GitOrigin-RevId: e65b2ce856
tags/v1.9.0
| @@ -19,6 +19,7 @@ using namespace cuda; | |||||
| ConvBiasForwardImpl::AlgoPack::AlgoPack() { | ConvBiasForwardImpl::AlgoPack::AlgoPack() { | ||||
| non_cudnn_algos.push_back(&chanwise); | non_cudnn_algos.push_back(&chanwise); | ||||
| non_cudnn_algos.push_back(&chanwise_small); | non_cudnn_algos.push_back(&chanwise_small); | ||||
| non_cudnn_algos.push_back(&depthwise_large_filter); | |||||
| non_cudnn_algos.push_back(&inplace_matmul); | non_cudnn_algos.push_back(&inplace_matmul); | ||||
| non_cudnn_algos.push_back(&matmul); | non_cudnn_algos.push_back(&matmul); | ||||
| @@ -34,6 +35,7 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||||
| std::vector<AlgoBase*> conv_algos; | std::vector<AlgoBase*> conv_algos; | ||||
| conv_algos.push_back(&chanwise); | conv_algos.push_back(&chanwise); | ||||
| conv_algos.push_back(&chanwise_small); | conv_algos.push_back(&chanwise_small); | ||||
| conv_algos.push_back(&depthwise_large_filter); | |||||
| conv_algos.push_back(&chanwise8x8x32); | conv_algos.push_back(&chanwise8x8x32); | ||||
| for (auto&& algo : cudnn_convs) { | for (auto&& algo : cudnn_convs) { | ||||
| conv_algos.push_back(&algo); | conv_algos.push_back(&algo); | ||||
| @@ -22,7 +22,6 @@ | |||||
| #include "src/cuda/conv_bias/opr_impl.h" | #include "src/cuda/conv_bias/opr_impl.h" | ||||
| #include "src/cuda/convolution_helper/parameter.cuh" | #include "src/cuda/convolution_helper/parameter.cuh" | ||||
| #include "src/cuda/cudnn_wrapper.h" | #include "src/cuda/cudnn_wrapper.h" | ||||
| #include "src/cuda/handle.h" | |||||
| #include <cuda.h> | #include <cuda.h> | ||||
| #include <memory> | #include <memory> | ||||
| @@ -57,6 +56,7 @@ public: | |||||
| CUDA_CUDNN_CONVBIAS, | CUDA_CUDNN_CONVBIAS, | ||||
| CUDA_CHANWISE, | CUDA_CHANWISE, | ||||
| CUDA_CHANWISE_SMALL, | CUDA_CHANWISE_SMALL, | ||||
| CUDA_DEPTHWISE_LARGE_FILTER, | |||||
| CUDA_CHANWISE_INT8X8X32, | CUDA_CHANWISE_INT8X8X32, | ||||
| CUDA_CUDNN_CONV, | CUDA_CUDNN_CONV, | ||||
| CUDA_INPLACE_MATMUL, | CUDA_INPLACE_MATMUL, | ||||
| @@ -257,6 +257,26 @@ private: | |||||
| mutable std::string m_name; | mutable std::string m_name; | ||||
| }; | }; | ||||
| class ConvBiasForwardImpl::AlgoDepthwiseLargeFilter final : public AlgoBase { | |||||
| public: | |||||
| bool is_available(const SizeArgs& args) const override; | |||||
| size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||||
| void exec(const ExecArgs& args) const override; | |||||
| const char* name() const override { | |||||
| if (m_name.empty()) { | |||||
| m_name = ConvBiasForward::algo_name<DirectParam>( | |||||
| "DEPTHWISE_LARGE_FILTER", {}); | |||||
| } | |||||
| return m_name.c_str(); | |||||
| } | |||||
| MEGDNN_DECL_ALGO_TYPE(CUDA_DEPTHWISE_LARGE_FILTER) | |||||
| AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||||
| private: | |||||
| mutable std::string m_name; | |||||
| }; | |||||
| class ConvBiasForwardImpl::AlgoChanwise8x8x32 final : public AlgoBase { | class ConvBiasForwardImpl::AlgoChanwise8x8x32 final : public AlgoBase { | ||||
| public: | public: | ||||
| bool is_available(const SizeArgs& args) const override; | bool is_available(const SizeArgs& args) const override; | ||||
| @@ -1084,6 +1104,7 @@ public: | |||||
| AlgoFallbackNCHWQS8 fallback_nchw_qs8; | AlgoFallbackNCHWQS8 fallback_nchw_qs8; | ||||
| AlgoChanwise chanwise; | AlgoChanwise chanwise; | ||||
| AlgoChanwiseSmall chanwise_small; | AlgoChanwiseSmall chanwise_small; | ||||
| AlgoDepthwiseLargeFilter depthwise_large_filter; | |||||
| AlgoChanwise8x8x32 chanwise8x8x32; | AlgoChanwise8x8x32 chanwise8x8x32; | ||||
| AlgoInplaceMatmul inplace_matmul; | AlgoInplaceMatmul inplace_matmul; | ||||
| AlgoMatmul matmul; | AlgoMatmul matmul; | ||||
| @@ -0,0 +1,446 @@ | |||||
| /** | |||||
| * \file dnn/src/cuda/conv_bias/chanwise/fwd_depthwise_large_filter.inl | |||||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
| * | |||||
| * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, | |||||
| * software distributed under the License is distributed on an | |||||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| */ | |||||
| #pragma once | |||||
| #include "src/cuda/cuda_shfl_compat.cuh" | |||||
| namespace { | |||||
| enum DepthwiseConv2dDirection { DIRECTION_FORWARD, DIRECTION_BACKWARD }; | |||||
| template <typename ThreadConfig_, int oh_, int ow_> | |||||
| struct OutTileConfig { | |||||
| using ThreadConfig = ThreadConfig_; | |||||
| static int const unroll_h = oh_; | |||||
| static int const unroll_w = ThreadConfig::thread_x * ow_; | |||||
| static int const unroll_size = unroll_h * unroll_w; | |||||
| static int const block_h = unroll_h * ThreadConfig::thread_y; | |||||
| static int const block_w = unroll_w; | |||||
| }; | |||||
| template <int fh_, int fw_> | |||||
| struct FilterTileConfig { | |||||
| static int const unroll_h = fh_; | |||||
| static int const unroll_w = fw_; | |||||
| static int const unroll_size = unroll_h * unroll_w; | |||||
| }; | |||||
| template <int x_, int y_> | |||||
| struct ThreadConfig { | |||||
| static int const thread_x = x_; | |||||
| static_assert((thread_x & (thread_x - 1)) == 0, "thread_x must be pow of 2!"); | |||||
| static int const thread_y = y_; | |||||
| static int const nr_threads = x_ * y_; | |||||
| }; | |||||
| template < | |||||
| typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||||
| typename TileCount_> | |||||
| struct Global2SharedMem { | |||||
| using TileCount = TileCount_; | |||||
| using ThreadConfig = ThreadConfig_; | |||||
| T reg[TileCount::reg_w]; | |||||
| const int tidx = threadIdx.x; | |||||
| const int tidy = threadIdx.y; | |||||
| const int tid = tidy * ThreadConfig::thread_x + tidx; | |||||
| const int gl_load_y = tid / TileCount::load_w; | |||||
| const int gl_load_x = tid - gl_load_y * TileCount::load_w; | |||||
| const bool is_fwd = (kDirection == DIRECTION_FORWARD); | |||||
| int w_offset; | |||||
| T* smem; | |||||
| int stride; | |||||
| int start_h, start_w, bound_h, bound_w, ring_smem_h, ring_src_h; | |||||
| const T* g_ptr; | |||||
| __device__ __forceinline__ | |||||
| Global2SharedMem(T* smem_, int stride_, int s_h, int s_w, int b_h, int b_w); | |||||
| __device__ __forceinline__ void first_copy(); | |||||
| __device__ __forceinline__ void copy(); | |||||
| __device__ __forceinline__ void commit(); | |||||
| __device__ __forceinline__ void iter_forward(); | |||||
| __device__ __forceinline__ T* sh_ptr(int y, int x) { | |||||
| return &smem[y * TileCount::smem_w + x]; | |||||
| } | |||||
| __device__ __forceinline__ T* sh_ptr_as_copy_t(int y, int x) { | |||||
| return reinterpret_cast<T*>(sh_ptr(y, x)); | |||||
| } | |||||
| }; | |||||
| template < | |||||
| typename ldg_dtype, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||||
| typename OutTileConfig_, typename FilterTileConfig_> | |||||
| struct ConvTrait { | |||||
| using ThreadConfig = ThreadConfig_; | |||||
| using OutTileConfig = OutTileConfig_; | |||||
| using FilterTileConfig = FilterTileConfig_; | |||||
| using CompType = ldg_dtype; | |||||
| struct SrcTileConfig { | |||||
| static int const unroll_h = | |||||
| OutTileConfig::unroll_h + FilterTileConfig::unroll_h - 1; | |||||
| static int const unroll_w = | |||||
| OutTileConfig::unroll_w + FilterTileConfig::unroll_w - 1; | |||||
| static int const unroll_size = unroll_h * unroll_w; | |||||
| }; | |||||
| struct SrcTileCount { | |||||
| static int const smem_src_h = | |||||
| OutTileConfig::block_h + FilterTileConfig::unroll_h - 1; | |||||
| static int const smem_buff_h = FilterTileConfig::unroll_h; | |||||
| static int const smem_load_h = smem_src_h + smem_buff_h; | |||||
| static int const smem_h = smem_load_h + smem_buff_h; | |||||
| static int const smem_w = OutTileConfig::block_w + | |||||
| FilterTileConfig::unroll_w * ThreadConfig::thread_x - | |||||
| 1; | |||||
| static int const smem_size = smem_h * smem_w; | |||||
| static int const load_w = | |||||
| smem_w > ThreadConfig::nr_threads ? ThreadConfig::nr_threads : smem_w; | |||||
| static int const load_h = 1; | |||||
| static int const reg_h = 1; | |||||
| static int const reg_w = DIVUP(smem_w, load_w); | |||||
| static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||||
| static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||||
| }; | |||||
| struct FilterTileCount { | |||||
| static int const smem_flt_h = FilterTileConfig::unroll_h; | |||||
| static int const smem_buff_h = FilterTileConfig::unroll_h; | |||||
| static int const smem_load_h = smem_flt_h + smem_buff_h; | |||||
| static int const smem_h = smem_load_h + smem_buff_h; | |||||
| static int const smem_w = FilterTileConfig::unroll_w * ThreadConfig::thread_x; | |||||
| static int const smem_size = smem_h * smem_w; | |||||
| static int const load_w = smem_w > 32 ? 32 : smem_w; | |||||
| static int const load_h = ThreadConfig::nr_threads / load_w; | |||||
| static int const reg_h = 1; | |||||
| static int const reg_w = DIVUP(smem_w, load_w); | |||||
| static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||||
| static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||||
| }; | |||||
| using SrcGlobal2ShareVisitor = Global2SharedMem< | |||||
| CompType, DepthwiseConv2dDirection::DIRECTION_FORWARD, ThreadConfig, | |||||
| SrcTileCount>; | |||||
| using FilterGlobal2ShareVisitor = | |||||
| Global2SharedMem<CompType, kDirection, ThreadConfig, FilterTileCount>; | |||||
| }; | |||||
| template < | |||||
| typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||||
| typename TileCount_> | |||||
| __device__ __forceinline__ | |||||
| Global2SharedMem<T, kDirection, ThreadConfig_, TileCount_>::Global2SharedMem( | |||||
| T* smem_, int stride_, int s_h, int s_w, int b_h, int b_w) | |||||
| : smem(smem_), | |||||
| stride(stride_), | |||||
| start_h(s_h), | |||||
| start_w(s_w), | |||||
| bound_h(b_h), | |||||
| bound_w(b_w), | |||||
| ring_smem_h(TileCount::smem_load_h) { | |||||
| if (is_fwd) { | |||||
| ring_src_h = s_h + TileCount::smem_load_h; | |||||
| w_offset = 0; | |||||
| } else { | |||||
| ring_src_h = s_h - 1; | |||||
| w_offset = TileCount::smem_w - b_w; | |||||
| } | |||||
| } | |||||
| template < | |||||
| typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||||
| typename TileCount_> | |||||
| __device__ __forceinline__ void Global2SharedMem< | |||||
| T, kDirection, ThreadConfig_, TileCount_>::first_copy() { | |||||
| static int const load_w = TileCount::smem_w > 32 ? 32 : TileCount::smem_w; | |||||
| static int const load_h = ThreadConfig::nr_threads / load_w; | |||||
| static int const h_per_thread = DIVUP(TileCount::smem_load_h, load_h); | |||||
| static int const w_per_thread = DIVUP(TileCount::smem_w, load_w); | |||||
| static bool constexpr check_bounds_h = TileCount::smem_load_h % load_h != 0; | |||||
| static bool constexpr check_bounds_w = TileCount::smem_w % load_w != 0; | |||||
| const int y_base_idx = tid / load_w; | |||||
| const int x_base_idx = tid - y_base_idx * load_w; | |||||
| #pragma unroll | |||||
| for (int i = 0; i < h_per_thread; ++i) { | |||||
| int smem_h_idx = y_base_idx + i * load_h; | |||||
| int src_h_idx; | |||||
| if (is_fwd) { | |||||
| src_h_idx = start_h + smem_h_idx; | |||||
| } else { | |||||
| src_h_idx = start_h + TileCount::smem_load_h - smem_h_idx - 1; | |||||
| } | |||||
| if (check_bounds_h && smem_h_idx >= TileCount::smem_load_h) | |||||
| continue; | |||||
| #pragma unroll | |||||
| for (int j = 0; j < w_per_thread; ++j) { | |||||
| int smem_w_idx = x_base_idx + j * load_w; | |||||
| int src_w_idx; | |||||
| if (is_fwd) { | |||||
| src_w_idx = start_w + smem_w_idx; | |||||
| } else { | |||||
| src_w_idx = start_w + TileCount::smem_w - w_offset - smem_w_idx - 1; | |||||
| } | |||||
| if (check_bounds_w && smem_w_idx >= TileCount::smem_w) | |||||
| continue; | |||||
| T val = 0.0f; | |||||
| if (src_h_idx >= 0 && src_h_idx < bound_h && src_w_idx >= 0 && | |||||
| src_w_idx < bound_w && | |||||
| (is_fwd || (TileCount::smem_load_h - smem_h_idx - 1 >= 0 && | |||||
| TileCount::smem_w - w_offset - smem_w_idx - 1 >= 0))) { | |||||
| val = g_ptr[src_h_idx * stride + src_w_idx]; | |||||
| } | |||||
| *(sh_ptr_as_copy_t(smem_h_idx, smem_w_idx)) = val; | |||||
| } | |||||
| } | |||||
| } | |||||
| template < | |||||
| typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||||
| typename TileCount_> | |||||
| __device__ __forceinline__ void Global2SharedMem< | |||||
| T, kDirection, ThreadConfig_, TileCount_>::copy() { | |||||
| #pragma unroll | |||||
| for (int j = 0; j < TileCount::reg_w; ++j) { | |||||
| int smem_w_idx = gl_load_x + j * TileCount::load_w; | |||||
| int src_w_idx; | |||||
| if (is_fwd) { | |||||
| src_w_idx = start_w + smem_w_idx; | |||||
| } else { | |||||
| src_w_idx = start_w + TileCount::smem_w - w_offset - smem_w_idx - 1; | |||||
| } | |||||
| if (TileCount::check_bounds_w && smem_w_idx >= TileCount::smem_w) | |||||
| continue; | |||||
| T val = 0.0f; | |||||
| if (ring_src_h >= 0 && ring_src_h < bound_h && src_w_idx >= 0 && | |||||
| src_w_idx < bound_w && | |||||
| (is_fwd || TileCount::smem_w - w_offset - smem_w_idx - 1 >= 0)) { | |||||
| val = g_ptr[ring_src_h * stride + src_w_idx]; | |||||
| } | |||||
| reg[j] = val; | |||||
| } | |||||
| } | |||||
| template < | |||||
| typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||||
| typename TileCount_> | |||||
| __device__ __forceinline__ void Global2SharedMem< | |||||
| T, kDirection, ThreadConfig_, TileCount_>::commit() { | |||||
| #pragma unroll | |||||
| for (int j = 0; j < TileCount::reg_w; ++j) { | |||||
| int smem_w_idx = gl_load_x + j * TileCount::load_w; | |||||
| if (TileCount::check_bounds_w && smem_w_idx >= TileCount::smem_w) | |||||
| continue; | |||||
| *(sh_ptr_as_copy_t(ring_smem_h, smem_w_idx)) = reg[j]; | |||||
| } | |||||
| } | |||||
| template < | |||||
| typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||||
| typename TileCount_> | |||||
| __device__ __forceinline__ void Global2SharedMem< | |||||
| T, kDirection, ThreadConfig_, TileCount_>::iter_forward() { | |||||
| if (is_fwd) { | |||||
| ring_src_h++; | |||||
| } else { | |||||
| ring_src_h--; | |||||
| } | |||||
| ring_smem_h = (ring_smem_h + 1) % TileCount::smem_h; | |||||
| } | |||||
| // CUDA kernel to compute the depthwise convolution forward pass in NCHW format, | |||||
| // tailored for small images up to 32x32. Stride and depth multiplier must be 1. | |||||
| // Padding must be 'SAME', which allows to reuse the index computation. Only | |||||
| // use this kernel if CanLaunchDepthwiseConv2dGPUSmall(args) returns true. | |||||
| // Tiles of the input and filter tensors are loaded into shared memory before | |||||
| // performing the convolution. Each thread handles two elements per iteration, | |||||
| // one each in the lower and upper half of a tile. | |||||
| // Backprop input direction is the same as forward direction with the filter | |||||
| // rotated by 180°. | |||||
| template <typename T, typename ConvTrait, DepthwiseConv2dDirection kDirection> | |||||
| __global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||||
| const Param param, const T* input, const T* filter, T* output) { | |||||
| using ThreadConfig = typename ConvTrait::ThreadConfig; | |||||
| using SrcTileConfig = typename ConvTrait::SrcTileConfig; | |||||
| using FilterTileConfig = typename ConvTrait::FilterTileConfig; | |||||
| using OutTileConfig = typename ConvTrait::OutTileConfig; | |||||
| using SrcTileCount = typename ConvTrait::SrcTileCount; | |||||
| using FilterTileCount = typename ConvTrait::FilterTileCount; | |||||
| using SrcGlobal2ShareVisitor = typename ConvTrait::SrcGlobal2ShareVisitor; | |||||
| using FilterGlobal2ShareVisitor = typename ConvTrait::FilterGlobal2ShareVisitor; | |||||
| const bool is_fwd = (kDirection == DepthwiseConv2dDirection::DIRECTION_FORWARD); | |||||
| int off_ochannel = blockIdx.x, off_obw = blockIdx.y, off_obh = blockIdx.z, | |||||
| off_oh = threadIdx.y, off_ow = threadIdx.x; | |||||
| extern __shared__ __align__(8) unsigned char smem[]; | |||||
| static_assert(sizeof(T) <= 8, "Insufficient alignment detected"); | |||||
| T* smem_src = reinterpret_cast<T*>(smem); | |||||
| T* smem_flt = reinterpret_cast<T*>(&smem_src[SrcTileCount::smem_size]); | |||||
| int off_ichannel = off_ochannel / param.chl_mul, | |||||
| off_fchannel = off_ichannel % param.src_chl, | |||||
| out_start_h = off_obh * OutTileConfig::block_h, | |||||
| out_start_w = off_obw * OutTileConfig::block_w, | |||||
| src_start_h = out_start_h - param.pad_h, | |||||
| src_start_w = out_start_w - param.pad_w, | |||||
| out_base_h_idx = out_start_h + off_oh * OutTileConfig::unroll_h; | |||||
| T* smem_src_ptr = smem_src + off_ow * FilterTileConfig::unroll_w; | |||||
| T* smem_flt_ptr = smem_flt + off_ow * FilterTileConfig::unroll_w; | |||||
| T* out_base_ptr = output + off_ochannel * param.out_h * param.out_w; | |||||
| SrcGlobal2ShareVisitor gl2sh_src( | |||||
| smem_src, param.src_w, src_start_h, src_start_w, param.src_h, param.src_w); | |||||
| FilterGlobal2ShareVisitor gl2sh_flt = { | |||||
| smem_flt, param.flt_w, is_fwd ? 0 : param.flt_h - 2, | |||||
| 0, param.flt_h, param.flt_w}; | |||||
| gl2sh_src.g_ptr = input + off_ichannel * param.src_h * param.src_w; | |||||
| gl2sh_flt.g_ptr = filter + off_fchannel * param.flt_h * param.flt_w; | |||||
| gl2sh_src.first_copy(); | |||||
| gl2sh_flt.first_copy(); | |||||
| __syncthreads(); | |||||
| T reg_src[SrcTileConfig::unroll_h * SrcTileConfig::unroll_w], | |||||
| reg_flt[FilterTileConfig::unroll_h * FilterTileConfig::unroll_w]; | |||||
| T sum[OutTileConfig::unroll_size] = {0.0}; | |||||
| for (int fh = 0; fh < param.flt_h; fh += FilterTileConfig::unroll_h) { | |||||
| gl2sh_src.copy(); | |||||
| gl2sh_flt.copy(); | |||||
| #pragma unroll | |||||
| for (int s_h = 0; s_h < SrcTileConfig::unroll_h; ++s_h) { | |||||
| #pragma unroll | |||||
| for (int s_w = 0; s_w < SrcTileConfig::unroll_w; ++s_w) { | |||||
| reg_src[s_h * SrcTileConfig::unroll_w + s_w] = smem_src_ptr | |||||
| [(off_oh + fh + s_h) % SrcTileCount::smem_h * | |||||
| SrcTileCount::smem_w + | |||||
| s_w]; | |||||
| } | |||||
| } | |||||
| #pragma unroll | |||||
| for (int f_h = 0; f_h < FilterTileConfig::unroll_h; ++f_h) { | |||||
| #pragma unroll | |||||
| for (int f_w = 0; f_w < FilterTileConfig::unroll_w; ++f_w) { | |||||
| reg_flt[f_h * FilterTileConfig::unroll_w + f_w] = smem_flt_ptr | |||||
| [(fh + f_h) % FilterTileCount::smem_h * | |||||
| FilterTileCount::smem_w + | |||||
| f_w]; | |||||
| } | |||||
| } | |||||
| #pragma unroll | |||||
| for (int inner_fh = 0; inner_fh < FilterTileConfig::unroll_h; ++inner_fh) { | |||||
| #pragma unroll | |||||
| for (int oh = 0; oh < OutTileConfig::unroll_h; ++oh) { | |||||
| #pragma unroll | |||||
| for (int fw = 0; fw < FilterTileConfig::unroll_w; ++fw) { | |||||
| #pragma unroll | |||||
| for (int ow = 0; ow < OutTileConfig::unroll_w; ++ow) { | |||||
| sum[oh * OutTileConfig::unroll_w + ow] += | |||||
| reg_flt[inner_fh * FilterTileConfig::unroll_w + fw] * | |||||
| reg_src[(inner_fh + oh) * SrcTileConfig::unroll_w + fw + | |||||
| ow]; | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| __syncthreads(); | |||||
| gl2sh_src.commit(); | |||||
| gl2sh_flt.commit(); | |||||
| gl2sh_src.iter_forward(); | |||||
| gl2sh_flt.iter_forward(); | |||||
| __syncthreads(); | |||||
| } | |||||
| for (int o = 0; o < OutTileConfig::unroll_size; ++o) { | |||||
| for (int i = 1; i < ThreadConfig::thread_x; i = i << 1) { | |||||
| sum[o] += __shfl_xor(sum[o], i, 32); | |||||
| } | |||||
| } | |||||
| if (threadIdx.x == 0) { | |||||
| #pragma unroll | |||||
| for (int i = 0; i < OutTileConfig::unroll_h; ++i) { | |||||
| int out_h_idx = out_base_h_idx + i; | |||||
| if (out_h_idx < param.out_h) { | |||||
| #pragma unroll | |||||
| for (int j = 0; j < OutTileConfig::unroll_w; ++j) { | |||||
| int out_w_idx = out_start_w + j; | |||||
| if (out_w_idx >= param.out_w) | |||||
| return; | |||||
| out_base_ptr[out_h_idx * param.out_w + out_w_idx] = | |||||
| sum[i * OutTileConfig::unroll_w + j]; | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| template < | |||||
| typename T, typename T2, DepthwiseConv2dDirection kDirection, int unroll_fw, | |||||
| int unroll_ow> | |||||
| void LaunchDepthwiseConv2dGPUSmall( | |||||
| const Param& param, const T* input, const T* filter, T* output, | |||||
| cudaStream_t stream) { | |||||
| static int const unroll_oh = 1, unroll_fh = 1; | |||||
| using FilterTileConfig = FilterTileConfig<unroll_fh, unroll_fw>; | |||||
| using ThreadConfig = ThreadConfig<4, 32>; | |||||
| using OutTileConfig = OutTileConfig<ThreadConfig, unroll_oh, unroll_ow>; | |||||
| using IConvTrait = | |||||
| ConvTrait<T, kDirection, ThreadConfig, OutTileConfig, FilterTileConfig>; | |||||
| using SrcTileCount = typename IConvTrait::SrcTileCount; | |||||
| using FilterTileCount = typename IConvTrait::FilterTileCount; | |||||
| dim3 block(ThreadConfig::thread_x, ThreadConfig::thread_y); | |||||
| dim3 grid; | |||||
| grid.x = param.batch * param.src_chl * param.chl_mul; | |||||
| grid.y = DIVUP(param.out_w, OutTileConfig::block_w); | |||||
| grid.z = DIVUP(param.out_h, OutTileConfig::block_h); | |||||
| const int shared_storage = | |||||
| (SrcTileCount::smem_size + FilterTileCount::smem_size) * sizeof(T); | |||||
| void (*kernel)(const Param, const T*, const T*, T*); | |||||
| kernel = DepthwiseConv2dGPUKernelNCHWSmall<T, IConvTrait, kDirection>; | |||||
| kernel<<<grid, block, shared_storage, stream>>>(param, input, filter, output); | |||||
| after_kernel_launch(); | |||||
| } | |||||
| #define INSTANCE_AB(a, b, direction) \ | |||||
| if (param.out_w > b * 4) { \ | |||||
| LaunchDepthwiseConv2dGPUSmall<float, float2, direction, a + 1, b + 1>( \ | |||||
| param, src, flt, dst, stream); \ | |||||
| } | |||||
| #define INSTANCE_A(a, direction) \ | |||||
| if (param.flt_w > 0) { \ | |||||
| INSTANCE_AB(a, 15, direction) \ | |||||
| else INSTANCE_AB(a, 14, direction) else INSTANCE_AB(a, 13, direction) else INSTANCE_AB( \ | |||||
| a, 12, direction) else INSTANCE_AB(a, 11, direction) else INSTANCE_AB(a, 10, direction) else INSTANCE_AB(a, 9, direction) else INSTANCE_AB(a, 8, direction) else INSTANCE_AB(a, 7, direction) else INSTANCE_AB(a, 6, direction) else INSTANCE_AB(a, 5, direction) else INSTANCE_AB(a, 4, direction) else INSTANCE_AB(a, 3, direction) else INSTANCE_AB(a, 2, direction) else INSTANCE_AB(a, 1, direction) else INSTANCE_AB(a, 0, direction) \ | |||||
| } | |||||
| #define INSTANCE(direction) \ | |||||
| INSTANCE_A(7, direction) \ | |||||
| else INSTANCE_A(6, direction) else INSTANCE_A(5, direction) else INSTANCE_A(4, direction) else INSTANCE_A( \ | |||||
| 3, \ | |||||
| direction) else INSTANCE_A(2, direction) else INSTANCE_A(1, direction) else INSTANCE_A(0, direction) | |||||
| } // anonymous namespace | |||||
| @@ -0,0 +1,48 @@ | |||||
| /** | |||||
| * \file dnn/src/cuda/conv_bias/chanwise/fwd_depthwise_large_filter.cu | |||||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
| * | |||||
| * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, | |||||
| * software distributed under the License is distributed on an | |||||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| */ | |||||
| #include "cuda.h" | |||||
| #include "cuda_fp16.h" | |||||
| // #include "src/cuda/conv_bias/chanwise/fwd_depthwise_large_filter.cuh" | |||||
| #include "src/cuda/conv_bias/chanwise/kern.cuh" | |||||
| #include "src/cuda/conv_bias/chanwise/kern_helper.cuh" | |||||
| #include "src/cuda/conv_bias/chanwise/launch_config.cuh" | |||||
| #include "src/cuda/fp16_help.cuh" | |||||
| using namespace megdnn; | |||||
| using namespace cuda; | |||||
| using namespace conv_bias; | |||||
| using namespace chanwise; | |||||
| #include "src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.inl" | |||||
| namespace megdnn { | |||||
| namespace cuda { | |||||
| namespace conv_bias { | |||||
| namespace chanwise { | |||||
| // =====================================fwd===================================== | |||||
| #define check | |||||
| template <> | |||||
| void run_fwd_depthwise_large_filter( | |||||
| float* dst, const float* src, const float* flt, const Param& param, | |||||
| cudaStream_t stream) { | |||||
| INSTANCE(DepthwiseConv2dDirection::DIRECTION_FORWARD) | |||||
| } | |||||
| } // namespace chanwise | |||||
| } // namespace conv_bias | |||||
| } // namespace cuda | |||||
| } // namespace megdnn | |||||
| // vim: syntax=cuda.doxygen | |||||
| @@ -61,6 +61,10 @@ template <typename T> | |||||
| void run_fwd_small( | void run_fwd_small( | ||||
| T* dst, const T* src, const T* flt, const Param& param, cudaStream_t stream); | T* dst, const T* src, const T* flt, const Param& param, cudaStream_t stream); | ||||
| template <typename T> | |||||
| void run_fwd_depthwise_large_filter( | |||||
| T* dst, const T* src, const T* flt, const Param& param, cudaStream_t stream); | |||||
| // implemented in fwd_8x8x32.cu | // implemented in fwd_8x8x32.cu | ||||
| void run_fwd_8x8x32( | void run_fwd_8x8x32( | ||||
| int32_t* dst, const int8_t* src, const int8_t* flt, const Param& param, | int32_t* dst, const int8_t* src, const int8_t* flt, const Param& param, | ||||
| @@ -0,0 +1,109 @@ | |||||
| /** | |||||
| * \file dnn/src/cuda/conv_bias/depthwise_large_filter.cpp | |||||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
| * | |||||
| * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, | |||||
| * software distributed under the License is distributed on an | |||||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| */ | |||||
| #include "src/common/conv_bias.h" | |||||
| #include "src/cuda/conv_bias/algo.h" | |||||
| #include "src/cuda/conv_bias/chanwise/kern.cuh" | |||||
| #include "src/cuda/utils.h" | |||||
| using namespace megdnn; | |||||
| using namespace cuda; | |||||
| using namespace conv_bias; | |||||
| namespace { | |||||
| inline bool is_available_depthwise_large_filter(const chanwise::Param& param) { | |||||
| auto&& device_prop = cuda::current_device_prop(); | |||||
| int flt_smem_w = (param.flt_w + 3) / 4 * 4; | |||||
| int flt_smem_h = 3; | |||||
| int flt_reg_per_thread = | |||||
| flt_smem_w > 32 ? (flt_smem_w + 31) / 32 : 1 + flt_smem_w / 4; | |||||
| int ow = param.out_w > 64 ? 64 : param.out_w; | |||||
| int src_smem_w = ow + flt_smem_w - 1; | |||||
| int src_smem_h = flt_smem_h + param.flt_h - 1; | |||||
| int src_reg_per_thread = src_smem_w > 128 ? (flt_smem_w + 127) / 128 | |||||
| : 1 + (ow + 3) / 4 + flt_smem_w / 4 - 1; | |||||
| int out_reg_per_thread = (ow + 3) / 4 * 4; | |||||
| if (device_prop.regsPerBlock < 4 * 32 * | |||||
| (flt_reg_per_thread + src_reg_per_thread + | |||||
| out_reg_per_thread) || | |||||
| device_prop.sharedMemPerBlock < | |||||
| static_cast<size_t>( | |||||
| flt_smem_w * flt_smem_h + src_smem_w * src_smem_h)) { | |||||
| return false; | |||||
| } | |||||
| return param.stride_h == 1 && param.stride_w == 1 && param.src_h == param.out_h && | |||||
| param.src_w == param.out_w; | |||||
| } | |||||
| } // anonymous namespace | |||||
| bool ConvBiasForwardImpl::AlgoDepthwiseLargeFilter::is_available( | |||||
| const SizeArgs& args) const { | |||||
| if (!args.src_layout->is_contiguous() || !args.dst_layout->is_contiguous()) { | |||||
| return false; | |||||
| } | |||||
| if (args.src_layout->dtype != args.filter_layout->dtype && | |||||
| args.src_layout->dtype != dtype::Float32()) { | |||||
| return false; | |||||
| } | |||||
| if (args.z_layout->ndim > 0) | |||||
| return false; | |||||
| auto param = chanwise::Param::from_fwd_args(args); | |||||
| auto&& fm = args.filter_meta; | |||||
| return fm.group > 1 && args.filter_meta.format == Param::Format::NCHW && | |||||
| args.src_layout->dtype.category() == DTypeCategory::FLOAT && | |||||
| args.opr->param().compute_mode == Param::ComputeMode::DEFAULT && | |||||
| fm.spatial_ndim == 2 && fm.icpg == 1 && fm.dilation[0] == 1 && | |||||
| fm.dilation[1] == 1 && !fm.should_flip && | |||||
| is_available_depthwise_large_filter(param); | |||||
| } | |||||
| size_t ConvBiasForwardImpl::AlgoDepthwiseLargeFilter::get_workspace_in_bytes( | |||||
| const SizeArgs& args) const { | |||||
| auto dst_layout = *args.dst_layout; | |||||
| if (dst_layout.dtype.enumv() != args.bias_layout->dtype.enumv()) { | |||||
| dst_layout.dtype = DType(); | |||||
| args.opr->check_or_deduce_dtype_fwd( | |||||
| args.src_layout->dtype, args.filter_layout->dtype, dst_layout.dtype); | |||||
| return dst_layout.span().dist_byte(); | |||||
| } | |||||
| return 0; | |||||
| } | |||||
| void ConvBiasForwardImpl::AlgoDepthwiseLargeFilter::exec(const ExecArgs& args) const { | |||||
| WorkspaceBundle bundle{args.workspace.raw_ptr, {get_workspace_in_bytes(args)}}; | |||||
| TensorND conv_dst_tensor = *args.dst_tensor; | |||||
| if (args.dst_layout->dtype.enumv() != args.bias_layout->dtype.enumv()) { | |||||
| conv_dst_tensor = TensorND{bundle.get(0), conv_dst_tensor.layout}; | |||||
| conv_dst_tensor.layout.dtype = DType(); | |||||
| args.opr->check_or_deduce_dtype_fwd( | |||||
| args.src_layout->dtype, args.filter_layout->dtype, | |||||
| conv_dst_tensor.layout.dtype); | |||||
| } | |||||
| { | |||||
| auto kparam = chanwise::Param::from_fwd_args(args); | |||||
| auto stream = cuda_stream(args.handle); | |||||
| switch (args.src_layout->dtype.enumv()) { | |||||
| case DTypeEnum::Float32: | |||||
| chanwise::run_fwd_depthwise_large_filter( | |||||
| conv_dst_tensor.ptr<float>(), args.src_tensor->ptr<float>(), | |||||
| args.filter_tensor->ptr<float>(), kparam, stream); | |||||
| break; | |||||
| default: | |||||
| megdnn_assert_internal(0); | |||||
| } | |||||
| } | |||||
| handle_bias_and_nonlinear( | |||||
| args.handle, args.nonlinear_mode, &conv_dst_tensor, args.dst_tensor, | |||||
| args.bias_tensor); | |||||
| } | |||||
| // vim: syntax=cpp.doxygen | |||||
| @@ -45,6 +45,7 @@ public: | |||||
| class AlgoCUDNNConvBiasActivation; | class AlgoCUDNNConvBiasActivation; | ||||
| class AlgoChanwise; | class AlgoChanwise; | ||||
| class AlgoChanwiseSmall; | class AlgoChanwiseSmall; | ||||
| class AlgoDepthwiseLargeFilter; | |||||
| class AlgoChanwise8x8x32; | class AlgoChanwise8x8x32; | ||||
| class AlgoCUDNNConv; | class AlgoCUDNNConv; | ||||
| class AlgoFallbackNCHWQS8; | class AlgoFallbackNCHWQS8; | ||||
| @@ -695,6 +695,59 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_CHANWISE_SMALL) { | |||||
| } | } | ||||
| } | } | ||||
| TEST_F(CUDA, CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER) { | |||||
| Checker<ConvBiasForward> checker(handle_cuda()); | |||||
| checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>( | |||||
| ConvBiasForward::algo_name<ConvBias::DirectParam>( | |||||
| "DEPTHWISE_LARGE_FILTER", {}) | |||||
| .c_str())); | |||||
| auto run = [&checker](size_t n, size_t g, size_t h, size_t fh) { | |||||
| param::ConvBias cur_param; | |||||
| cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION; | |||||
| cur_param.sparse = ConvBias::Param::Sparse::GROUP; | |||||
| checker.set_dtype(0, dtype::Float32()) | |||||
| .set_dtype(1, dtype::Float32()) | |||||
| .set_dtype(2, dtype::Float32()) | |||||
| .set_dtype(3, dtype::Float32()) | |||||
| .set_dtype(4, dtype::Float32()); | |||||
| cur_param.pad_h = cur_param.pad_w = fh / 2; | |||||
| cur_param.stride_h = cur_param.stride_w = 1; | |||||
| checker.set_param(cur_param).execs( | |||||
| {{n, g, h, h}, {g, 1, 1, fh, fh}, {}, {}, {}}); | |||||
| }; | |||||
| run(4, 8, 32, 5); | |||||
| run(4, 8, 32, 7); | |||||
| run(4, 8, 32, 9); | |||||
| run(4, 8, 32, 11); | |||||
| run(4, 8, 32, 13); | |||||
| run(4, 8, 32, 15); | |||||
| run(4, 8, 32, 17); | |||||
| run(4, 8, 32, 19); | |||||
| run(4, 8, 32, 21); | |||||
| run(4, 8, 32, 23); | |||||
| run(4, 8, 32, 25); | |||||
| run(4, 8, 32, 27); | |||||
| run(4, 8, 32, 29); | |||||
| run(4, 8, 32, 31); | |||||
| run(4, 8, 64, 5); | |||||
| run(4, 8, 64, 7); | |||||
| run(4, 8, 64, 9); | |||||
| run(4, 8, 64, 11); | |||||
| run(4, 8, 64, 13); | |||||
| run(4, 8, 64, 15); | |||||
| run(4, 8, 64, 17); | |||||
| run(4, 8, 64, 19); | |||||
| run(4, 8, 64, 21); | |||||
| run(4, 8, 64, 23); | |||||
| run(4, 8, 64, 25); | |||||
| run(4, 8, 64, 27); | |||||
| run(4, 8, 64, 29); | |||||
| run(4, 8, 64, 31); | |||||
| run(1, 2, 128, 31); | |||||
| run(1, 2, 256, 31); | |||||
| } | |||||
| TEST_F(CUDA, CONV_BIAS_FORWARD_CHANWISE_8x8x32) { | TEST_F(CUDA, CONV_BIAS_FORWARD_CHANWISE_8x8x32) { | ||||
| require_compute_capability(6, 1); | require_compute_capability(6, 1); | ||||
| Checker<ConvBiasForward> checker(handle_cuda()); | Checker<ConvBiasForward> checker(handle_cuda()); | ||||
| @@ -1474,6 +1527,69 @@ TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_TENSORCORE_INT8) { | |||||
| run_bench(256, 512, 7, 7, 512, 3, 3, 1, 1, 1000); | run_bench(256, 512, 7, 7, 512, 3, 3, 1, 1, 1000); | ||||
| run_bench(256, 512, 7, 7, 2048, 1, 1, 1, 1, 1000); | run_bench(256, 512, 7, 7, 2048, 1, 1, 1, 1, 1000); | ||||
| } | } | ||||
| TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER) { | |||||
| require_compute_capability(7, 5); | |||||
| Benchmarker<ConvBiasForward> bencher(handle_cuda()); | |||||
| bencher.set_display(false); | |||||
| bencher.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBiasForward>( | |||||
| ConvBiasForward::algo_name<ConvBiasForward::DirectParam>( | |||||
| "DEPTHWISE_LARGE_FILTER", {}) | |||||
| .c_str())); | |||||
| ConvBias::Param param; | |||||
| param.format = ConvBias::Param::Format::NCHW; | |||||
| using NonlineMode = ConvBias::Param::NonlineMode; | |||||
| param.nonlineMode = NonlineMode::IDENTITY; | |||||
| param.sparse = ConvBias::Param::Sparse::GROUP; | |||||
| auto run_bench = [&](size_t batch, size_t g, size_t hi, size_t wi, size_t fh, | |||||
| size_t fw, size_t sh, size_t sw, size_t nr_times) { | |||||
| param.pad_h = fh / 2; | |||||
| param.pad_w = fw / 2; | |||||
| param.stride_h = sh; | |||||
| param.stride_w = sw; | |||||
| bencher.set_param(param) | |||||
| .set_dtype(0, dtype::Float32()) | |||||
| .set_dtype(1, dtype::Float32()) | |||||
| .set_dtype(2, dtype::Float32()) | |||||
| .set_dtype(4, dtype::Float32()); | |||||
| bencher.set_times(nr_times); | |||||
| size_t ho = infer_conv_shape(hi, fh, sh, param.pad_h); | |||||
| size_t wo = infer_conv_shape(wi, fw, sw, param.pad_w); | |||||
| TensorShape inp{batch, g, hi, wi}, kern{g, 1, 1, fh, fw}, out{batch, g, ho, wo}; | |||||
| float bandwith = static_cast<float>( | |||||
| inp.total_nr_elems() + kern.total_nr_elems() + | |||||
| out.total_nr_elems()) / | |||||
| (1024 * 1024 * 1024) * 1e3; | |||||
| auto time_in_ms = bencher.execs({inp, kern, {}, {}, out}) / nr_times; | |||||
| auto ops = 2.0 * batch * g * ho * wo * fh * fw / (time_in_ms * 1e-3) * 1e-12; | |||||
| printf("chanwise_depthwise_large_filter: inp=%s, kern=%s, out=%s, time: " | |||||
| "%.2fms, " | |||||
| "perf: %.2f Tops bandwidth: %.2fGB/s.\n", | |||||
| inp.to_string().c_str(), kern.to_string().c_str(), | |||||
| out.to_string().c_str(), time_in_ms, ops, bandwith * 4 / time_in_ms); | |||||
| }; | |||||
| run_bench(64, 384, 32, 32, 3, 3, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 5, 5, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 7, 7, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 9, 9, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 11, 11, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 13, 13, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 15, 15, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 17, 17, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 19, 19, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 21, 21, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 23, 23, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 25, 25, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 27, 27, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 29, 29, 1, 1, 10); | |||||
| run_bench(64, 384, 32, 32, 31, 31, 1, 1, 10); | |||||
| } | |||||
| #endif | #endif | ||||
| #endif | #endif | ||||
| @@ -901,6 +901,43 @@ TEST_F(CUDA, CONVOLUTION_BWD_DATA_BENCHMARK) { | |||||
| run(32, 64, 64, 56, 56, 1, 1, 0); | run(32, 64, 64, 56, 56, 1, 1, 0); | ||||
| } | } | ||||
| TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_CHANWISE_SMALL_FEAT_LARGE_FILTER) { | |||||
| CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()}; | |||||
| std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{ | |||||
| new OprProxy<ConvolutionBackwardData>{true}}; | |||||
| size_t RUNS = 10; | |||||
| bench.set_proxy(proxy).set_times(RUNS); | |||||
| auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH, | |||||
| size_t SH, size_t PH) { | |||||
| bench.set_dtype(0, dtype::Float32()) | |||||
| .set_dtype(1, dtype::Float32()) | |||||
| .set_dtype(2, dtype::Float32()); | |||||
| param::Convolution param; | |||||
| param.stride_h = param.stride_w = SH; | |||||
| param.pad_h = param.pad_w = FH / 2; | |||||
| param.sparse = param::Convolution::Sparse::GROUP; | |||||
| bench.set_param(param); | |||||
| bench.proxy()->target_execution_policy.algo.reset(); | |||||
| TensorLayout src{{N, g, IH, IW}, dtype::Float32()}, | |||||
| filter{{g, 1, 1, FH, FH}, dtype::Float32()}; | |||||
| TensorLayout dst; | |||||
| { | |||||
| auto&& opr = handle_cuda()->create_operator<Convolution>(); | |||||
| opr->param() = param; | |||||
| opr->deduce_layout(src, filter, dst); | |||||
| } | |||||
| auto time_ms_fp32 = bench.execl({filter, dst, src}) / RUNS; | |||||
| float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH; | |||||
| printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), | |||||
| filter.to_string().c_str(), dst.to_string().c_str()); | |||||
| printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp32, | |||||
| (flo / (time_ms_fp32 * 1e9))); | |||||
| }; | |||||
| run(64, 384, 384, 32, 32, 31, 1, 15); | |||||
| } | |||||
| TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_BF16) { | TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_BF16) { | ||||
| CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()}; | CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()}; | ||||
| std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{ | std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{ | ||||
| @@ -1065,6 +1102,46 @@ TEST_F(CUDA, CONVOLUTION_BWD_FILTER_BENCHMARK) { | |||||
| run(32, 512, 1024, 14, 14, 1, 2, 0); | run(32, 512, 1024, 14, 14, 1, 2, 0); | ||||
| run(32, 64, 64, 56, 56, 1, 1, 0); | run(32, 64, 64, 56, 56, 1, 1, 0); | ||||
| } | } | ||||
| TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_FILTER_CHANWISE_SMALL_FEAT_LARGE_FILTER) { | |||||
| CUBenchmarker<ConvolutionBackwardFilter> bench{handle_cuda()}; | |||||
| std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{ | |||||
| new OprProxy<ConvolutionBackwardFilter>{true}}; | |||||
| size_t RUNS = 10; | |||||
| bench.set_proxy(proxy).set_times(RUNS); | |||||
| bench.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>( | |||||
| "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFTv7.6.3")); | |||||
| auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH, | |||||
| size_t SH, size_t PH) { | |||||
| bench.set_dtype(0, dtype::Float32()) | |||||
| .set_dtype(1, dtype::Float32()) | |||||
| .set_dtype(2, dtype::Float32()); | |||||
| param::Convolution param; | |||||
| param.stride_h = param.stride_w = SH; | |||||
| param.pad_h = param.pad_w = FH / 2; | |||||
| param.sparse = param::Convolution::Sparse::GROUP; | |||||
| bench.set_param(param); | |||||
| bench.proxy()->target_execution_policy.algo.reset(); | |||||
| TensorLayout src{{N, g, IH, IW}, dtype::Float32()}, | |||||
| filter{{g, 1, 1, FH, FH}, dtype::Float32()}; | |||||
| TensorLayout dst; | |||||
| { | |||||
| auto&& opr = handle_cuda()->create_operator<Convolution>(); | |||||
| opr->param() = param; | |||||
| opr->deduce_layout(src, filter, dst); | |||||
| } | |||||
| auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS; | |||||
| float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH; | |||||
| printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), | |||||
| filter.to_string().c_str(), dst.to_string().c_str()); | |||||
| printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp32, | |||||
| (flo / (time_ms_fp32 * 1e9))); | |||||
| }; | |||||
| run(64, 384, 384, 32, 32, 31, 1, 15); | |||||
| } | |||||
| #endif | #endif | ||||
| #undef CUDNN_VERSION_STRING | #undef CUDNN_VERSION_STRING | ||||