GitOrigin-RevId: db7f7fc057
tags/v1.3.1
| @@ -17,8 +17,21 @@ | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| #include "midout.h" | |||
| MIDOUT_DECL(megdnn_naive_matmul) | |||
| bool MatrixMulForwardImpl::AlgoNaive::is_available(const SizeArgs& args) const { | |||
| return args.can_be_treated_as_int8x8x32(); | |||
| if (args.can_be_treated_as_int8x8x32()) | |||
| return true; | |||
| auto&& layout_a = args.layout_a; | |||
| auto&& layout_b = args.layout_b; | |||
| auto&& layout_c = args.layout_c; | |||
| return layout_a.dtype.enumv() == layout_b.dtype.enumv() && | |||
| (layout_a.dtype.enumv() == DTypeEnum::Float32 || | |||
| layout_a.dtype.enumv() == DTypeEnum::Float16) && | |||
| (layout_c.dtype.enumv() == DTypeEnum::Float32 || | |||
| layout_c.dtype.enumv() == DTypeEnum::Float16) && | |||
| args.opr->param().format == param::MatrixMul::Format::DEFAULT; | |||
| } | |||
| void MatrixMulForwardImpl::AlgoNaive::exec(const ExecArgs& args) const { | |||
| auto&& param = args.opr->param(); | |||
| @@ -28,13 +41,45 @@ void MatrixMulForwardImpl::AlgoNaive::exec(const ExecArgs& args) const { | |||
| LDB = args.tensor_b.layout.stride[0], | |||
| LDC = args.tensor_c.layout.stride[0]; | |||
| int8_t* A = args.tensor_a.compatible_ptr<dt_int8>(); | |||
| int8_t* B = args.tensor_b.compatible_ptr<dt_int8>(); | |||
| int32_t* C = args.tensor_c.compatible_ptr<dt_int32>(); | |||
| auto&& handle = concrete_handle(args.opr->handle()); | |||
| exec_gemm_int8_naive(A, B, C, m, n, k, LDA, LDB, LDC, param.transposeA, | |||
| param.transposeB, cuda_stream(handle)); | |||
| using ComputeMode = Param::ComputeMode; | |||
| #define DISPATCH_CMODE(in_dt, out_dt, in_ct, out_ct, comp_ct, cmode) \ | |||
| MIDOUT_BEGIN(megdnn_naive_matmul, midout_iv(#in_dt #out_dt #in_ct, \ | |||
| #out_ct, #comp_ct, #cmode)) { \ | |||
| do { \ | |||
| using namespace dtype; \ | |||
| if (args.tensor_a.layout.dtype.enumv() == \ | |||
| DTypeTrait<in_dt>::enumv && \ | |||
| args.tensor_c.layout.dtype.enumv() == \ | |||
| DTypeTrait<out_dt>::enumv && \ | |||
| param.compute_mode == cmode) { \ | |||
| in_ct* A = args.tensor_a.compatible_ptr<in_ct>(); \ | |||
| in_ct* B = args.tensor_b.compatible_ptr<in_ct>(); \ | |||
| out_ct* C = args.tensor_c.compatible_ptr<out_ct>(); \ | |||
| exec_gemm_naive<in_ct, in_ct, out_ct, comp_ct>( \ | |||
| A, B, C, m, n, k, LDA, LDB, LDC, param.transposeA, \ | |||
| param.transposeB, cuda_stream(handle)); \ | |||
| return; \ | |||
| } \ | |||
| } while (0); \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| #define DISPATCH(in_dt, out_dt, in_ct, out_ct, comp_ct) \ | |||
| DISPATCH_CMODE(in_dt, out_dt, in_ct, out_ct, comp_ct, ComputeMode::DEFAULT) | |||
| DISPATCH(Float32, Float32, dt_float32, dt_float32, dt_float32); | |||
| DISPATCH(Float16, Float16, dt_float16, dt_float16, dt_float16); | |||
| DISPATCH(Int8, Int32, dt_int8, dt_int32, dt_int32); | |||
| DISPATCH(QuantizedS8, QuantizedS32, dt_int8, dt_int32, dt_int32); | |||
| DNN_INC_FLOAT16(DISPATCH_CMODE(Float16, Float16, dt_float16, dt_float16, | |||
| dt_float32, ComputeMode::FLOAT32)); | |||
| #undef DISPATCH_CMODE | |||
| #undef DISPATCH | |||
| megdnn_throw(ssprintf( | |||
| "unsupported Matmul(%s, %s) -> %s with cmode = %d", | |||
| args.layout_a.dtype.name(), args.layout_b.dtype.name(), | |||
| args.layout_c.dtype.name(), static_cast<int>(param.compute_mode))); | |||
| } | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -14,16 +14,18 @@ | |||
| #include "src/cuda/utils.cuh" | |||
| namespace { | |||
| __global__ void do_exec(const int8_t* A, const int8_t* B, int32_t* C, size_t M, | |||
| template <typename AType, typename BType, typename CType, typename CompType> | |||
| __global__ void do_exec(const AType* A, const BType* B, CType* C, size_t M, | |||
| size_t N, size_t K, size_t LDA, size_t LDB, size_t LDC, | |||
| bool transA, bool transB) { | |||
| size_t m = blockIdx.x; | |||
| for (; m < M; m += gridDim.x) { | |||
| size_t n = threadIdx.x; | |||
| for (; n < N; n += blockDim.x) { | |||
| int32_t res = 0; | |||
| CompType res = static_cast<CompType>(0); | |||
| for (size_t k = 0; k < K; ++k) { | |||
| int8_t av = transA ? A[k * LDA + m] : A[m * LDA + k], | |||
| AType av = transA ? A[k * LDA + m] : A[m * LDA + k], | |||
| bv = transB ? B[n * LDB + k] : B[k * LDB + n]; | |||
| res += av * bv; | |||
| } | |||
| @@ -36,14 +38,29 @@ __global__ void do_exec(const int8_t* A, const int8_t* B, int32_t* C, size_t M, | |||
| namespace megdnn { | |||
| namespace cuda { | |||
| void exec_gemm_int8_naive(const int8_t* A, const int8_t* B, int32_t* C, | |||
| size_t M, size_t N, size_t K, size_t LDA, size_t LDB, | |||
| size_t LDC, bool transA, bool transB, | |||
| cudaStream_t stream) { | |||
| do_exec<<<128, 128, 0, stream>>>(A, B, C, M, N, K, LDA, LDB, LDC, transA, | |||
| transB); | |||
| template <typename AType, typename BType, typename CType, typename CompType> | |||
| void exec_gemm_naive(const AType* A, const BType* B, CType* C, size_t M, | |||
| size_t N, size_t K, size_t LDA, size_t LDB, size_t LDC, | |||
| bool transA, bool transB, cudaStream_t stream) { | |||
| do_exec<AType, BType, CType, CompType><<<128, 128, 0, stream>>>( | |||
| A, B, C, M, N, K, LDA, LDB, LDC, transA, transB); | |||
| } | |||
| #define INST(in_ct, out_ct, comp_ct) \ | |||
| template void exec_gemm_naive<typename in_ct, typename in_ct, \ | |||
| typename out_ct, typename comp_ct>( \ | |||
| const in_ct* A, const in_ct* B, out_ct* C, size_t M, size_t N, \ | |||
| size_t K, size_t LDA, size_t LDB, size_t LDC, bool transA, \ | |||
| bool transB, cudaStream_t stream); | |||
| INST(megdnn::dt_float32, megdnn::dt_float32, megdnn::dt_float32) | |||
| INST(megdnn::dt_float16, megdnn::dt_float16, megdnn::dt_float16) | |||
| INST(megdnn::dt_int8, megdnn::dt_int32, megdnn::dt_int32) | |||
| INST(megdnn::dt_float16, megdnn::dt_float16, megdnn::dt_float32) | |||
| #undef cb | |||
| #undef INST | |||
| } // namespace cuda | |||
| } // namespace megdnn | |||
| @@ -15,8 +15,9 @@ | |||
| namespace megdnn { | |||
| namespace cuda { | |||
| void exec_gemm_int8_naive(const int8_t* A, const int8_t* B, int32_t* C, | |||
| size_t m, size_t n, size_t k, size_t ldA, size_t ldB, | |||
| template <typename AType, typename BType, typename CType, typename CompType> | |||
| void exec_gemm_naive(const AType* A, const BType* B, CType* C, size_t m, | |||
| size_t n, size_t k, size_t ldA, size_t ldB, | |||
| size_t ldC, bool transA, bool transB, | |||
| cudaStream_t stream); | |||
| } // namespace cuda | |||
| @@ -185,6 +185,46 @@ TEST_F(CUDA, MATRIX_MUL_INT8x8x32_NAIVE) { | |||
| } | |||
| } | |||
| TEST_F(CUDA, MATRIX_MUL_FLOAT_NAIVE) { | |||
| Checker<MatrixMul> checker(handle_cuda()); | |||
| checker.set_before_exec_callback(AlgoChecker<MatrixMulForward>("NAIVE")); | |||
| using Param = MatrixMul::Param; | |||
| size_t m = 12, n = 16, k = 20; | |||
| std::vector<DType> dtype_array; | |||
| dtype_array.push_back(dtype::Float32()); | |||
| dtype_array.push_back(dtype::Float16()); | |||
| for (DType dtype : dtype_array) { | |||
| for (unsigned mask = 0; mask < 4; ++mask) { | |||
| Param param; | |||
| param.transposeA = mask & 1; | |||
| param.transposeB = mask & 2; | |||
| DType stype = dtype; | |||
| TensorShape A, B; | |||
| if (param.transposeA) | |||
| A = TensorShape{k, m}; | |||
| else | |||
| A = TensorShape{m, k}; | |||
| if (param.transposeB) | |||
| B = TensorShape{n, k}; | |||
| else | |||
| B = TensorShape{k, n}; | |||
| if (dtype == dtype::Float16()) { | |||
| param.compute_mode = param::MatrixMul::ComputeMode::FLOAT32; | |||
| } | |||
| checker.set_param(param) | |||
| .set_dtype(0, stype) | |||
| .set_dtype(1, stype) | |||
| .set_dtype(2, dtype) | |||
| .set_epsilon(dtype == dtype::Float16() | |||
| ? 5e-2 | |||
| : 5e-3) | |||
| .execs({A, B, {}}); | |||
| } | |||
| } | |||
| } | |||
| TEST_F(CUDA, MATRIX_MUL) { | |||
| if (cuda::current_device_prop().major < 6) { | |||
| printf("Skip CUDA.MATRIX_MUL test as current device doesn't support\n"); | |||