GitOrigin-RevId: 82242b7437
tags/v1.7.2.m1
| @@ -6,7 +6,8 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "megdnn/oprs.h" | |||
| @@ -28,22 +29,40 @@ void Images2NeibsBase::deduce_layout_fwd(const TensorLayout& src, TensorLayout& | |||
| }; | |||
| MEGDNN_MARK_USED_VAR(errmsg); | |||
| megdnn_assert_contiguous(src); | |||
| megdnn_assert(src.ndim == 4_z, "%s", errmsg().c_str()); | |||
| size_t n = src[0], ic = src[1], ih = src[2], iw = src[3]; | |||
| size_t ph = this->param().pad_h; | |||
| size_t pw = this->param().pad_w; | |||
| size_t sh = this->param().stride_h; | |||
| size_t sw = this->param().stride_w; | |||
| size_t dh = this->param().dilate_h; | |||
| size_t dw = this->param().dilate_w; | |||
| size_t wh = this->param().window_h; | |||
| size_t ww = this->param().window_w; | |||
| size_t oh, ow; | |||
| megdnn_assert(src.ndim == 4_z || src.ndim == 5_z, "%s", errmsg().c_str()); | |||
| infer_conv_shape2d( | |||
| ih, iw, wh + (wh - 1) * (dh - 1), ww + (ww - 1) * (dw - 1), sh, sw, ph, pw, | |||
| oh, ow); | |||
| dst = TensorLayout(TensorShape({n, ic, oh, ow, wh, ww}), src.dtype); | |||
| if (src.ndim == 4_z) { | |||
| size_t n = src[0], ic = src[1], ih = src[2], iw = src[3]; | |||
| size_t ph = this->param().pad_h; | |||
| size_t pw = this->param().pad_w; | |||
| size_t sh = this->param().stride_h; | |||
| size_t sw = this->param().stride_w; | |||
| size_t dh = this->param().dilate_h; | |||
| size_t dw = this->param().dilate_w; | |||
| size_t wh = this->param().window_h; | |||
| size_t ww = this->param().window_w; | |||
| size_t oh, ow; | |||
| infer_conv_shape2d( | |||
| ih, iw, wh + (wh - 1) * (dh - 1), ww + (ww - 1) * (dw - 1), sh, sw, ph, | |||
| pw, oh, ow); | |||
| dst = TensorLayout(TensorShape({n, ic, oh, ow, wh, ww}), src.dtype, src.format); | |||
| } else if (src.ndim == 5_z) { | |||
| size_t n = src[0], ih = src[1], iw = src[3], ic = src[2]; | |||
| size_t ph = this->param().pad_h; | |||
| size_t pw = this->param().pad_w; | |||
| size_t sh = this->param().stride_h; | |||
| size_t sw = this->param().stride_w; | |||
| size_t dh = this->param().dilate_h; | |||
| size_t dw = this->param().dilate_w; | |||
| size_t wh = this->param().window_h; | |||
| size_t ww = this->param().window_w; | |||
| size_t oh, ow; | |||
| infer_conv_shape2d( | |||
| ih, iw, wh + (wh - 1) * (dh - 1), ww + (ww - 1) * (dw - 1), sh, sw, ph, | |||
| pw, oh, ow); | |||
| dst = TensorLayout( | |||
| TensorShape({n, oh, ic, ow, wh, ww, 4}), src.dtype, src.format); | |||
| } | |||
| } | |||
| void Images2NeibsBase::check_layout_fwd( | |||
| @@ -21,40 +21,100 @@ namespace naive { | |||
| template <typename T> | |||
| void Images2NeibsForwardImpl::exec_internal( | |||
| _megdnn_tensor_in src, _megdnn_tensor_out dst) { | |||
| int N = src.layout.shape[0], C = src.layout.shape[1], IH = src.layout.shape[2], | |||
| IW = src.layout.shape[3]; | |||
| auto sptr = src.ptr<T>(); | |||
| auto dptr = dst.ptr<T>(); | |||
| size_t idx = 0; | |||
| int window_h = static_cast<int>(param().window_h); | |||
| int window_w = static_cast<int>(param().window_w); | |||
| int pad_h = static_cast<int>(param().pad_h); | |||
| int pad_w = static_cast<int>(param().pad_w); | |||
| int stride_h = static_cast<int>(param().stride_h); | |||
| int stride_w = static_cast<int>(param().stride_w); | |||
| int dilate_h = static_cast<int>(param().dilate_h); | |||
| int dilate_w = static_cast<int>(param().dilate_w); | |||
| int equ_window_h = dilate_h * (window_h - 1) + 1; | |||
| int equ_window_w = dilate_w * (window_w - 1) + 1; | |||
| for (int n = 0; n < N; ++n) | |||
| for (int c = 0; c < C; ++c) { | |||
| int ih = -pad_h; | |||
| for (; ih + equ_window_h <= IH + pad_h; ih += stride_h) { | |||
| int iw = -pad_w; | |||
| for (; iw + equ_window_w <= IW + pad_w; iw += stride_w) { | |||
| for (int kh = 0; kh < window_h; ++kh) | |||
| for (int kw = 0; kw < window_w; ++kw) { | |||
| int ih2 = ih + dilate_h * kh, iw2 = iw + dilate_w * kw; | |||
| dptr[idx * window_h * window_w + kh * window_w + kw] = | |||
| ih2 >= 0 && ih2 < IH && iw2 >= 0 && iw2 < IW | |||
| ? sptr[n * C * IH * IW + c * IH * IW + | |||
| ih2 * IW + iw2] | |||
| : 0.0f; | |||
| } | |||
| ++idx; | |||
| megdnn_assert(src.layout.ndim == 5 || src.layout.ndim == 4); | |||
| if (src.layout.ndim == 5) { | |||
| int N = src.layout.shape[0], C = src.layout.shape[2], IH = src.layout.shape[1], | |||
| IW = src.layout.shape[3]; | |||
| auto sptr = src.ptr<T>(); | |||
| auto dptr = dst.ptr<T>(); | |||
| size_t idx = 0; | |||
| int window_h = static_cast<int>(param().window_h); | |||
| int window_w = static_cast<int>(param().window_w); | |||
| int pad_h = static_cast<int>(param().pad_h); | |||
| int pad_w = static_cast<int>(param().pad_w); | |||
| int stride_h = static_cast<int>(param().stride_h); | |||
| int stride_w = static_cast<int>(param().stride_w); | |||
| int dilate_h = static_cast<int>(param().dilate_h); | |||
| int dilate_w = static_cast<int>(param().dilate_w); | |||
| int equ_window_h = dilate_h * (window_h - 1) + 1; | |||
| int equ_window_w = dilate_w * (window_w - 1) + 1; | |||
| auto src_stride = src.layout.stride; | |||
| auto dst_stride = dst.layout.stride; | |||
| for (int n = 0; n < N; ++n) | |||
| for (int c = 0; c < C; ++c) { | |||
| int ih = -pad_h; | |||
| int hc = 0; | |||
| for (; ih <= IH + pad_h - equ_window_h; ih += stride_h, hc++) { | |||
| int iw = -pad_w; | |||
| int wc = 0; | |||
| for (; iw <= IW + pad_w - equ_window_w; iw += stride_w, wc++) { | |||
| for (int kh = 0; kh < window_h; ++kh) | |||
| for (int kw = 0; kw < window_w; ++kw) { | |||
| for (int cn = 0; cn < 4; cn++) { | |||
| int ih2 = ih + dilate_h * kh, | |||
| iw2 = iw + dilate_w * kw; | |||
| int dst_pos = | |||
| n * dst_stride[0] + hc * dst_stride[1] + | |||
| c * dst_stride[2] + wc * dst_stride[3] + | |||
| kh * dst_stride[4] + kw * dst_stride[5] + | |||
| cn * dst_stride[6]; | |||
| int src_pos = | |||
| n * src_stride[0] + ih2 * src_stride[1] + | |||
| c * src_stride[2] + iw2 * src_stride[3] + | |||
| cn * src_stride[4]; | |||
| if (ih2 >= 0 && ih2 < IH && iw2 >= 0 && iw2 < IW) { | |||
| dptr[dst_pos] = sptr[src_pos]; | |||
| } else { | |||
| dptr[dst_pos] = 0.0f; | |||
| } | |||
| } | |||
| } | |||
| ++idx; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } else { | |||
| int N = src.layout.shape[0], C = src.layout.shape[1], IH = src.layout.shape[2], | |||
| IW = src.layout.shape[3]; | |||
| auto sptr = src.ptr<T>(); | |||
| auto dptr = dst.ptr<T>(); | |||
| size_t idx = 0; | |||
| int window_h = static_cast<int>(param().window_h); | |||
| int window_w = static_cast<int>(param().window_w); | |||
| int pad_h = static_cast<int>(param().pad_h); | |||
| int pad_w = static_cast<int>(param().pad_w); | |||
| int stride_h = static_cast<int>(param().stride_h); | |||
| int stride_w = static_cast<int>(param().stride_w); | |||
| int dilate_h = static_cast<int>(param().dilate_h); | |||
| int dilate_w = static_cast<int>(param().dilate_w); | |||
| int equ_window_h = dilate_h * (window_h - 1) + 1; | |||
| int equ_window_w = dilate_w * (window_w - 1) + 1; | |||
| for (int n = 0; n < N; ++n) | |||
| for (int c = 0; c < C; ++c) { | |||
| int ih = -pad_h; | |||
| for (; ih + equ_window_h <= IH + pad_h; ih += stride_h) { | |||
| int iw = -pad_w; | |||
| for (; iw + equ_window_w <= IW + pad_w; iw += stride_w) { | |||
| for (int kh = 0; kh < window_h; ++kh) | |||
| for (int kw = 0; kw < window_w; ++kw) { | |||
| int ih2 = ih + dilate_h * kh, iw2 = iw + dilate_w * kw; | |||
| int src_pos = | |||
| n * C * IH * IW + c * IH * IW + ih2 * IW + iw2; | |||
| int dst_pos = | |||
| idx * window_h * window_w + kh * window_w + kw; | |||
| if (ih2 >= 0 && ih2 < IH && iw2 >= 0 && iw2 < IW) { | |||
| dptr[dst_pos] = sptr[src_pos]; | |||
| } else { | |||
| dptr[dst_pos] = 0.0f; | |||
| } | |||
| } | |||
| ++idx; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void Images2NeibsForwardImpl::exec( | |||
| @@ -6,7 +6,8 @@ | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #pragma once | |||
| #include <cstddef> | |||
| @@ -26,6 +27,32 @@ struct TestArg { | |||
| inline std::vector<TestArg> get_args() { | |||
| std::vector<TestArg> args; | |||
| // clang-format off | |||
| for (uint32_t ph : {0, 1}) | |||
| for (uint32_t pw : {0, 1}) | |||
| for (uint32_t sh : {1, 2}) | |||
| for (uint32_t sw : {1, 2}) | |||
| for (uint32_t dh : {1, 2, 3}) | |||
| for (uint32_t dw : {1, 2, 3}) | |||
| for (uint32_t wh : {3, 4}) | |||
| for (uint32_t ww : {3, 4}) { | |||
| args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, dh, dw, wh, ww}, | |||
| TensorShape{2, 3, 19, 20}); | |||
| } | |||
| // clang-format on | |||
| // large window case | |||
| args.emplace_back( | |||
| param::Images2Neibs{0, 0, 1, 1, 1, 1, 32, 64}, TensorShape{2, 3, 96, 128}); | |||
| // large size | |||
| args.emplace_back( | |||
| param::Images2Neibs{0, 0, 1, 1, 1, 1, 1, 1}, TensorShape{128, 128, 28, 24}); | |||
| return args; | |||
| } | |||
| inline std::vector<TestArg> get_cd4_args() { | |||
| std::vector<TestArg> args; | |||
| // clang-format off | |||
| for (uint32_t ph : {0, 1}) | |||
| for (uint32_t pw : {0, 1}) | |||
| @@ -33,18 +60,21 @@ inline std::vector<TestArg> get_args() { | |||
| for (uint32_t sw : {1, 2}) | |||
| for (uint32_t dh : {1, 2, 3}) | |||
| for (uint32_t dw : {1, 2, 3}) | |||
| for (uint32_t wh : {3, 4}) | |||
| for (uint32_t ww : {3, 4}) { | |||
| args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, dh, dw, wh, ww}, | |||
| TensorShape{2, 3, 19, 20}); | |||
| for (uint32_t wh : {2, 3}) | |||
| for (uint32_t ww : {2, 3}) { | |||
| args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, dh, dw, wh, | |||
| ww}, | |||
| TensorShape{2, 13, 1, 14, 4}); | |||
| } | |||
| // clang-format on | |||
| // large window case | |||
| args.emplace_back( | |||
| param::Images2Neibs{0, 0, 1, 1, 1, 1, 32, 64}, TensorShape{2, 3, 96, 128}); | |||
| param::Images2Neibs{0, 0, 1, 1, 1, 1, 8, 14}, TensorShape{2, 16, 1, 16, 4}); | |||
| // large size | |||
| args.emplace_back( | |||
| param::Images2Neibs{0, 0, 1, 1, 1, 1, 1, 1}, TensorShape{128, 128, 28, 24}); | |||
| param::Images2Neibs{0, 0, 1, 1, 1, 1, 1, 1}, | |||
| TensorShape{256, 16, 64, 16, 4}); | |||
| return args; | |||
| } | |||
| @@ -75,6 +105,33 @@ inline std::vector<TestArg> get_benchmark_args() { | |||
| return args; | |||
| } | |||
| inline std::vector<TestArg> get_benchmark_args_cd4() { | |||
| std::vector<TestArg> args; | |||
| // clang-format off | |||
| for (uint32_t ph : {0, 1}) | |||
| for (uint32_t pw : {0, 1}) | |||
| for (uint32_t sh : {1, 2}) | |||
| for (uint32_t sw : {1, 2}) | |||
| for (uint32_t dh : {1, 2}) | |||
| for (uint32_t dw : {1, 2}) | |||
| for (uint32_t wh : {3, 4}) | |||
| for (uint32_t ww : {3, 4}) | |||
| for (uint32_t b : {1, 32}) | |||
| for (uint32_t c : {16, 32}) | |||
| for (uint32_t hw : {16, 32}) { | |||
| args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, dh, dw, wh, ww}, | |||
| TensorShape{b, hw, (c + 3) / 4, hw, 4}); | |||
| } | |||
| // clang-format on | |||
| // large size | |||
| args.emplace_back( | |||
| param::Images2Neibs{0, 0, 1, 1, 1, 1, 1, 1}, | |||
| TensorShape{256, 28, 32, 24, 4}); | |||
| return args; | |||
| } | |||
| } // namespace images2neibs | |||
| } // namespace test | |||
| } // namespace megdnn | |||
| @@ -56,3 +56,68 @@ TEST_F(NAIVE, IMAGES2NEIBS_FORWARD) { | |||
| 8, 10, 0, 22, 24, 0, 36, 38, 8, 10, 12, 22, 24, 26, | |||
| 36, 38, 40, 10, 12, 0, 24, 26, 0, 38, 40, 0})}); | |||
| } | |||
| TEST_F(NAIVE, IMAGES2NEIBS_FORWARD_CD4) { | |||
| Checker<Images2Neibs> checker(handle(), /* check_dispatch */ false); | |||
| Images2Neibs::Param param(0, 0, 1, 1, 1, 1, 2, 2); | |||
| checker.set_param(param).exect( | |||
| Testcase{ | |||
| TensorValue( | |||
| {1, 3, 1, 3, 4}, dtype::Uint8(), | |||
| {0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, | |||
| 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0, 0, 8, 0, 0, 0}), | |||
| {}}, | |||
| Testcase{ | |||
| {}, | |||
| TensorValue( | |||
| {1, 2, 1, 2, 2, 2, 4}, dtype::Uint8(), | |||
| {0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, | |||
| 1, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, | |||
| 3, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0, 0, | |||
| 4, 0, 0, 0, 5, 0, 0, 0, 7, 0, 0, 0, 8, 0, 0, 0})}); | |||
| param.pad_h = 1; | |||
| param.pad_w = 1; | |||
| param.stride_h = 2; | |||
| param.stride_w = 2; | |||
| param.dilate_h = 2; | |||
| param.dilate_w = 2; | |||
| param.window_h = 3; | |||
| param.window_w = 3; | |||
| checker.set_param(param).exect( | |||
| Testcase{ | |||
| TensorValue( | |||
| {1, 6, 1, 7, 4}, dtype::Uint8(), | |||
| {0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, | |||
| 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0, 0, | |||
| 8, 0, 0, 0, 9, 0, 0, 0, 10, 0, 0, 0, 11, 0, 0, 0, | |||
| 12, 0, 0, 0, 13, 0, 0, 0, 14, 0, 0, 0, 15, 0, 0, 0, | |||
| 16, 0, 0, 0, 17, 0, 0, 0, 18, 0, 0, 0, 19, 0, 0, 0, | |||
| 20, 0, 0, 0, 21, 0, 0, 0, 22, 0, 0, 0, 23, 0, 0, 0, | |||
| 24, 0, 0, 0, 25, 0, 0, 0, 26, 0, 0, 0, 27, 0, 0, 0, | |||
| 28, 0, 0, 0, 29, 0, 0, 0, 30, 0, 0, 0, 31, 0, 0, 0, | |||
| 32, 0, 0, 0, 33, 0, 0, 0, 34, 0, 0, 0, 35, 0, 0, 0, | |||
| 36, 0, 0, 0, 37, 0, 0, 0, 38, 0, 0, 0, 39, 0, 0, 0, | |||
| 40, 0, 0, 0, 41, 0, 0, 0}), | |||
| {}}, | |||
| Testcase{ | |||
| {}, | |||
| TensorValue( | |||
| {1, 2, 1, 3, 3, 3, 4}, dtype::Uint8(), | |||
| {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
| 8, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, | |||
| 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
| 8, 0, 0, 0, 10, 0, 0, 0, 12, 0, 0, 0, 22, 0, 0, 0, | |||
| 24, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
| 0, 0, 0, 0, 10, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, | |||
| 24, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
| 8, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, | |||
| 24, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 38, 0, 0, 0, | |||
| 8, 0, 0, 0, 10, 0, 0, 0, 12, 0, 0, 0, 22, 0, 0, 0, | |||
| 24, 0, 0, 0, 26, 0, 0, 0, 36, 0, 0, 0, 38, 0, 0, 0, | |||
| 40, 0, 0, 0, 10, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, | |||
| 24, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 38, 0, 0, 0, | |||
| 40, 0, 0, 0, 0, 0, 0, 0})}); | |||
| } | |||
| @@ -17,6 +17,7 @@ | |||
| #include "megbrain/opr/blas.h" | |||
| #include "megbrain/opr/dnn/batch_norm.h" | |||
| #include "megbrain/opr/dnn/convolution.h" | |||
| #include "megbrain/opr/dnn/images2neibs.h" | |||
| #include "megbrain/opr/dnn/local.h" | |||
| #include "megbrain/opr/dnn/pooling.h" | |||
| #include "megbrain/opr/imgproc.h" | |||
| @@ -1651,6 +1652,7 @@ std::unique_ptr<ConvertFormatPass> ConvertFormatPass::make_nhwcd4_converter() { | |||
| replace_func[opr::Concat::typeinfo()] = replace_concat_opr; | |||
| replace_func[opr::Reshape::typeinfo()] = relayout_inp_to_chw; | |||
| replace_func[opr::GetVarShape::typeinfo()] = relayout_inp_to_chw; | |||
| replace_func[opr::Images2NeibsBackward::typeinfo()] = relayout_inp_to_chw; | |||
| replace_func[opr::Dimshuffle::typeinfo()] = relayout_inp_to_chw; | |||
| replace_func[opr::Reduce::typeinfo()] = relayout_inp_to_chw; | |||
| replace_func[opr::AssertEqual::typeinfo()] = relayout_inp_to_chw; | |||