| @@ -31,7 +31,7 @@ class Function: | |||
| self.y = y | |||
| return y | |||
| def backward(self. output_grads): | |||
| def backward(self, output_grads): | |||
| y = self.y | |||
| return output_grads * y * (1-y) | |||
| @@ -194,9 +194,9 @@ class Compose(VisionTransform): | |||
| will be random shuffled, the 2nd and 4th transform will also be shuffled. | |||
| :param order: The same with :class:`VisionTransform` | |||
| Example: | |||
| Examples: | |||
| ..testcode:: | |||
| .. testcode:: | |||
| from megengine.data.transform import RandomHorizontalFlip, RandomVerticalFlip, CenterCrop, ToMode, Compose | |||
| @@ -197,8 +197,8 @@ def sqrt(inp: Tensor) -> Tensor: | |||
| .. testoutput:: | |||
| [[0. 1. 1.4142] | |||
| [1.7321 2. 2.2361 ]] | |||
| [[0. 1. 1.4142] | |||
| [1.7321 2. 2.2361]] | |||
| """ | |||
| return inp ** 0.5 | |||
| @@ -227,8 +227,8 @@ def square(inp: Tensor) -> Tensor: | |||
| .. testoutput:: | |||
| [[0. 1. 4.] | |||
| [9. 16. 25.]] | |||
| [[ 0. 1. 4.] | |||
| [ 9. 16. 25.]] | |||
| """ | |||
| return inp ** 2 | |||
| @@ -437,7 +437,7 @@ def clamp(inp: Tensor, lower=None, upper=None) -> Tensor: | |||
| :param lower: lower-bound of the range to be clamped to | |||
| :param upper: upper-bound of the range to be clamped to | |||
| Example: | |||
| Examples: | |||
| .. testcode:: | |||
| @@ -452,6 +452,8 @@ def clamp(inp: Tensor, lower=None, upper=None) -> Tensor: | |||
| print(F.clamp(a, upper=3).numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [2 2 2 3 4] | |||
| @@ -58,6 +58,8 @@ def isnan(inp: Tensor) -> Tensor: | |||
| print(F.isnan(x).numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [False True False] | |||
| @@ -83,6 +85,8 @@ def isinf(inp: Tensor) -> Tensor: | |||
| print(F.isinf(x).numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [False True False] | |||
| @@ -141,7 +145,9 @@ def sum( | |||
| data = tensor(np.arange(1, 7, dtype=np.int32).reshape(2, 3)) | |||
| out = F.sum(data) | |||
| print(out.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [21] | |||
| @@ -208,6 +214,8 @@ def mean( | |||
| out = F.mean(data) | |||
| print(out.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [3.5] | |||
| @@ -250,9 +258,11 @@ def var( | |||
| out = F.var(data) | |||
| print(out.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [2.9166667] | |||
| [2.9167] | |||
| """ | |||
| if axis is None: | |||
| m = mean(inp, axis=axis, keepdims=False) | |||
| @@ -288,9 +298,11 @@ def std( | |||
| out = F.std(data, axis=1) | |||
| print(out.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [0.8164966 0.8164966] | |||
| [0.8165 0.8165] | |||
| """ | |||
| return var(inp, axis=axis, keepdims=keepdims) ** 0.5 | |||
| @@ -354,6 +366,8 @@ def max( | |||
| y = F.max(x) | |||
| print(y.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [6] | |||
| @@ -388,9 +402,11 @@ def norm( | |||
| y = F.norm(x) | |||
| print(y.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [4.358899] | |||
| [4.3589] | |||
| """ | |||
| if p == 0: | |||
| @@ -426,6 +442,8 @@ def argmin( | |||
| y = F.argmin(x) | |||
| print(y.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [0] | |||
| @@ -479,6 +497,8 @@ def argmax( | |||
| x = tensor(np.arange(1, 7, dtype=np.int32).reshape(2,3)) | |||
| y = F.argmax(x) | |||
| print(y.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| @@ -372,10 +372,12 @@ def softplus(inp: Tensor) -> Tensor: | |||
| x = tensor(np.arange(-3, 3, dtype=np.float32)) | |||
| y = F.softplus(x) | |||
| print(y.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| .. output:: | |||
| [0.04858735 0.126928 0.3132617 0.6931472 1.3132617 2.126928 ] | |||
| [0.0486 0.1269 0.3133 0.6931 1.3133 2.1269] | |||
| """ | |||
| return log1p(exp(-abs(inp))) + relu(inp) | |||
| @@ -411,10 +413,12 @@ def log_softmax(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: | |||
| y = F.log_softmax(x, axis=1) | |||
| print(y.numpy()) | |||
| .. output:: | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[-4.4519143 -3.4519143 -2.4519143 -1.4519144 -0.4519144] | |||
| [-4.4519143 -3.4519143 -2.4519143 -1.4519144 -0.4519144]] | |||
| [[-4.4519 -3.4519 -2.4519 -1.4519 -0.4519] | |||
| [-4.4519 -3.4519 -2.4519 -1.4519 -0.4519]] | |||
| """ | |||
| return inp - logsumexp(inp, axis, keepdims=True) | |||
| @@ -432,6 +436,7 @@ def logsigmoid(inp: Tensor) -> Tensor: | |||
| :param inp: The input tensor | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| @@ -442,9 +447,12 @@ def logsigmoid(inp: Tensor) -> Tensor: | |||
| y = F.logsigmoid(x) | |||
| print(y.numpy()) | |||
| .. output:: | |||
| Outputs: | |||
| .. testoutput:: | |||
| [-5.0067153 -4.01815 -3.0485873 -2.126928 -1.3132617 -0.6931472 -0.3132617 -0.126928 -0.04858735 -0.01814993] | |||
| [-5.0067 -4.0181 -3.0486 -2.1269 -1.3133 -0.6931 -0.3133 -0.1269 -0.0486 | |||
| -0.0181] | |||
| """ | |||
| return -softplus(-inp) | |||
| @@ -478,6 +486,7 @@ def logsumexp( | |||
| :param keepdims: whether to retain :attr:`axis` or not for the output tensor. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| @@ -488,9 +497,11 @@ def logsumexp( | |||
| y = F.logsumexp(x, axis=1, keepdims=False) | |||
| print(y.numpy()) | |||
| .. output:: | |||
| Outputs: | |||
| .. testoutput:: | |||
| [-0.5480856 4.4519143] | |||
| [-0.5481 4.4519] | |||
| """ | |||
| max_value = max(inp, axis, keepdims=True) | |||
| @@ -577,8 +588,9 @@ def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[0.01165623 0.03168492 0.08612854 0.23412167 0.6364086 ] | |||
| [0.01165623 0.03168492 0.08612854 0.23412167 0.6364086 ]] | |||
| [[0.0117 0.0317 0.0861 0.2341 0.6364] | |||
| [0.0117 0.0317 0.0861 0.2341 0.6364]] | |||
| """ | |||
| if axis is None: | |||
| @@ -1026,7 +1038,7 @@ def dot(inp1: Tensor, inp2: Tensor) -> Tensor: | |||
| Examples: | |||
| .. teestcode:: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| @@ -1039,9 +1051,10 @@ def dot(inp1: Tensor, inp2: Tensor) -> Tensor: | |||
| Outputs: | |||
| .. testoutput:: | |||
| [55.] | |||
| .. testoutputs:: | |||
| """ | |||
| op = builtin.Dot() | |||
| inp1, inp2 = utils.convert_inputs(inp1, inp2) | |||
| @@ -1058,7 +1071,7 @@ def svd(inp: Tensor, full_matrices=False, compute_uv=True) -> Tensor: | |||
| Examples: | |||
| .. teestcode:: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| @@ -1070,7 +1083,9 @@ def svd(inp: Tensor, full_matrices=False, compute_uv=True) -> Tensor: | |||
| Outputs: | |||
| [7.348, 1.] | |||
| .. testoutput:: | |||
| [7.3485 1. ] | |||
| """ | |||
| op = builtin.SVD(full_matrices=full_matrices, compute_uv=compute_uv) | |||
| @@ -1445,6 +1460,8 @@ def indexing_one_hot( | |||
| val = F.indexing_one_hot(src, index) | |||
| print(val.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [1.] | |||
| @@ -60,7 +60,7 @@ __all__ = [ | |||
| ] | |||
| def eye(n: int, *, dtype=None, device: Optional[CompNode] = None) -> Tensor: | |||
| def eye(n: int, *, dtype="float32", device: Optional[CompNode] = None) -> Tensor: | |||
| """ | |||
| Returns a 2D tensor with ones on the diagonal and zeros elsewhere. | |||
| @@ -80,7 +80,7 @@ def eye(n: int, *, dtype=None, device: Optional[CompNode] = None) -> Tensor: | |||
| data_shape = (4, 6) | |||
| n, m = data_shape | |||
| out = F.eye(n, m, dtype=np.float32) | |||
| out = F.eye([n, m], dtype=np.float32) | |||
| print(out.numpy()) | |||
| Outputs: | |||
| @@ -135,6 +135,8 @@ def zeros_like(inp: Tensor) -> Tensor: | |||
| out = F.zeros_like(inp) | |||
| print(out.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[0 0 0] | |||
| @@ -638,7 +640,7 @@ def cond_take(mask: Tensor, x: Tensor) -> Tensor: | |||
| .. testoutput:: | |||
| Tensor([1. 4.]) Tensor([0 3], dtype=int32) | |||
| [1. 4.] [0 3] | |||
| """ | |||
| if not isinstance(x, (TensorWrapperBase, TensorBase)): | |||
| @@ -888,6 +890,8 @@ def linspace( | |||
| a = F.linspace(3,10,5) | |||
| print(a.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [ 3. 4.75 6.5 8.25 10. ] | |||
| @@ -930,6 +934,8 @@ def arange( | |||
| a = F.arange(5) | |||
| print(a.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| @@ -977,7 +983,9 @@ def param_pack_split(inp: Tensor, offsets: List, shapes: List) -> Tensor: | |||
| b, c = F.param_pack_split(a, [0, 1, 1, 10], [(1,), (3, 3)]) | |||
| print(b.numpy()) | |||
| print(c.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [1] | |||
| @@ -1000,7 +1008,7 @@ def param_pack_concat(inps: List, offsets: Tensor, offsets_val: List) -> Tensor: | |||
| :param offsets: device value of offsets | |||
| :param offsets_val: offsets of inputs, length of 2 * n, | |||
| format [begin0, end0, begin1, end1]. | |||
| :return: split tensors | |||
| :return: concat tensors | |||
| Examples: | |||
| @@ -1013,10 +1021,12 @@ def param_pack_concat(inps: List, offsets: Tensor, offsets_val: List) -> Tensor: | |||
| a = tensor(np.ones((1,), np.int32)) | |||
| b = tensor(np.ones((3, 3), np.int32)) | |||
| offsets_val = [0, 1, 1, 10] | |||
| offsets = tensor(offsets, np.int32) | |||
| offsets = tensor(offsets_val, np.int32) | |||
| c = F.param_pack_concat([a, b], offsets, offsets_val) | |||
| print(c.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [1 1 1 1 1 1 1 1 1 1] | |||
| @@ -63,19 +63,6 @@ def accuracy( | |||
| return accs | |||
| def zero_grad(inp: Tensor) -> Tensor: | |||
| r""" | |||
| Returns a tensor which is treated as constant during backward gradient calcuation, | |||
| i.e. its gradient is zero. | |||
| :param inp: Input tensor. | |||
| See implementation of :func:`~.softmax` for example. | |||
| """ | |||
| print("zero_grad is obsoleted, please use detach instead") | |||
| raise NotImplementedError | |||
| def copy(inp, cn): | |||
| r""" | |||
| Copy tensor to another device. | |||
| @@ -219,7 +219,7 @@ class LeakyReLU(Module): | |||
| .. testoutput:: | |||
| [-0.08 -0.12 6. 10. ] | |||
| [-0.08 -0.12 6. 10. ] | |||
| """ | |||
| @@ -267,15 +267,17 @@ class BatchNorm2d(_BatchNorm): | |||
| m = M.BatchNorm2d(4) | |||
| inp = mge.tensor(np.random.rand(1, 4, 3, 3).astype("float32")) | |||
| oup = m(inp) | |||
| print(m.weight, m.bias) | |||
| print(m.weight.numpy(), m.bias.numpy()) | |||
| # Without Learnable Parameters | |||
| m = M.BatchNorm2d(4, affine=False) | |||
| oup = m(inp) | |||
| print(m.weight, m.bias) | |||
| Outputs: | |||
| .. testoutput:: | |||
| Tensor([1. 1. 1. 1.]) Tensor([0. 0. 0. 0.]) | |||
| [1. 1. 1. 1.] [0. 0. 0. 0.] | |||
| None None | |||
| """ | |||
| @@ -17,23 +17,25 @@ class Sequential(Module): | |||
| Alternatively, an ordered dict of modules can also be passed in. | |||
| To make it easier to understand, here is a small example: | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| import megengine.nn as nn | |||
| import megengine.nn.functional as F | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| batch_size = 64 | |||
| data = nn.Input("data", shape=(batch_size, 1, 28, 28), dtype=np.float32, value=np.zeros((batch_size, 1, 28, 28))) | |||
| label = nn.Input("label", shape=(batch_size,), dtype=np.int32, value=np.zeros(batch_size,)) | |||
| data = tensor(np.zeros((batch_size, 1, 28, 28)), dtype=np.float32) | |||
| label = tensor(np.zeros(batch_size,), dtype=np.int32) | |||
| data = data.reshape(batch_size, -1) | |||
| net = nn.Sequential( | |||
| nn.Linear(28 * 28, 320), | |||
| nn.Linear(320, 500), | |||
| nn.Linear(500, 320), | |||
| nn.Linear(320, 10) | |||
| net = M.Sequential( | |||
| M.Linear(28 * 28, 320), | |||
| M.Linear(320, 500), | |||
| M.Linear(500, 320), | |||
| M.Linear(320, 10) | |||
| ) | |||
| pred = net(data) | |||
| @@ -37,7 +37,9 @@ def normal( | |||
| x = rand.normal(mean=0, std=1, size=(2, 2)) | |||
| print(x.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| :options: +SKIP | |||
| @@ -73,7 +75,9 @@ def uniform( | |||
| x = rand.uniform(size=(2, 2)) | |||
| print(x.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| :options: +SKIP | |||