A_, B_, C_, args.workspace); | |||
| } | |||
| } | |||
| @@ -11,6 +11,7 @@ | |||
| */ | |||
| #include "src/common/algo_chooser.h" | |||
| #include "src/common/algo_base.h" | |||
| #include "src/common/conv_bias.h" | |||
| #include "src/cuda/batched_matrix_mul/algo.h" | |||
| #include "src/cuda/conv_bias/algo.h" | |||
| @@ -51,6 +52,19 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config( | |||
| return {{A, B, C}, param}; | |||
| } | |||
| std::pair<TensorLayoutArray, std::unique_ptr<BatchedMatrixMulForward>> | |||
| prepare_sub_opr(const ConvBiasForwardImpl::AlgoBase::SizeArgs& args) { | |||
| auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
| set_execution_policy<ConvBiasForward, BatchedMatrixMulForward*>( | |||
| args.opr, bmatmul_opr.get()); | |||
| auto&& config = | |||
| sub_opr_config(args.filter_meta, *args.src_layout, | |||
| *args.filter_layout, *args.dst_layout, args.opr); | |||
| bmatmul_opr->param() = config.second; | |||
| return {config.first, std::move(bmatmul_opr)}; | |||
| } | |||
| } // namespace | |||
| std::vector<Algorithm::SearchItem> | |||
| @@ -74,18 +88,7 @@ bool ConvBiasForwardImpl::AlgoBatchedMatmul::is_available( | |||
| if (args.z_layout->ndim > 0) | |||
| return false; | |||
| auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid() && | |||
| !args.opr->execution_policy().sub_policy.empty()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| bmatmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = | |||
| sub_opr_config(args.filter_meta, *args.src_layout, | |||
| *args.filter_layout, *args.dst_layout, args.opr); | |||
| bmatmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| auto&& fm = args.filter_meta; | |||
| return fm.format == Param::Format::NCHW && | |||
| @@ -95,9 +98,9 @@ bool ConvBiasForwardImpl::AlgoBatchedMatmul::is_available( | |||
| fm.dilation[1] == 1 && fm.spatial[0] == 1 && fm.spatial[1] == 1 && | |||
| fm.padding[0] == 0 && fm.padding[1] == 0 && fm.stride[0] == 1 && | |||
| fm.stride[1] == 1 && | |||
| get_algorithm( | |||
| static_cast<BatchedMatrixMulForwardImpl*>(bmatmul_opr.get()), | |||
| config.first[0], config.first[1], config.first[2]); | |||
| get_algorithm(static_cast<BatchedMatrixMulForwardImpl*>( | |||
| config.second.get()), | |||
| config.first[0], config.first[1], config.first[2]); | |||
| } | |||
| WorkspaceBundle ConvBiasForwardImpl::AlgoBatchedMatmul::get_workspace_bundle( | |||
| @@ -115,21 +118,10 @@ WorkspaceBundle ConvBiasForwardImpl::AlgoBatchedMatmul::get_workspace_bundle( | |||
| SizeArgs conv_args = args; | |||
| conv_args.dst_layout = &dst_layout; | |||
| auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid() && | |||
| !args.opr->execution_policy().sub_policy.empty()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| bmatmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = | |||
| sub_opr_config(args.filter_meta, *args.src_layout, | |||
| *args.filter_layout, *args.dst_layout, args.opr); | |||
| bmatmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| sizes.insert(sizes.begin(), | |||
| args.handle->batched_matrix_mul()->get_workspace_in_bytes( | |||
| config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2])); | |||
| return {ptr, std::move(sizes)}; | |||
| } | |||
| @@ -154,23 +146,12 @@ void ConvBiasForwardImpl::AlgoBatchedMatmul::exec(const ExecArgs& args) const { | |||
| conv_args.dst_tensor = &conv_dst_tensor; | |||
| conv_args.dst_layout = &conv_dst_tensor.layout; | |||
| { | |||
| auto bmatmul_opr = | |||
| args.handle->create_operator<BatchedMatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| bmatmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = | |||
| sub_opr_config(args.filter_meta, *args.src_layout, | |||
| *args.filter_layout, *args.dst_layout, args.opr); | |||
| bmatmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| TensorND A{args.filter_tensor->raw_ptr, config.first[0]}, | |||
| B{args.src_tensor->raw_ptr, config.first[1]}, | |||
| C{args.dst_tensor->raw_ptr, config.first[2]}; | |||
| bmatmul_opr->exec(A, B, C, bundle.get_workspace(0)); | |||
| config.second->exec(A, B, C, bundle.get_workspace(0)); | |||
| } | |||
| handle_bias_and_nonlinear(args.handle, args.nonlinear_mode, | |||
| &conv_dst_tensor, args.dst_tensor, | |||
| @@ -14,6 +14,7 @@ | |||
| #include "src/cuda/handle.h" | |||
| #include "src/cuda/utils.cuh" | |||
| #include "src/cuda/utils.h" | |||
| #include "src/common/algo_base.h" | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| @@ -40,6 +41,18 @@ std::pair<TensorLayoutArray, ConvBiasForwardImpl::Param> sub_opr_config( | |||
| ret.second.compute_mode = ConvBiasForwardImpl::Param::ComputeMode::DEFAULT; | |||
| return ret; | |||
| } | |||
| std::pair<TensorLayoutArray, std::unique_ptr<ConvBiasForward>> prepare_sub_opr( | |||
| const ConvBiasForwardImpl::AlgoBase::SizeArgs& args) { | |||
| auto convbias_opr = args.handle->create_operator<ConvBias>(); | |||
| auto&& config = sub_opr_config( | |||
| {*args.src_layout, *args.filter_layout, *args.bias_layout, | |||
| *args.z_layout, *args.dst_layout}, | |||
| args.opr); | |||
| convbias_opr->param() = config.second; | |||
| return {config.first, std::move(convbias_opr)}; | |||
| } | |||
| } // namespace | |||
| std::vector<Algorithm::SearchItem> | |||
| @@ -55,33 +68,18 @@ ConvBiasForwardImpl::AlgoBFloat16::get_subopr_list( | |||
| bool ConvBiasForwardImpl::AlgoBFloat16::is_available( | |||
| const SizeArgs& args) const { | |||
| auto convbias_opr = args.handle->create_operator<ConvBias>(); | |||
| auto&& config = sub_opr_config( | |||
| {*args.src_layout, *args.filter_layout, *args.bias_layout, | |||
| *args.z_layout, *args.dst_layout}, | |||
| args.opr); | |||
| convbias_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| return args.src_layout->dtype == args.filter_layout->dtype && | |||
| args.src_layout->dtype == dtype::BFloat16() && | |||
| get_algorithm(static_cast<ConvBiasForwardImpl*>(convbias_opr.get()), | |||
| get_algorithm(static_cast<ConvBiasForwardImpl*>(config.second.get()), | |||
| config.first[0], config.first[1], config.first[2], | |||
| config.first[3], config.first[4]); | |||
| } | |||
| WorkspaceBundle ConvBiasForwardImpl::AlgoBFloat16::get_workspace_bundle( | |||
| void* ptr, const SizeArgs& args) const { | |||
| auto convbias_opr = args.handle->create_operator<ConvBias>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| convbias_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = sub_opr_config( | |||
| {*args.src_layout, *args.filter_layout, *args.bias_layout, | |||
| *args.z_layout, *args.dst_layout}, | |||
| args.opr); | |||
| convbias_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| SmallVector<size_t> sizes; | |||
| auto get_workspace = [&sizes](const TensorLayout& src, | |||
| @@ -95,7 +93,7 @@ WorkspaceBundle ConvBiasForwardImpl::AlgoBFloat16::get_workspace_bundle( | |||
| get_workspace(*args.bias_layout, config.first[2]); | |||
| get_workspace(*args.z_layout, config.first[3]); | |||
| get_workspace(*args.dst_layout, config.first[4]); | |||
| sizes.push_back(convbias_opr->get_workspace_in_bytes( | |||
| sizes.push_back(config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2], config.first[3], | |||
| config.first[4], nullptr)); | |||
| @@ -123,17 +121,10 @@ void ConvBiasForwardImpl::AlgoBFloat16::exec(const ExecArgs& args) const { | |||
| .src_to_comp_type(*args.dst_tensor, fdst_tensor); | |||
| } | |||
| { | |||
| auto convbias_opr = args.handle->create_operator<ConvBias>(); | |||
| convbias_opr->param() = args.opr->param(); | |||
| convbias_opr->param().compute_mode = Param::ComputeMode::DEFAULT; | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| convbias_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto config = prepare_sub_opr(args); | |||
| convbias_opr->exec(fsrc_tensor, ffilter_tensor, fbias_tensor, fz_tensor, | |||
| fdst_tensor, nullptr, cvter.workspace()); | |||
| config.second->exec(fsrc_tensor, ffilter_tensor, fbias_tensor, | |||
| fz_tensor, fdst_tensor, nullptr, cvter.workspace()); | |||
| } | |||
| { cvter.comp_to_dst_type(fdst_tensor, *args.dst_tensor); } | |||
| } | |||
| @@ -15,6 +15,7 @@ | |||
| #include "src/cuda/conv_bias/helper.h" | |||
| #include "src/cuda/conv_bias/matmul/im2col.cuh" | |||
| #include "src/cuda/utils.h" | |||
| #include "src/common/algo_base.h" | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| @@ -40,6 +41,19 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config( | |||
| return {{Al, Bl, Cl}, param}; | |||
| } | |||
| std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr( | |||
| const ConvBiasForwardImpl::AlgoBase::SizeArgs& args) { | |||
| auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
| set_execution_policy<ConvBiasForward, MatrixMulForward*>(args.opr, | |||
| matmul_opr.get()); | |||
| auto&& config = | |||
| sub_opr_config(args.filter_meta, *args.src_layout, | |||
| *args.filter_layout, *args.dst_layout, args.opr); | |||
| matmul_opr->param() = config.second; | |||
| return {config.first, std::move(matmul_opr)}; | |||
| } | |||
| } // namespace | |||
| std::vector<Algorithm::SearchItem> | |||
| @@ -87,19 +101,8 @@ WorkspaceBundle ConvBiasForwardImpl::AlgoMatmul::get_workspace_bundle( | |||
| conv_args.dst_layout = &dst_layout; | |||
| SmallVector<size_t> matmul_sizes = matmul_get_workspace_bundle(conv_args); | |||
| auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid() && | |||
| !args.opr->execution_policy().sub_policy.empty()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| matmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = | |||
| sub_opr_config(args.filter_meta, *args.src_layout, | |||
| *args.filter_layout, *args.dst_layout, args.opr); | |||
| matmul_opr->param() = config.second; | |||
| size_t mm_ws = matmul_opr->get_workspace_in_bytes( | |||
| auto config = prepare_sub_opr(args); | |||
| size_t mm_ws = config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2]); | |||
| matmul_sizes.push_back(mm_ws); | |||
| @@ -162,17 +165,7 @@ void ConvBiasForwardImpl::AlgoMatmul::exec_internal( | |||
| args.src_layout->stride[0], IC, IH, IW, FH, FW, OH, OW, | |||
| PH, PW, SH, SW, DH, DW, stream); | |||
| auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| matmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = | |||
| sub_opr_config(args.filter_meta, *args.src_layout, | |||
| *args.filter_layout, *args.dst_layout, args.opr); | |||
| matmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| TensorND A(args.filter_tensor->ptr<T>(), config.first[0]), | |||
| B(col, config.first[1]), C(dst_t, config.first[2]); | |||
| @@ -182,7 +175,7 @@ void ConvBiasForwardImpl::AlgoMatmul::exec_internal( | |||
| matmul_ws_idx = 3; | |||
| } | |||
| matmul_opr->exec(A, B, C, bundle.get_workspace(matmul_ws_idx)); | |||
| config.second->exec(A, B, C, bundle.get_workspace(matmul_ws_idx)); | |||
| TensorLayout C2l({OC * OH * OW, N}, typename DTypeTrait<T>::dtype()), | |||
| C3l = C2l; | |||
| @@ -10,6 +10,7 @@ | |||
| */ | |||
| #include "./algo.h" | |||
| #include "src/common/algo_base.h" | |||
| #include "src/cuda/convolution/chanwise/kern.cuh" | |||
| #include "src/cuda/utils.h" | |||
| @@ -38,7 +39,19 @@ std::pair<TensorLayoutArray, ConvolutionBackwardDataImpl::Param> sub_opr_config( | |||
| ConvolutionBackwardData::Param::ComputeMode::DEFAULT; | |||
| return ret; | |||
| } | |||
| std::pair<TensorLayoutArray, std::unique_ptr<ConvolutionBackwardData>> | |||
| prepare_sub_opr(const ConvolutionBackwardDataImpl::AlgoBase::SizeArgs& args) { | |||
| auto conv_back_data_opr = | |||
| args.handle->create_operator<ConvolutionBackwardData>(); | |||
| auto&& config = sub_opr_config( | |||
| {*args.filter_layout, *args.diff_layout, *args.grad_layout}, | |||
| args.opr); | |||
| conv_back_data_opr->param() = config.second; | |||
| return {config.first, std::move(conv_back_data_opr)}; | |||
| } | |||
| } // namespace | |||
| std::vector<Algorithm::SearchItem> | |||
| ConvolutionBackwardDataImpl::AlgoBFloat16::get_subopr_list( | |||
| @@ -54,33 +67,17 @@ ConvolutionBackwardDataImpl::AlgoBFloat16::get_subopr_list( | |||
| bool ConvolutionBackwardDataImpl::AlgoBFloat16::is_available( | |||
| const SizeArgs& args) const { | |||
| TensorLayout ffilter, fdiff, fgrad; | |||
| auto conv_back_data_opr = | |||
| args.handle->create_operator<ConvolutionBackwardData>(); | |||
| auto&& config = sub_opr_config( | |||
| {*args.filter_layout, *args.diff_layout, *args.grad_layout}, | |||
| args.opr); | |||
| conv_back_data_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| return args.diff_layout->dtype == args.filter_layout->dtype && | |||
| args.diff_layout->dtype == dtype::BFloat16() && | |||
| get_algorithm(static_cast<ConvolutionBackwardDataImpl*>( | |||
| conv_back_data_opr.get()), | |||
| config.second.get()), | |||
| config.first[0], config.first[1], config.first[2]); | |||
| } | |||
| WorkspaceBundle ConvolutionBackwardDataImpl::AlgoBFloat16::get_workspace_bundle( | |||
| void* ptr, const SizeArgs& args) const { | |||
| auto conv_back_data_opr = | |||
| args.handle->create_operator<ConvolutionBackwardData>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| conv_back_data_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = sub_opr_config( | |||
| {*args.filter_layout, *args.diff_layout, *args.grad_layout}, | |||
| args.opr); | |||
| conv_back_data_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| SmallVector<size_t> sizes; | |||
| auto get_workspace = [&sizes](const TensorLayout& src, | |||
| const TensorLayout& dst) { | |||
| @@ -92,7 +89,7 @@ WorkspaceBundle ConvolutionBackwardDataImpl::AlgoBFloat16::get_workspace_bundle( | |||
| get_workspace(*args.diff_layout, config.first[1]); | |||
| get_workspace(*args.grad_layout, config.first[2]); | |||
| sizes.push_back(conv_back_data_opr->get_workspace_in_bytes( | |||
| sizes.push_back(config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2])); | |||
| return {ptr, std::move(sizes)}; | |||
| } | |||
| @@ -115,17 +112,9 @@ void ConvolutionBackwardDataImpl::AlgoBFloat16::exec( | |||
| .src_to_comp_type(*args.grad_tensor, fgrad_tensor); | |||
| } | |||
| { | |||
| auto conv_back_data_opr = | |||
| args.handle->create_operator<ConvolutionBackwardData>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| conv_back_data_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| conv_back_data_opr->param() = args.opr->param(); | |||
| conv_back_data_opr->param().compute_mode = Param::ComputeMode::DEFAULT; | |||
| conv_back_data_opr->exec(ffilter_tensor, fdiff_tensor, fgrad_tensor, | |||
| cvter.workspace()); | |||
| auto config = prepare_sub_opr(args); | |||
| config.second->exec(ffilter_tensor, fdiff_tensor, fgrad_tensor, | |||
| cvter.workspace()); | |||
| } | |||
| { cvter.comp_to_dst_type(fgrad_tensor, *args.grad_tensor); } | |||
| } | |||
| @@ -11,6 +11,7 @@ | |||
| */ | |||
| #include "./algo.h" | |||
| #include "src/common/algo_base.h" | |||
| #include "src/cuda/convolution/helper.h" | |||
| #include "src/cuda/convolution/im2col.cuh" | |||
| #include "src/cuda/matrix_mul/opr_impl.h" | |||
| @@ -43,6 +44,19 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config( | |||
| param.transposeA = true; | |||
| return {{Al, Cl, Bl}, param}; | |||
| } | |||
| std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr( | |||
| const ConvolutionBackwardDataImpl::AlgoBase::SizeArgs& args) { | |||
| auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
| set_execution_policy<ConvolutionBackwardData, MatrixMulForward*>( | |||
| args.opr, matmul_opr.get()); | |||
| auto&& config = | |||
| sub_opr_config(args.filter_meta, *args.filter_layout, | |||
| *args.diff_layout, *args.grad_layout, args.opr); | |||
| matmul_opr->param() = config.second; | |||
| return {config.first, std::move(matmul_opr)}; | |||
| } | |||
| } // namespace | |||
| std::vector<Algorithm::SearchItem> | |||
| @@ -57,8 +71,7 @@ ConvolutionBackwardDataImpl::AlgoMatmul::get_subopr_list( | |||
| std::string param_str; | |||
| Algorithm::serialize_write_pod(config.second, param_str); | |||
| return {{Algorithm::OprType::MATRIX_MUL_FORWARD, param_str, | |||
| config.first}}; | |||
| return {{Algorithm::OprType::MATRIX_MUL_FORWARD, param_str, config.first}}; | |||
| } | |||
| bool ConvolutionBackwardDataImpl::AlgoMatmul::is_available( | |||
| @@ -75,22 +88,10 @@ bool ConvolutionBackwardDataImpl::AlgoMatmul::is_available( | |||
| size_t ConvolutionBackwardDataImpl::AlgoMatmul::get_workspace_in_bytes( | |||
| const SizeArgs& args) const { | |||
| auto matmul_opr = | |||
| args.handle->create_operator<MatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid() && | |||
| !args.opr->execution_policy().sub_policy.empty()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| matmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = | |||
| sub_opr_config(args.filter_meta, *args.filter_layout, | |||
| *args.diff_layout, *args.grad_layout, args.opr); | |||
| matmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| auto&& sizes = matmul_get_workspace_bundle(args.as_fwd_args()); | |||
| sizes.push_back(matmul_opr->get_workspace_in_bytes( | |||
| sizes.push_back(config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2])); | |||
| return WorkspaceBundle(nullptr, sizes).total_size_in_bytes(); | |||
| } | |||
| @@ -121,19 +122,10 @@ void ConvolutionBackwardDataImpl::AlgoMatmul::exec_internal( | |||
| DW = fm.dilation[1]; | |||
| auto stream = cuda_stream(args.handle); | |||
| auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| matmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = | |||
| sub_opr_config(args.filter_meta, *args.filter_layout, | |||
| *args.diff_layout, *args.grad_layout, args.opr); | |||
| matmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| auto&& sizes = matmul_get_workspace_bundle(args.as_fwd_args()); | |||
| sizes.push_back(matmul_opr->get_workspace_in_bytes( | |||
| sizes.push_back(config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2])); | |||
| auto wbundle = WorkspaceBundle(args.workspace.raw_ptr, sizes); | |||
| @@ -159,9 +151,9 @@ void ConvolutionBackwardDataImpl::AlgoMatmul::exec_internal( | |||
| if (fm.should_flip) { | |||
| convolution::flip_filter(args.as_fwd_args(), | |||
| wbundle.get_workspace(2), A.raw_ptr); | |||
| matmul_opr->exec(A, C, B, wbundle.get_workspace(3)); | |||
| config.second->exec(A, C, B, wbundle.get_workspace(3)); | |||
| } else { | |||
| matmul_opr->exec(A, C, B, wbundle.get_workspace(2)); | |||
| config.second->exec(A, C, B, wbundle.get_workspace(2)); | |||
| } | |||
| } | |||
| { | |||
| @@ -11,6 +11,7 @@ | |||
| */ | |||
| #include "./algo.h" | |||
| #include "src/common/algo_base.h" | |||
| #include "src/cuda/convolution/chanwise/kern.cuh" | |||
| #include "src/cuda/utils.h" | |||
| @@ -39,6 +40,18 @@ sub_opr_config(const TensorLayoutArray& layouts, | |||
| ConvolutionBackwardFilter::Param::ComputeMode::DEFAULT; | |||
| return ret; | |||
| } | |||
| std::pair<TensorLayoutArray, std::unique_ptr<ConvolutionBackwardFilter>> | |||
| prepare_sub_opr(const ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs& args) { | |||
| auto conv_back_filter_opr = | |||
| args.handle->create_operator<ConvolutionBackwardFilter>(); | |||
| auto&& config = sub_opr_config( | |||
| {*args.src_layout, *args.diff_layout, *args.grad_layout}, args.opr); | |||
| conv_back_filter_opr->param() = config.second; | |||
| return {config.first, std::move(conv_back_filter_opr)}; | |||
| } | |||
| } // namespace | |||
| std::vector<Algorithm::SearchItem> | |||
| @@ -55,36 +68,18 @@ ConvolutionBackwardFilterImpl::AlgoBFloat16::get_subopr_list( | |||
| bool ConvolutionBackwardFilterImpl::AlgoBFloat16::is_available( | |||
| const SizeArgs& args) const { | |||
| TensorLayout fsrc, fdiff, fgrad; | |||
| auto conv_back_filter_opr = | |||
| args.handle->create_operator<ConvolutionBackwardFilter>(); | |||
| auto&& config = sub_opr_config( | |||
| {*args.src_layout, *args.diff_layout, *args.grad_layout}, | |||
| args.opr); | |||
| conv_back_filter_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| return args.src_layout->dtype == args.diff_layout->dtype && | |||
| args.src_layout->dtype == dtype::BFloat16() && | |||
| get_algorithm(static_cast<ConvolutionBackwardFilterImpl*>( | |||
| conv_back_filter_opr.get()), | |||
| config.second.get()), | |||
| config.first[0], config.first[1], config.first[2]); | |||
| } | |||
| WorkspaceBundle | |||
| ConvolutionBackwardFilterImpl::AlgoBFloat16::get_workspace_bundle( | |||
| void* ptr, const SizeArgs& args) const { | |||
| auto conv_back_filter_opr = | |||
| args.handle->create_operator<ConvolutionBackwardFilter>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| conv_back_filter_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = sub_opr_config( | |||
| {*args.src_layout, *args.diff_layout, *args.grad_layout}, | |||
| args.opr); | |||
| conv_back_filter_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| SmallVector<size_t> sizes; | |||
| auto get_workspace = [&sizes](const TensorLayout& src, | |||
| const TensorLayout& dst) { | |||
| @@ -96,7 +91,7 @@ ConvolutionBackwardFilterImpl::AlgoBFloat16::get_workspace_bundle( | |||
| get_workspace(*args.src_layout, config.first[0]); | |||
| get_workspace(*args.diff_layout, config.first[1]); | |||
| get_workspace(*args.grad_layout, config.first[2]); | |||
| sizes.push_back(conv_back_filter_opr->get_workspace_in_bytes( | |||
| sizes.push_back(config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2])); | |||
| auto ret = WorkspaceBundle{ptr, std::move(sizes)}; | |||
| return ret; | |||
| @@ -120,19 +115,9 @@ void ConvolutionBackwardFilterImpl::AlgoBFloat16::exec( | |||
| .src_to_comp_type(*args.grad_tensor, fgrad_tensor); | |||
| } | |||
| { | |||
| auto conv_back_filter_opr = | |||
| args.handle->create_operator<ConvolutionBackwardFilter>(); | |||
| conv_back_filter_opr->param() = args.opr->param(); | |||
| conv_back_filter_opr->param().compute_mode = | |||
| Param::ComputeMode::DEFAULT; | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| conv_back_filter_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| conv_back_filter_opr->exec(fsrc_tensor, fdiff_tensor, fgrad_tensor, | |||
| cvter.workspace()); | |||
| auto config = prepare_sub_opr(args); | |||
| config.second->exec(fsrc_tensor, fdiff_tensor, fgrad_tensor, | |||
| cvter.workspace()); | |||
| } | |||
| { cvter.comp_to_dst_type(fgrad_tensor, *args.grad_tensor); } | |||
| } | |||
| @@ -11,6 +11,7 @@ | |||
| */ | |||
| #include "./algo.h" | |||
| #include "src/common/algo_base.h" | |||
| #include "src/cuda/convolution/helper.h" | |||
| #include "src/cuda/convolution/im2col.cuh" | |||
| #include "src/cuda/utils.h" | |||
| @@ -42,6 +43,20 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config( | |||
| param.transposeB = true; | |||
| return {{Cl, Bl, Al}, param}; | |||
| } | |||
| std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr( | |||
| const ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs& args) { | |||
| auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
| set_execution_policy<ConvolutionBackwardFilter, MatrixMulForward*>( | |||
| args.opr, matmul_opr.get()); | |||
| auto&& config = | |||
| sub_opr_config(args.grad_filter_meta, *args.src_layout, | |||
| *args.diff_layout, *args.grad_layout, args.opr); | |||
| matmul_opr->param() = config.second; | |||
| return {config.first, std::move(matmul_opr)}; | |||
| } | |||
| } // namespace | |||
| std::vector<Algorithm::SearchItem> | |||
| @@ -56,11 +71,9 @@ ConvolutionBackwardFilterImpl::AlgoMatmul::get_subopr_list( | |||
| std::string param_str; | |||
| Algorithm::serialize_write_pod(config.second, param_str); | |||
| return {{Algorithm::OprType::MATRIX_MUL_FORWARD, param_str, | |||
| config.first}}; | |||
| return {{Algorithm::OprType::MATRIX_MUL_FORWARD, param_str, config.first}}; | |||
| } | |||
| bool ConvolutionBackwardFilterImpl::AlgoMatmul::is_available( | |||
| const SizeArgs& args) const { | |||
| if (args.src_layout->dtype == args.diff_layout->dtype && | |||
| @@ -75,21 +88,10 @@ bool ConvolutionBackwardFilterImpl::AlgoMatmul::is_available( | |||
| size_t ConvolutionBackwardFilterImpl::AlgoMatmul::get_workspace_in_bytes( | |||
| const SizeArgs& args) const { | |||
| auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid() && | |||
| !args.opr->execution_policy().sub_policy.empty()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| matmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = | |||
| sub_opr_config(args.grad_filter_meta, *args.src_layout, | |||
| *args.diff_layout, *args.grad_layout, args.opr); | |||
| matmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| auto&& sizes = matmul_get_workspace_bundle(args.as_fwd_args()); | |||
| sizes.push_back(matmul_opr->get_workspace_in_bytes( | |||
| sizes.push_back(config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2])); | |||
| return WorkspaceBundle(nullptr, sizes).total_size_in_bytes(); | |||
| } | |||
| @@ -121,19 +123,10 @@ void ConvolutionBackwardFilterImpl::AlgoMatmul::exec_internal( | |||
| DW = fm.dilation[1]; | |||
| auto stream = cuda_stream(args.handle); | |||
| auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| matmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = | |||
| sub_opr_config(args.grad_filter_meta, *args.src_layout, | |||
| *args.diff_layout, *args.grad_layout, args.opr); | |||
| matmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| auto&& sizes = matmul_get_workspace_bundle(args.as_fwd_args()); | |||
| sizes.push_back(matmul_opr->get_workspace_in_bytes( | |||
| sizes.push_back(config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2])); | |||
| auto wbundle = WorkspaceBundle(args.workspace.raw_ptr, sizes); | |||
| @@ -164,14 +157,14 @@ void ConvolutionBackwardFilterImpl::AlgoMatmul::exec_internal( | |||
| TensorND A(args.grad_tensor->ptr<T>(), Al), B(col, Bl), C(diff_t, Cl); | |||
| if (fm.should_flip) { | |||
| A.raw_ptr = wbundle.get(2); | |||
| matmul_opr->exec(C, B, A, wbundle.get_workspace(3)); | |||
| config.second->exec(C, B, A, wbundle.get_workspace(3)); | |||
| convolution::flip_filter( | |||
| args.as_fwd_args(), | |||
| {static_cast<dt_byte*>(args.grad_tensor->raw_ptr), | |||
| wbundle.get_size(2)}, | |||
| A.raw_ptr); | |||
| } else { | |||
| matmul_opr->exec(C, B, A, wbundle.get_workspace(2)); | |||
| config.second->exec(C, B, A, wbundle.get_workspace(2)); | |||
| } | |||
| } | |||
| } | |||
| @@ -65,6 +65,20 @@ std::pair<TensorLayoutArray, ConvBiasForward::Param> sub_opr_config( | |||
| return ret; | |||
| } | |||
| std::pair<TensorLayoutArray, std::unique_ptr<ConvBiasForward>> prepare_sub_opr( | |||
| const ConvolutionForwardImpl::AlgoBase::SizeArgs& args) { | |||
| auto conv_bias_opr = args.opr->handle()->create_operator<ConvBiasForward>(); | |||
| set_execution_policy<ConvolutionForward, ConvBiasForward*>( | |||
| args.opr, conv_bias_opr.get()); | |||
| auto&& config = sub_opr_config( | |||
| *args.layout_src, *args.layout_filter, *args.layout_dst, | |||
| args.opr); | |||
| conv_bias_opr->param() = config.second; | |||
| return {config.first, std::move(conv_bias_opr)}; | |||
| } | |||
| } // namespace | |||
| ConvolutionForwardImpl::AlgoPack::AlgoPack() { | |||
| @@ -121,13 +135,8 @@ ConvolutionForwardImpl::AlgoDefault::get_subopr_list( | |||
| bool ConvolutionForwardImpl::AlgoDefault::is_available( | |||
| const SizeArgs& args) const { | |||
| auto conv_bias_opr = | |||
| args.opr->handle()->create_operator<ConvBiasForward>(); | |||
| auto&& config = sub_opr_config( | |||
| *args.layout_src, *args.layout_filter, *args.layout_dst, | |||
| args.opr); | |||
| conv_bias_opr->param() = config.second; | |||
| return get_algorithm(static_cast<ConvBiasForwardImpl*>(conv_bias_opr.get()), | |||
| auto config = prepare_sub_opr(args); | |||
| return get_algorithm(static_cast<ConvBiasForwardImpl*>(config.second.get()), | |||
| *args.layout_src, *args.layout_filter, config.first[0], | |||
| config.first[1], *args.layout_dst); | |||
| } | |||
| @@ -135,36 +144,15 @@ bool ConvolutionForwardImpl::AlgoDefault::is_available( | |||
| size_t ConvolutionForwardImpl::AlgoDefault::get_workspace_in_bytes( | |||
| const SizeArgs& args) const { | |||
| auto conv_bias_opr = args.opr->handle()->create_operator<ConvBiasForward>(); | |||
| if (args.opr->execution_policy().algo.valid() && | |||
| !args.opr->execution_policy().sub_policy.empty()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| conv_bias_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = sub_opr_config( | |||
| *args.layout_src, *args.layout_filter, *args.layout_dst, | |||
| args.opr); | |||
| conv_bias_opr->param() = config.second; | |||
| return conv_bias_opr->get_workspace_in_bytes( | |||
| auto config = prepare_sub_opr(args); | |||
| return config.second->get_workspace_in_bytes( | |||
| *args.layout_src, *args.layout_filter, config.first[0], | |||
| config.first[1], *args.layout_dst, nullptr); | |||
| } | |||
| void ConvolutionForwardImpl::AlgoDefault::exec(const ExecArgs& args) const { | |||
| auto conv_bias_opr = args.opr->handle()->create_operator<ConvBiasForward>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| conv_bias_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = sub_opr_config( | |||
| *args.layout_src, *args.layout_filter, *args.layout_dst, | |||
| args.opr); | |||
| conv_bias_opr->param() = config.second; | |||
| conv_bias_opr->exec(args.tensor_src, args.tensor_filter, | |||
| auto config = prepare_sub_opr(args); | |||
| config.second->exec(args.tensor_src, args.tensor_filter, | |||
| {nullptr, config.first[0]}, {nullptr, config.first[1]}, | |||
| args.tensor_dst, nullptr, args.workspace); | |||
| } | |||
| @@ -14,6 +14,7 @@ | |||
| #include "src/cuda/deformable_conv/bwd_data/algo.h" | |||
| #include "src/cuda/deformable_conv/kimpl/deformable_conv.cuh" | |||
| #include "src/cuda/deformable_conv/opr_impl.h" | |||
| #include "src/common/algo_base.h" | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| @@ -79,15 +80,28 @@ std::pair<TensorLayoutArray, BatchedMatrixMulForward::Param> sub_opr_config( | |||
| return {{al, bl, cl}, param}; | |||
| } | |||
| std::pair<TensorLayoutArray, std::unique_ptr<BatchedMatrixMulForward>> | |||
| prepare_sub_opr( | |||
| const DeformableConvBackwardDataImpl::AlgoBase::SizeArgs& args) { | |||
| auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
| set_execution_policy<DeformableConvBackwardData, BatchedMatrixMulForward*>( | |||
| args.opr, bmatmul_opr.get()); | |||
| auto&& config = sub_opr_config(args.filter_meta, args.im_layout, | |||
| args.out_grad_layout); | |||
| bmatmul_opr->param() = config.second; | |||
| return {config.first, std::move(bmatmul_opr)}; | |||
| } | |||
| }; // anonymous namespace | |||
| std::vector<Algorithm::SearchItem> | |||
| Algo::get_subopr_list( | |||
| std::vector<Algorithm::SearchItem> Algo::get_subopr_list( | |||
| const TensorLayoutArray& layouts, const OperatorBase* opr) const { | |||
| const DeformableConvBackwardDataImpl* deformable_conv = | |||
| static_cast<const DeformableConvBackwardDataImpl*>(opr); | |||
| CanonizedFilterMeta fm = deformable_conv->make_canonized_filter_meta( | |||
| layouts[0].ndim, layouts[1], layouts[2]); | |||
| layouts[0].ndim, layouts[1], layouts[2]); | |||
| auto&& config = sub_opr_config(fm, layouts[0], layouts[4]); | |||
| std::string param_str; | |||
| @@ -106,19 +120,9 @@ WorkspaceBundle Algo::get_bundle(const SizeArgs& args) { | |||
| OC = args.out_grad_layout[1], OH = args.out_grad_layout[2], | |||
| OW = args.out_grad_layout[3], FH = fm.spatial[0], FW = fm.spatial[1]; | |||
| auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid() && | |||
| !args.opr->execution_policy().sub_policy.empty()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| bmatmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = sub_opr_config(args.filter_meta, args.im_layout, | |||
| args.out_grad_layout); | |||
| bmatmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| size_t bmm_ws = bmatmul_opr->get_workspace_in_bytes( | |||
| size_t bmm_ws = config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2]); | |||
| size_t result_ws = batch_sz * IC * FH * FW * OH * OW * sizeof(float); | |||
| size_t relayout_ws1 = batch_sz * OC * OH * OW * sizeof(float); | |||
| @@ -183,24 +187,14 @@ void Algo::exec(const ExecArgs& args) const { | |||
| // matmul [g, icpg, FH, FW, ocpg] * [g, ocpg, N, OH, OW] => | |||
| // => [g, icpg, FH, FW, N, OH, OW] | |||
| { | |||
| auto bmatmul_opr = | |||
| args.handle->create_operator<BatchedMatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| bmatmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = sub_opr_config(args.filter_meta, args.im_layout, | |||
| args.out_grad_layout); | |||
| bmatmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| TensorND A(static_cast<void*>(dev_filter), config.first[0]), | |||
| B(static_cast<void*>(relayout_ws1), config.first[1]), | |||
| C(static_cast<void*>(result_ws), config.first[2]); | |||
| size_t bmm_ws_size = bundle.get_size(0); | |||
| bmatmul_opr->exec( | |||
| config.second->exec( | |||
| A, B, C, | |||
| Workspace(static_cast<megdnn::dt_byte*>(bmm_ws), bmm_ws_size)); | |||
| } | |||
| @@ -15,6 +15,7 @@ | |||
| #include "src/cuda/deformable_conv/bwd_flt/algo.h" | |||
| #include "src/cuda/deformable_conv/kimpl/deformable_conv.cuh" | |||
| #include "src/cuda/deformable_conv/opr_impl.h" | |||
| #include "src/common/algo_base.h" | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| @@ -79,10 +80,23 @@ std::pair<TensorLayoutArray, BatchedMatrixMulForward::Param> sub_opr_config( | |||
| return {{al, bl, cl}, param}; | |||
| } | |||
| std::pair<TensorLayoutArray, std::unique_ptr<BatchedMatrixMulForward>> | |||
| prepare_sub_opr( | |||
| const DeformableConvBackwardFilterImpl::AlgoBase::SizeArgs& args) { | |||
| auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
| set_execution_policy<DeformableConvBackwardFilter, | |||
| BatchedMatrixMulForward*>(args.opr, bmatmul_opr.get()); | |||
| auto&& config = sub_opr_config(args.filter_grad_meta, args.im_layout, | |||
| args.out_grad_layout); | |||
| bmatmul_opr->param() = config.second; | |||
| return {config.first, std::move(bmatmul_opr)}; | |||
| } | |||
| }; // anonymous namespace | |||
| std::vector<Algorithm::SearchItem> | |||
| Algo::get_subopr_list( | |||
| std::vector<Algorithm::SearchItem> Algo::get_subopr_list( | |||
| const TensorLayoutArray& layouts, const OperatorBase* opr) const { | |||
| const DeformableConvBackwardFilterImpl* deformable_conv = | |||
| static_cast<const DeformableConvBackwardFilterImpl*>(opr); | |||
| @@ -107,21 +121,11 @@ WorkspaceBundle Algo::get_bundle(const SizeArgs& args) { | |||
| size_t IC = fm.group * fm.icpg, OC = args.out_grad_layout[1]; | |||
| auto batch_sz = args.im_layout[0]; | |||
| auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid() && | |||
| !args.opr->execution_policy().sub_policy.empty()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| bmatmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = sub_opr_config(args.filter_grad_meta, args.im_layout, | |||
| args.out_grad_layout); | |||
| bmatmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| size_t col_ws = batch_sz * IC * FH * FW * OH * OW * sizeof(float); | |||
| size_t out_grad_ws = batch_sz * OC * OH * OW * sizeof(float); | |||
| size_t bmm_ws = bmatmul_opr->get_workspace_in_bytes( | |||
| size_t bmm_ws = config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2]); | |||
| return {nullptr, {col_ws, out_grad_ws, bmm_ws}}; | |||
| @@ -166,23 +170,14 @@ void Algo::exec(const ExecArgs& args) const { | |||
| args.handle->relayout_opr()->exec(C2, C3); | |||
| // matmul | |||
| auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| bmatmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = sub_opr_config(args.filter_grad_meta, args.im_layout, | |||
| args.out_grad_layout); | |||
| bmatmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| TensorND A(static_cast<void*>(out_grad_ws), config.first[0]), | |||
| B(static_cast<void*>(col_ws), config.first[1]), | |||
| C(static_cast<void*>(dev_filter_grad), config.first[2]); | |||
| size_t bmm_ws_size = bundle.get_size(2); | |||
| bmatmul_opr->exec( | |||
| config.second->exec( | |||
| A, B, C, | |||
| Workspace(static_cast<megdnn::dt_byte*>(bmm_ws), bmm_ws_size)); | |||
| } | |||
| @@ -14,6 +14,7 @@ | |||
| #include "src/cuda/batched_matrix_mul/algo.h" | |||
| #include "src/cuda/deformable_conv/fwd/algo.h" | |||
| #include "src/cuda/deformable_conv/kimpl/deformable_conv.cuh" | |||
| #include "src/common/algo_base.h" | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| @@ -78,15 +79,27 @@ std::pair<TensorLayoutArray, BatchedMatrixMulForward::Param> sub_opr_config( | |||
| return {{al, bl, cl}, param}; | |||
| } | |||
| std::pair<TensorLayoutArray, std::unique_ptr<BatchedMatrixMulForward>> | |||
| prepare_sub_opr(const DeformableConvForwardImpl::AlgoBase::SizeArgs& args) { | |||
| auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
| set_execution_policy<DeformableConvForward, BatchedMatrixMulForward*>( | |||
| args.opr, bmatmul_opr.get()); | |||
| auto&& config = | |||
| sub_opr_config(args.filter_meta, args.im_layout, args.dst_layout); | |||
| bmatmul_opr->param() = config.second; | |||
| return {config.first, std::move(bmatmul_opr)}; | |||
| } | |||
| }; // anonymous namespace | |||
| std::vector<Algorithm::SearchItem> | |||
| Algo::get_subopr_list( | |||
| std::vector<Algorithm::SearchItem> Algo::get_subopr_list( | |||
| const TensorLayoutArray& layouts, const OperatorBase* opr) const { | |||
| const DeformableConvForwardImpl* deformable_conv = | |||
| static_cast<const DeformableConvForwardImpl*>(opr); | |||
| CanonizedFilterMeta fm = deformable_conv->make_canonized_filter_meta( | |||
| layouts[0].ndim, layouts[1], layouts[2]); | |||
| layouts[0].ndim, layouts[1], layouts[2]); | |||
| auto&& config = sub_opr_config(fm, layouts[0], layouts[4]); | |||
| std::string param_str; | |||
| @@ -95,7 +108,6 @@ Algo::get_subopr_list( | |||
| config.first}}; | |||
| } | |||
| bool Algo::is_available(const SizeArgs&) const { | |||
| return true; | |||
| } | |||
| @@ -106,20 +118,10 @@ WorkspaceBundle Algo::get_bundle(const SizeArgs& args) { | |||
| OC = args.dst_layout[1], OH = args.dst_layout[2], | |||
| OW = args.dst_layout[3], FH = fm.spatial[0], FW = fm.spatial[1]; | |||
| auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid() && | |||
| !args.opr->execution_policy().sub_policy.empty()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| bmatmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = | |||
| sub_opr_config(args.filter_meta, args.im_layout, args.dst_layout); | |||
| bmatmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| size_t col_ws = batch_sz * IC * FH * FW * OH * OW * sizeof(float); | |||
| size_t bmm_ws = bmatmul_opr->get_workspace_in_bytes( | |||
| size_t bmm_ws = config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2]); | |||
| size_t result_ws = batch_sz * OC * OH * OW * sizeof(float); | |||
| @@ -154,16 +156,7 @@ void Algo::exec(const ExecArgs& args) const { | |||
| deformable_conv::im2col(dev_im, dev_offset, dev_mask, | |||
| static_cast<float*>(col_ws), p); | |||
| auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| bmatmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = | |||
| sub_opr_config(args.filter_meta, args.im_layout, args.dst_layout); | |||
| bmatmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| // matmul | |||
| TensorND A(static_cast<void*>(dev_filter), config.first[0]), | |||
| @@ -171,7 +164,7 @@ void Algo::exec(const ExecArgs& args) const { | |||
| C(static_cast<void*>(result_ws), config.first[2]); | |||
| size_t bmm_ws_size = bundle.get_size(1); | |||
| bmatmul_opr->exec( | |||
| config.second->exec( | |||
| A, B, C, | |||
| Workspace(static_cast<megdnn::dt_byte*>(bmm_ws), bmm_ws_size)); | |||
| // relayout | |||
| @@ -14,6 +14,7 @@ | |||
| #include "src/cuda/matrix_mul/algos.h" | |||
| #include "src/cuda/utils.h" | |||
| #include "src/common/algo_chooser.h" | |||
| #include "src/common/algo_base.h" | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| @@ -37,6 +38,15 @@ std::pair<TensorLayoutArray, MatrixMulForwardImpl::Param> sub_opr_config( | |||
| ret.second.compute_mode = MatrixMulForwardImpl::Param::ComputeMode::DEFAULT; | |||
| return ret; | |||
| } | |||
| std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr( | |||
| const MatrixMulForwardImpl::AlgoBase::SizeArgs& args) { | |||
| auto&& config = sub_opr_config( | |||
| {args.layout_a, args.layout_b, args.layout_c}, args.opr); | |||
| auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
| matmul_opr->param() = config.second; | |||
| return {config.first, std::move(matmul_opr)}; | |||
| } | |||
| } // namespace | |||
| std::vector<Algorithm::SearchItem> | |||
| @@ -52,27 +62,16 @@ MatrixMulForwardImpl::AlgoBFloat16::get_subopr_list( | |||
| bool MatrixMulForwardImpl::AlgoBFloat16::is_available( | |||
| const SizeArgs& args) const { | |||
| auto&& config = sub_opr_config( | |||
| {args.layout_a, args.layout_b, args.layout_c}, args.opr); | |||
| auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
| matmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| return args.layout_a.dtype == dtype::BFloat16() && | |||
| get_algorithm(static_cast<MatrixMulForwardImpl*>(matmul_opr.get()), | |||
| config.first[0], config.first[1], config.first[2]); | |||
| get_algorithm( | |||
| static_cast<MatrixMulForwardImpl*>(config.second.get()), | |||
| config.first[0], config.first[1], config.first[2]); | |||
| } | |||
| WorkspaceBundle MatrixMulForwardImpl::AlgoBFloat16::get_workspace_bundle( | |||
| void* ptr, const SizeArgs& args) const { | |||
| auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| matmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| auto&& config = sub_opr_config( | |||
| {args.layout_a, args.layout_b, args.layout_c}, args.opr); | |||
| matmul_opr->param() = config.second; | |||
| auto config = prepare_sub_opr(args); | |||
| SmallVector<size_t> sizes; | |||
| auto get_workspace = [&sizes](const TensorLayout& src, | |||
| @@ -85,7 +84,7 @@ WorkspaceBundle MatrixMulForwardImpl::AlgoBFloat16::get_workspace_bundle( | |||
| get_workspace(args.layout_a, config.first[0]); | |||
| get_workspace(args.layout_b, config.first[1]); | |||
| get_workspace(args.layout_c, config.first[2]); | |||
| sizes.push_back(matmul_opr->get_workspace_in_bytes( | |||
| sizes.push_back(config.second->get_workspace_in_bytes( | |||
| config.first[0], config.first[1], config.first[2])); | |||
| return {ptr, std::move(sizes)}; | |||
| } | |||
| @@ -106,17 +105,8 @@ void MatrixMulForwardImpl::AlgoBFloat16::exec(const ExecArgs& args) const { | |||
| .src_to_comp_type(args.tensor_b, b) | |||
| .src_to_comp_type(args.tensor_c, c); | |||
| { | |||
| auto matmul_opr = | |||
| args.opr->handle()->create_operator<MatrixMulForward>(); | |||
| matmul_opr->param() = args.opr->param(); | |||
| matmul_opr->param().compute_mode = Param::ComputeMode::DEFAULT; | |||
| if (args.opr->execution_policy().algo.valid()) { | |||
| megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
| matmul_opr->execution_policy() = | |||
| args.opr->execution_policy().sub_policy[0]; | |||
| } | |||
| matmul_opr->exec(a, b, c, ctypecvt.workspace()); | |||
| auto config = prepare_sub_opr(args); | |||
| config.second->exec(a, b, c, ctypecvt.workspace()); | |||
| } | |||
| ctypecvt.comp_to_dst_type(c, args.tensor_c); | |||
| } | |||