| @@ -104,20 +104,19 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||
| ConvBiasForwardImpl::AlgoPack ConvBiasForwardImpl::sm_algo_pack; | |||
| ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(ConvBiasForwardImpl* o, | |||
| const TensorLayout& src, | |||
| const TensorLayout& filter, | |||
| const TensorLayout& bias, | |||
| const TensorLayout& z, | |||
| const TensorLayout& dst) | |||
| ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs( | |||
| ConvBiasForwardImpl* o, const TensorLayout& src, | |||
| const TensorLayout& filter, const TensorLayout& bias, | |||
| const TensorLayout& z, const TensorLayout& dst, | |||
| const PreprocessedFilter* preprocessed_filter) | |||
| : SizeArgs(o, src, filter, o->check_layout_fwd(src, filter, dst), bias, | |||
| z, dst) {} | |||
| z, dst, preprocessed_filter) {} | |||
| ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs( | |||
| ConvBiasForwardImpl* o, const TensorLayout& src, | |||
| const TensorLayout& filter, const CanonizedFilterMeta& filter_meta, | |||
| const TensorLayout& bias, const TensorLayout& z, | |||
| const TensorLayout& dst) | |||
| const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter) | |||
| : BiasForwardSizeArgs{concrete_handle(o->handle()), | |||
| &src, | |||
| &filter, | |||
| @@ -126,14 +125,16 @@ ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs( | |||
| filter_meta, | |||
| &dst, | |||
| o->param().nonlineMode}, | |||
| opr{o} {} | |||
| opr{o}, | |||
| preprocessed_filter{preprocessed_filter} {} | |||
| ConvBiasForwardImpl::AlgoBase::ExecArgs::ExecArgs( | |||
| ConvBiasForwardImpl* opr, _megdnn_tensor_in src, | |||
| _megdnn_tensor_in filter, _megdnn_tensor_in bias, _megdnn_tensor_in z, | |||
| _megdnn_tensor_out dst, _megdnn_workspace workspace) | |||
| _megdnn_tensor_out dst, _megdnn_workspace workspace, | |||
| const PreprocessedFilter* preprocessed_filter) | |||
| : SizeArgs(opr, src.layout, filter.layout, bias.layout, z.layout, | |||
| dst.layout), | |||
| dst.layout, preprocessed_filter), | |||
| src_tensor{&src}, | |||
| filter_tensor{&filter}, | |||
| bias_tensor{&bias}, | |||
| @@ -41,16 +41,19 @@ public: | |||
| AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
| struct SizeArgs : public conv_bias::BiasForwardSizeArgs { | |||
| ConvBiasForwardImpl* opr; | |||
| const PreprocessedFilter* preprocessed_filter; | |||
| std::string to_string() const; | |||
| SizeArgs(ConvBiasForwardImpl* opr, const TensorLayout& src, | |||
| const TensorLayout& filter, const TensorLayout& bias, | |||
| const TensorLayout& z, const TensorLayout& dst); | |||
| const TensorLayout& z, const TensorLayout& dst, | |||
| const PreprocessedFilter* preprocessed_filter = nullptr); | |||
| SizeArgs(ConvBiasForwardImpl* opr, const TensorLayout& src, | |||
| const TensorLayout& filter, | |||
| const CanonizedFilterMeta& filter_meta, | |||
| const TensorLayout& bias, const TensorLayout& z, | |||
| const TensorLayout& dst); | |||
| const TensorLayout& dst, | |||
| const PreprocessedFilter* preprocessed_filter = nullptr); | |||
| void init_conv_bias_desc(conv_bias::CUDNNForwardDescs& desc) const { | |||
| desc.set_conv_bias(*src_layout, filter_meta, *dst_layout, | |||
| @@ -69,11 +72,21 @@ public: | |||
| ExecArgs(ConvBiasForwardImpl* opr, _megdnn_tensor_in src, | |||
| _megdnn_tensor_in filter, _megdnn_tensor_in bias, | |||
| _megdnn_tensor_in z, _megdnn_tensor_out dst, | |||
| _megdnn_workspace workspace); | |||
| _megdnn_workspace workspace, | |||
| const PreprocessedFilter* preprocessed_filter = nullptr); | |||
| }; | |||
| virtual bool is_available(const SizeArgs& args) const = 0; | |||
| virtual size_t get_workspace_in_bytes(const SizeArgs& args) const = 0; | |||
| virtual void exec(const ExecArgs& args) const = 0; | |||
| virtual size_t get_preprocess_workspace_in_bytes( | |||
| const SizeArgs& args) const { | |||
| return 0; | |||
| } | |||
| virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||
| const SizeArgs& args) const { | |||
| return {}; | |||
| } | |||
| virtual void exec_preprocess(const ExecArgs& args) const {} | |||
| bool is_available_wk(const SizeArgs& args, size_t limit) { | |||
| return is_available(args) && get_workspace_in_bytes(args) <= limit; | |||
| @@ -29,7 +29,8 @@ void ConvBiasForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter, | |||
| _megdnn_workspace workspace) { | |||
| check_exec(src.layout, filter.layout, bias.layout, z.layout, dst.layout, | |||
| workspace.size, preprocessed_filter); | |||
| AlgoBase::ExecArgs args(this, src, filter, bias, z, dst, workspace); | |||
| AlgoBase::ExecArgs args(this, src, filter, bias, z, dst, workspace, | |||
| preprocessed_filter); | |||
| auto algo = get_algorithm(this, src.layout, filter.layout, bias.layout, | |||
| z.layout, dst.layout); | |||
| algo->check_workspace(args, workspace).exec(args); | |||
| @@ -205,17 +206,50 @@ const char* ConvBiasForwardImpl::get_algorithm_set_name() const { | |||
| return "CONV_BIAS_CUDA"; | |||
| } | |||
| size_t ConvBiasForwardImpl::get_workspace_in_bytes(const TensorLayout& src, | |||
| const TensorLayout& filter, | |||
| const TensorLayout& bias, | |||
| const TensorLayout& z, | |||
| const TensorLayout& dst, | |||
| const PreprocessedFilter*) { | |||
| AlgoBase::SizeArgs args{this, src, filter, bias, z, dst}; | |||
| size_t ConvBiasForwardImpl::get_workspace_in_bytes( | |||
| const TensorLayout& src, const TensorLayout& filter, | |||
| const TensorLayout& bias, const TensorLayout& z, | |||
| const TensorLayout& dst, | |||
| const PreprocessedFilter* preprocessed_filter) { | |||
| AlgoBase::SizeArgs args{ | |||
| this, src, filter, bias, z, dst, preprocessed_filter}; | |||
| return get_algorithm(this, src, filter, bias, z, dst) | |||
| ->get_workspace_in_bytes(args); | |||
| }; | |||
| size_t ConvBiasForwardImpl::get_preprocess_workspace_in_bytes( | |||
| const TensorLayout& src, const TensorLayout& filter, | |||
| const TensorLayout& bias, const TensorLayout& z, | |||
| const TensorLayout& dst) { | |||
| AlgoBase::SizeArgs args{this, src, filter, bias, z, dst}; | |||
| return get_algorithm(this, src, filter, bias, z, dst) | |||
| ->get_preprocess_workspace_in_bytes(args); | |||
| } | |||
| SmallVector<TensorLayout> | |||
| ConvBiasForwardImpl::deduce_preprocessed_filter_layout( | |||
| const TensorLayout& src, const TensorLayout& filter, | |||
| const TensorLayout& bias, const TensorLayout& z, | |||
| const TensorLayout& dst) { | |||
| AlgoBase::SizeArgs args{this, src, filter, bias, z, dst}; | |||
| return get_algorithm(this, src, filter, bias, z, dst) | |||
| ->deduce_preprocessed_filter_layout(args); | |||
| } | |||
| void ConvBiasForwardImpl::exec_preprocess( | |||
| const TensorLayout& src_layout, _megdnn_tensor_in filter, | |||
| const TensorLayout& bias_layout, const TensorLayout& z_layout, | |||
| const TensorLayout& dst_layout, PreprocessedFilter* preprocessed_filter, | |||
| _megdnn_workspace workspace) { | |||
| TensorND src{nullptr, src_layout}, dst{nullptr, dst_layout}, | |||
| z{nullptr, z_layout}, bias{nullptr, bias_layout}; | |||
| AlgoBase::ExecArgs args(this, src, filter, bias, z, dst, workspace, | |||
| preprocessed_filter); | |||
| auto algo = get_algorithm(this, src.layout, filter.layout, bias.layout, | |||
| z.layout, dst.layout); | |||
| return algo->exec_preprocess(args); | |||
| } | |||
| } // namespace cuda | |||
| } // namespace megdnn | |||
| @@ -44,21 +44,14 @@ public: | |||
| const TensorLayout&, | |||
| const TensorLayout&, | |||
| const TensorLayout&, | |||
| const TensorLayout&) override { | |||
| return 0; | |||
| }; | |||
| const TensorLayout&) override; | |||
| SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||
| const TensorLayout&, const TensorLayout&, const TensorLayout&, | |||
| const TensorLayout&, const TensorLayout&) override { | |||
| return {}; | |||
| } | |||
| const TensorLayout&, const TensorLayout&) override; | |||
| void exec_preprocess(const TensorLayout&, _megdnn_tensor_in, | |||
| const TensorLayout&, const TensorLayout&, | |||
| const TensorLayout&, PreprocessedFilter*, | |||
| _megdnn_workspace) override { | |||
| megdnn_throw("cuda conv_bias exec_preprocess has not implemeted yet"); | |||
| } | |||
| _megdnn_workspace) override; | |||
| const char* get_algorithm_set_name() const override; | |||
| class AlgoBase; | |||
| @@ -32,6 +32,22 @@ class DefaultComparator<dt_float32> { | |||
| } | |||
| }; | |||
| template <> | |||
| class DefaultComparator<dt_qint8> { | |||
| public: | |||
| bool is_same(dt_qint8 expected, dt_qint8 actual) const { | |||
| return expected.as_int8() == actual.as_int8(); | |||
| } | |||
| }; | |||
| template <> | |||
| class DefaultComparator<dt_qint32> { | |||
| public: | |||
| bool is_same(dt_qint32 expected, dt_qint32 actual) const { | |||
| return expected.as_int32() == actual.as_int32(); | |||
| } | |||
| }; | |||
| } // namespace test | |||
| } // namespace megdnn | |||
| @@ -741,10 +741,12 @@ void check_conv_bias(DType src_dtype, DType filter_dtype, DType bias_dtype, | |||
| std::unique_ptr<RNG> rng; | |||
| std::unique_ptr<RNG> bias_rng; | |||
| std::unique_ptr<RNG> const_rng; | |||
| std::unique_ptr<RNG> zero_rng; | |||
| // TODO: check range of rng | |||
| if (src_dtype.enumv() == DTypeEnum::QuantizedS8) { | |||
| rng = std::make_unique<UniformIntRNG>(-3, 3); | |||
| const_rng = std::make_unique<UniformIntRNG>(1, 1); | |||
| zero_rng = std::make_unique<UniformIntRNG>(0, 0); | |||
| megdnn_assert(bias_dtype.enumv() == DTypeEnum::QuantizedS32); | |||
| bias_rng = std::make_unique<UniformIntRNG>(-50, 50); | |||
| checker.set_epsilon(1 + 1e-3) | |||
| @@ -775,6 +777,12 @@ void check_conv_bias(DType src_dtype, DType filter_dtype, DType bias_dtype, | |||
| fh = arg.filter[2]; | |||
| fw = arg.filter[3]; | |||
| z[1] = arg.filter[0] / 4; | |||
| } else if (format == Format::NCHW32) { | |||
| hi = arg.src[2]; | |||
| wi = arg.src[3]; | |||
| fh = arg.filter[2]; | |||
| fw = arg.filter[3]; | |||
| z[1] = arg.filter[0] / 32; | |||
| } else { | |||
| megdnn_assert(format == Format::CHWN4); | |||
| hi = arg.src[1]; | |||
| @@ -798,7 +806,7 @@ void check_conv_bias(DType src_dtype, DType filter_dtype, DType bias_dtype, | |||
| megdnn_assert(rng != nullptr && bias_rng != nullptr); | |||
| checker.set_rng(0, rng.get()) | |||
| .set_rng(1, rng.get()) | |||
| .set_rng(2, rng.get()) | |||
| .set_rng(2, bias_rng.get()) | |||
| .set_rng(3, rng.get()); | |||
| if (args.empty()) { | |||
| std::vector<TestArg> default_args; | |||
| @@ -24,7 +24,8 @@ Tensor<T, C>::Tensor(Handle *handle, TensorLayout layout): | |||
| m_handle(handle), | |||
| m_comparator(C()) | |||
| { | |||
| layout.dtype = get_dtype_from_static_type<T>(); | |||
| if (!layout.dtype.valid()) | |||
| layout.dtype = get_dtype_from_static_type<T>(); | |||
| m_tensornd.raw_ptr = megdnn_malloc(m_handle, layout.span().dist_byte()); | |||
| m_tensornd.layout = layout; | |||
| } | |||
| @@ -67,10 +68,10 @@ void Tensor<T, C>::check_with(const Tensor<T, C_> &rhs) const | |||
| auto index = Index(m_tensornd.layout, linear_idx); | |||
| auto offset = index.positive_offset(); | |||
| ASSERT_TRUE(m_comparator.is_same(p0[offset], p1[offset])) | |||
| << "Index is " << index.to_string() | |||
| << "; layout is " << m_tensornd.layout.to_string() | |||
| << "; this->ptr()[offset] is " << this->ptr()[offset] | |||
| << "; rhs.ptr()[offset] is " << rhs.ptr()[offset]; | |||
| << "Index is " << index.to_string() << "; layout is " | |||
| << m_tensornd.layout.to_string() << "; this->ptr()[offset] is " | |||
| << this->ptr()[offset] << "; rhs.ptr()[offset] is " | |||
| << rhs.ptr()[offset]; | |||
| } | |||
| } | |||
| @@ -18,6 +18,8 @@ | |||
| #include "test/cuda/benchmark.h" | |||
| #include "test/cuda/fixture.h" | |||
| #include "test/cuda/utils.h" | |||
| #include "test/common/tensor.h" | |||
| #include "test/common/workspace_wrapper.h" | |||
| #define V1(x) #x | |||
| #define V(x) V1(x) | |||
| @@ -34,7 +36,6 @@ struct BenchArgs { | |||
| std::vector<BenchArgs> get_resnet50_bench_args(size_t batch = 64) { | |||
| std::vector<BenchArgs> args; | |||
| args.emplace_back(BenchArgs{batch, 64, 56, 56, 256, 1, 1}); | |||
| args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 1}); | |||
| args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 2}); | |||
| args.emplace_back(BenchArgs{batch, 4, 256, 256, 32, 7, 2}); | |||
| @@ -44,7 +45,6 @@ std::vector<BenchArgs> get_resnet50_bench_args(size_t batch = 64) { | |||
| args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 3, 1}); | |||
| args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 3, 2}); | |||
| args.emplace_back(BenchArgs{batch, 256, 56, 56, 64, 3, 2}); | |||
| args.emplace_back(BenchArgs{batch, 64, 56, 56, 256, 1, 1}); | |||
| args.emplace_back(BenchArgs{batch, 256, 56, 56, 512, 1, 2}); | |||
| args.emplace_back(BenchArgs{batch, 256, 56, 56, 128, 1, 2}); | |||
| @@ -57,6 +57,7 @@ std::vector<BenchArgs> get_resnet50_bench_args(size_t batch = 64) { | |||
| args.emplace_back(BenchArgs{batch, 1024, 14, 14, 256, 1, 1}); | |||
| args.emplace_back(BenchArgs{batch, 256, 14, 14, 256, 3, 1}); | |||
| args.emplace_back(BenchArgs{batch, 256, 14, 14, 1024, 1, 1}); | |||
| args.emplace_back(BenchArgs{batch, 256, 14, 14, 1024, 1, 2}); | |||
| args.emplace_back(BenchArgs{batch, 1024, 14, 14, 2048, 1, 2}); | |||
| args.emplace_back(BenchArgs{batch, 1024, 14, 14, 512, 1, 2}); | |||
| @@ -331,6 +332,12 @@ void benchmark_target_algo_with_cudnn_tsc( | |||
| if ((format == Format::CHWN4 || format == Format::NCHW4) && | |||
| (arg.ci % 16 != 0)) | |||
| continue; | |||
| Format format_cudnn = arg.ci % 32 == 0 && arg.co % 32 == 0 | |||
| ? Format::NCHW32 | |||
| : Format::NCHW4; | |||
| param.format = format_cudnn; | |||
| benchmarker_cudnn.set_param(param); | |||
| float time_in_ms = 0.f; | |||
| if (algo) { | |||
| time_in_ms = | |||
| @@ -351,18 +358,14 @@ void benchmark_target_algo_with_cudnn_tsc( | |||
| {}}) / | |||
| RUNS; | |||
| } | |||
| Format format_cudnn = arg.ci % 32 == 0 && arg.co % 32 == 0 | |||
| ? Format::NCHW32 | |||
| : Format::NCHW4; | |||
| param.format = format_cudnn; | |||
| benchmarker_cudnn.set_param(param); | |||
| auto time_in_ms_cudnn = | |||
| float time_in_ms_cudnn = | |||
| benchmarker_cudnn.execs({get_tensor_shape(src, format_cudnn), | |||
| get_tensor_shape(filter, format_cudnn), | |||
| get_tensor_shape(bias, format_cudnn), | |||
| {}, | |||
| {}}) / | |||
| RUNS; | |||
| float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * arg.f / | |||
| (1e12); | |||
| printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, " | |||
| @@ -1075,8 +1078,8 @@ TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_1x1_ALGO_2) { | |||
| #if CUDA_VERSION >= 10020 | |||
| /// \note: we only check several cases and block sizes in megdnn_test, the full | |||
| /// testcases are written in cutlass repository | |||
| /// \note: we only check several cases and block sizes in megdnn_test, the | |||
| /// full testcases are written in cutlass repository | |||
| TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NCHW32_IMMA) { | |||
| require_compute_capability_eq(7, 5); | |||
| Checker<ConvBiasForward> checker(handle_cuda()); | |||