GitOrigin-RevId: 932e7689e8
tags/v1.9.0
| @@ -17,6 +17,8 @@ genrule( | |||
| CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_fprop --type tensorop884 $(@D) | |||
| CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_dgrad --type simt $(@D) | |||
| CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_dgrad --type tensorop884 $(@D) | |||
| CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_wgrad --type simt $(@D) | |||
| CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_wgrad --type tensorop884 $(@D) | |||
| """, | |||
| tools = ["//brain/megbrain/dnn/scripts/cutlass_generator:generator.py"], | |||
| visibility = ["//visibility:public"], | |||
| @@ -317,7 +317,7 @@ class EmitDeconvInstance: | |||
| def __init__(self): | |||
| self.template = """ | |||
| // kernel instance "${operation_name}" generated by cutlass generator | |||
| using Deconvolution = | |||
| using Convolution = | |||
| typename cutlass::conv::device::Deconvolution< | |||
| ${element_src}, | |||
| ${layout_src}, | |||
| @@ -415,6 +415,103 @@ using Deconvolution = | |||
| return SubstituteTemplate(self.template, values) | |||
| class EmitConvolutionBackwardFilterInstance: | |||
| def __init__(self): | |||
| self.template = """ | |||
| // kernel instance "${operation_name}" generated by cutlass generator | |||
| using Convolution = | |||
| typename cutlass::conv::device::ConvolutionBackwardFilter< | |||
| ${element_src}, | |||
| ${layout_src}, | |||
| ${element_diff}, | |||
| ${layout_diff}, | |||
| ${element_grad}, | |||
| ${layout_grad}, | |||
| ${element_accumulator}, | |||
| ${conv_type}, | |||
| ${opcode_class}, | |||
| ${arch}, | |||
| cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, | |||
| cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, | |||
| cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, | |||
| ${epilogue_functor}< | |||
| ${element_grad}, | |||
| ${epilogue_vector_length}, | |||
| ${element_accumulator}, | |||
| ${element_epilogue} | |||
| >, | |||
| ${swizzling_functor}, | |||
| ${stages}, | |||
| ${alignment_src}, | |||
| ${alignment_diff}, | |||
| ${special_optimization}, | |||
| ${math_operator}, | |||
| ${implicit_gemm_mode}>; | |||
| """ | |||
| def emit(self, operation): | |||
| warp_shape = [ | |||
| int( | |||
| operation.tile_description.threadblock_shape[idx] | |||
| / operation.tile_description.warp_count[idx] | |||
| ) | |||
| for idx in range(3) | |||
| ] | |||
| epilogue_vector_length = int( | |||
| min(operation.dst.alignment * DataTypeSize[operation.dst.element], 128) | |||
| / DataTypeSize[operation.dst.element] | |||
| ) | |||
| values = { | |||
| "operation_name": operation.procedural_name(), | |||
| "conv_type": ConvTypeTag[operation.conv_type], | |||
| "element_src": DataTypeTag[operation.src.element], | |||
| "layout_src": LayoutTag[operation.src.layout], | |||
| "element_diff": DataTypeTag[operation.flt.element], | |||
| "layout_diff": LayoutTag[operation.flt.layout], | |||
| "element_grad": DataTypeTag[operation.dst.element], | |||
| "layout_grad": LayoutTag[operation.dst.layout], | |||
| "element_accumulator": DataTypeTag[operation.accumulator_type()], | |||
| "opcode_class": OpcodeClassTag[ | |||
| operation.tile_description.math_instruction.opcode_class | |||
| ], | |||
| "arch": "cutlass::arch::Sm%d" % operation.arch, | |||
| "threadblock_shape_m": str(operation.tile_description.threadblock_shape[0]), | |||
| "threadblock_shape_n": str(operation.tile_description.threadblock_shape[1]), | |||
| "threadblock_shape_k": str(operation.tile_description.threadblock_shape[2]), | |||
| "warp_shape_m": str(warp_shape[0]), | |||
| "warp_shape_n": str(warp_shape[1]), | |||
| "warp_shape_k": str(warp_shape[2]), | |||
| "instruction_shape_m": str( | |||
| operation.tile_description.math_instruction.instruction_shape[0] | |||
| ), | |||
| "instruction_shape_n": str( | |||
| operation.tile_description.math_instruction.instruction_shape[1] | |||
| ), | |||
| "instruction_shape_k": str( | |||
| operation.tile_description.math_instruction.instruction_shape[2] | |||
| ), | |||
| "epilogue_vector_length": str(epilogue_vector_length), | |||
| "epilogue_functor": EpilogueFunctorTag[operation.epilogue_functor], | |||
| "element_epilogue": str(DataTypeTag[operation.element_epilogue]), | |||
| "swizzling_functor": SwizzlingFunctorTag[operation.swizzling_functor], | |||
| "stages": str(operation.tile_description.stages), | |||
| "alignment_src": str(operation.src.alignment), | |||
| "alignment_diff": str(operation.flt.alignment), | |||
| "special_optimization": SpecialOptimizeDescTag[ | |||
| operation.special_optimization | |||
| ], | |||
| "math_operator": MathOperationTag[ | |||
| operation.tile_description.math_instruction.math_operation | |||
| ], | |||
| "implicit_gemm_mode": ImplicitGemmModeTag[operation.implicit_gemm_mode], | |||
| } | |||
| return SubstituteTemplate(self.template, values) | |||
| ################################################################################################### | |||
| # | |||
| # Generator functions for all layouts | |||
| @@ -500,6 +597,7 @@ def GenerateConv2d( | |||
| epilogues = [ | |||
| EpilogueFunctor.BiasAddLinearCombination, | |||
| EpilogueFunctor.BiasAddLinearCombinationRelu, | |||
| EpilogueFunctor.LinearCombination, | |||
| ] | |||
| if conv_type == ConvType.Convolution: | |||
| epilogues.append(EpilogueFunctor.BiasAddLinearCombinationHSwish) | |||
| @@ -544,11 +642,15 @@ def GenerateConv2d( | |||
| def filter_epilogue_with_conv_kind( | |||
| epilogue: EpilogueFunctor, conv_kind: ConvKind | |||
| ) -> bool: | |||
| return ( | |||
| (conv_kind == ConvKind.Dgrad or conv_kind == ConvKind.Wgrad) | |||
| and epilogue != EpilogueFunctor.BiasAddLinearCombinationClamp | |||
| and epilogue != EpilogueFunctor.BiasAddLinearCombination | |||
| ) | |||
| if conv_kind == ConvKind.Fprop: | |||
| return epilogue == EpilogueFunctor.LinearCombination | |||
| elif conv_kind == ConvKind.Dgrad: | |||
| return ( | |||
| epilogue != EpilogueFunctor.BiasAddLinearCombinationClamp | |||
| and epilogue != EpilogueFunctor.BiasAddLinearCombination | |||
| ) | |||
| elif conv_kind == ConvKind.Wgrad: | |||
| return epilogue != EpilogueFunctor.LinearCombination | |||
| # loop over all tile descriptions | |||
| for tile in tile_descriptions: | |||
| @@ -557,7 +659,7 @@ def GenerateConv2d( | |||
| bias_type, epilogues = get_bias_type_and_epilogues(tile, dst_type) | |||
| flt_align = get_flt_align(tile) | |||
| flt_align = flt_align if conv_kind == ConvKind.Wgrad else get_flt_align(tile) | |||
| dst_align = get_dst_align(tile, dst_layout) | |||
| @@ -771,11 +873,14 @@ class EmitConvSingleKernelWrapper: | |||
| if self.operation.conv_kind == ConvKind.Fprop: | |||
| self.instance_emitter = EmitConv2dInstance() | |||
| self.convolution_name = "Convolution" | |||
| else: | |||
| assert self.operation.conv_kind == ConvKind.Dgrad | |||
| self.convolution_name = "ConvolutionOperation" | |||
| elif self.operation.conv_kind == ConvKind.Dgrad: | |||
| self.instance_emitter = EmitDeconvInstance() | |||
| self.convolution_name = "Deconvolution" | |||
| self.convolution_name = "ConvolutionOperation" | |||
| else: | |||
| assert self.operation.conv_kind == ConvKind.Wgrad | |||
| self.instance_emitter = EmitConvolutionBackwardFilterInstance() | |||
| self.convolution_name = "ConvolutionBackwardFilterOperation" | |||
| self.header_template = """ | |||
| #if __CUDACC_VER_MAJOR__ > ${required_cuda_ver_major} || (__CUDACC_VER_MAJOR__ == ${required_cuda_ver_major} && __CUDACC_VER_MINOR__ >= ${required_cuda_ver_minor}) | |||
| @@ -800,7 +905,7 @@ namespace cutlass { | |||
| namespace library { | |||
| void initialize_${operation_name}(Manifest &manifest) { | |||
| manifest.append(new ConvolutionOperation<${convolution_name}>( | |||
| manifest.append(new ${convolution_name}<Convolution>( | |||
| "${operation_name}" | |||
| )); | |||
| } | |||
| @@ -3,8 +3,9 @@ from generator import ( | |||
| GenerateGemvOperations, | |||
| GenerateConv2dOperations, | |||
| GenerateDeconvOperations, | |||
| GenerateDwconv2dFpropOperations, | |||
| GenerateDwconv2dFpropOperations, | |||
| GenerateDwconv2dDgradOperations, | |||
| GenerateDwconv2dWgradOperations, | |||
| ) | |||
| @@ -28,7 +29,7 @@ def write_op_list(f, gen_op, gen_type): | |||
| elif gen_op == "dwconv2d_dgrad": | |||
| operations = GenerateDwconv2dDgradOperations(GenArg(gen_op, gen_type)) | |||
| elif gen_op == "dwconv2d_wgrad": | |||
| pass | |||
| operations = GenerateDwconv2dWgradOperations(GenArg(gen_op, gen_type)) | |||
| for op in operations: | |||
| f.write(' "%s.cu",\n' % op.procedural_name()) | |||
| if gen_op != "gemv": | |||
| @@ -52,4 +53,6 @@ if __name__ == "__main__": | |||
| write_op_list(f, "dwconv2d_fprop", "tensorop884") | |||
| write_op_list(f, "dwconv2d_dgrad", "simt") | |||
| write_op_list(f, "dwconv2d_dgrad", "tensorop884") | |||
| write_op_list(f, "dwconv2d_wgrad", "simt") | |||
| write_op_list(f, "dwconv2d_wgrad", "tensorop884") | |||
| f.write("]") | |||
| @@ -1115,7 +1115,10 @@ def GenerateDwconv2d_Simt(args, conv_kind): | |||
| dst_types = [DataType.f32] | |||
| alignment_constraints = [128, 32] | |||
| if conv_kind == ConvKind.Wgrad: | |||
| alignment_constraints = [32] | |||
| else: | |||
| alignment_constraints = [128, 32] | |||
| operations = [] | |||
| for math_inst in math_instructions: | |||
| @@ -1244,7 +1247,9 @@ def GenerateDwconv2d_Simt(args, conv_kind): | |||
| 32, | |||
| 32, | |||
| SpecialOptimizeDesc.NoneSpecialOpt, | |||
| ImplicitGemmMode.GemmTN, | |||
| ImplicitGemmMode.GemmNT | |||
| if conv_kind == ConvKind.Wgrad | |||
| else ImplicitGemmMode.GemmTN, | |||
| ) | |||
| return operations | |||
| @@ -1277,11 +1282,14 @@ def GenerateDwconv2d_TensorOp_884(args, conv_kind): | |||
| dst_layouts = [LayoutType.TensorNCHW] | |||
| dst_types = [DataType.f16] | |||
| if conv_kind == ConvKind.Wgrad: | |||
| dst_types = [DataType.f32] | |||
| else: | |||
| dst_types = [DataType.f16] | |||
| alignment_constraints = [128, 32, 16] | |||
| cuda_major = 10 | |||
| cuda_minor = 2 | |||
| cuda_minor = 1 | |||
| operations = [] | |||
| for math_inst in math_instructions: | |||
| @@ -1295,24 +1303,48 @@ def GenerateDwconv2d_TensorOp_884(args, conv_kind): | |||
| for layout in layouts: | |||
| for dst_type, dst_layout in zip(dst_types, dst_layouts): | |||
| for alignment_src in alignment_constraints: | |||
| operations += GenerateConv2d( | |||
| ConvType.DepthwiseConvolution, | |||
| conv_kind, | |||
| tile_descriptions, | |||
| layout[0], | |||
| layout[1], | |||
| dst_layout, | |||
| dst_type, | |||
| min_cc, | |||
| alignment_src, | |||
| 16, | |||
| 16, | |||
| SpecialOptimizeDesc.NoneSpecialOpt, | |||
| ImplicitGemmMode.GemmTN, | |||
| False, | |||
| cuda_major, | |||
| cuda_minor, | |||
| ) | |||
| if conv_kind == ConvKind.Wgrad: | |||
| # skip io16xc16 | |||
| if math_inst.element_accumulator == DataType.f16: | |||
| continue | |||
| for alignment_diff in alignment_constraints: | |||
| operations += GenerateConv2d( | |||
| ConvType.DepthwiseConvolution, | |||
| conv_kind, | |||
| tile_descriptions, | |||
| layout[0], | |||
| layout[1], | |||
| dst_layout, | |||
| dst_type, | |||
| min_cc, | |||
| alignment_src, | |||
| alignment_diff, | |||
| 32, # always f32 output | |||
| SpecialOptimizeDesc.NoneSpecialOpt, | |||
| ImplicitGemmMode.GemmNT, | |||
| False, | |||
| cuda_major, | |||
| cuda_minor, | |||
| ) | |||
| else: | |||
| operations += GenerateConv2d( | |||
| ConvType.DepthwiseConvolution, | |||
| conv_kind, | |||
| tile_descriptions, | |||
| layout[0], | |||
| layout[1], | |||
| dst_layout, | |||
| dst_type, | |||
| min_cc, | |||
| alignment_src, | |||
| 16, | |||
| 16, | |||
| SpecialOptimizeDesc.NoneSpecialOpt, | |||
| ImplicitGemmMode.GemmTN, | |||
| False, | |||
| cuda_major, | |||
| cuda_minor, | |||
| ) | |||
| return operations | |||
| @@ -1501,7 +1533,7 @@ def GeneratesGemm_TensorOp_884(args): | |||
| # 1 | |||
| ] | |||
| cuda_major = 10 | |||
| cuda_minor = 2 | |||
| cuda_minor = 1 | |||
| operations = [] | |||
| for math_inst in math_instructions: | |||
| @@ -1595,6 +1627,17 @@ def GenerateDwconv2dDgradOperations(args): | |||
| return GenerateDwconv2d_TensorOp_884(args, ConvKind.Dgrad) | |||
| def GenerateDwconv2dWgradOperations(args): | |||
| if args.type == "simt": | |||
| return GenerateDwconv2d_Simt(args, ConvKind.Wgrad) | |||
| else: | |||
| assert args.type == "tensorop884", ( | |||
| "operation dwconv2d fprop only support" | |||
| "simt, tensorop884. (got:{})".format(args.type) | |||
| ) | |||
| return GenerateDwconv2d_TensorOp_884(args, ConvKind.Wgrad) | |||
| def GenerateGemmOperations(args): | |||
| if args.type == "tensorop884": | |||
| return GeneratesGemm_TensorOp_884(args) | |||
| @@ -1668,8 +1711,9 @@ if __name__ == "__main__": | |||
| operations = GenerateDwconv2dFpropOperations(args) | |||
| elif args.operations == "dwconv2d_dgrad": | |||
| operations = GenerateDwconv2dDgradOperations(args) | |||
| elif args.operations == "dwconv2d_wgrad": | |||
| pass | |||
| else: | |||
| assert args.operations == "dwconv2d_wgrad", "invalid operation" | |||
| operations = GenerateDwconv2dWgradOperations(args) | |||
| if ( | |||
| args.operations == "conv2d" | |||
| @@ -483,6 +483,7 @@ EpilogueFunctorTag = { | |||
| # | |||
| ShortEpilogueNames = { | |||
| EpilogueFunctor.LinearCombination: "id", | |||
| EpilogueFunctor.BiasAddLinearCombinationHSwishClamp: "hswish", | |||
| EpilogueFunctor.BiasAddLinearCombinationReluClamp: "relu", | |||
| EpilogueFunctor.BiasAddLinearCombinationClamp: "id", | |||
| @@ -1382,4 +1382,60 @@ cutlass_gen_list = [ | |||
| "cutlass_tensorop_h884dwdgrad_id_f16_128x64x32_32x32x32_2_nchw_nchw_align1x1.cu", | |||
| "cutlass_tensorop_h884dwdgrad_id_f16_64x64x32_32x32x32_2_nchw_nchw_align1x1.cu", | |||
| "all_dwconv2d_dgrad_tensorop884_operations.cu", | |||
| ] | |||
| "cutlass_simt_sdwwgrad_id_f32_32x32x8_32x32x8_2_nchw_nchw_align1x1.cu", | |||
| "cutlass_simt_sdwwgrad_id_f32_32x64x8_32x64x8_2_nchw_nchw_align1x1.cu", | |||
| "cutlass_simt_sdwwgrad_id_f32_64x32x8_64x32x8_2_nchw_nchw_align1x1.cu", | |||
| "cutlass_simt_sdwwgrad_id_f32_32x128x8_32x64x8_2_nchw_nchw_align1x1.cu", | |||
| "cutlass_simt_sdwwgrad_id_f32_64x64x8_32x64x8_2_nchw_nchw_align1x1.cu", | |||
| "cutlass_simt_sdwwgrad_id_f32_128x32x8_64x32x8_2_nchw_nchw_align1x1.cu", | |||
| "cutlass_simt_sdwwgrad_id_f32_64x128x8_32x64x8_2_nchw_nchw_align1x1.cu", | |||
| "cutlass_simt_sdwwgrad_id_f32_128x64x8_64x32x8_2_nchw_nchw_align1x1.cu", | |||
| "cutlass_simt_sdwwgrad_id_f32_128x128x8_32x64x8_2_nchw_nchw_align1x1.cu", | |||
| "all_dwconv2d_wgrad_simt_operations.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x256x32_64x64x32_2_nchw_nchw_align8x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x128x32_32x32x32_2_nchw_nchw_align8x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x128x32_32x32x32_2_nchw_nchw_align8x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x64x32_32x32x32_2_nchw_nchw_align8x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x64x32_32x32x32_2_nchw_nchw_align8x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x256x32_64x64x32_2_nchw_nchw_align8x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x128x32_32x32x32_2_nchw_nchw_align8x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x128x32_32x32x32_2_nchw_nchw_align8x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x64x32_32x32x32_2_nchw_nchw_align8x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x64x32_32x32x32_2_nchw_nchw_align8x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x256x32_64x64x32_2_nchw_nchw_align8x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x128x32_32x32x32_2_nchw_nchw_align8x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x128x32_32x32x32_2_nchw_nchw_align8x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x64x32_32x32x32_2_nchw_nchw_align8x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x64x32_32x32x32_2_nchw_nchw_align8x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x256x32_64x64x32_2_nchw_nchw_align2x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x128x32_32x32x32_2_nchw_nchw_align2x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x128x32_32x32x32_2_nchw_nchw_align2x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x64x32_32x32x32_2_nchw_nchw_align2x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x64x32_32x32x32_2_nchw_nchw_align2x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x256x32_64x64x32_2_nchw_nchw_align2x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x128x32_32x32x32_2_nchw_nchw_align2x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x128x32_32x32x32_2_nchw_nchw_align2x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x64x32_32x32x32_2_nchw_nchw_align2x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x64x32_32x32x32_2_nchw_nchw_align2x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x256x32_64x64x32_2_nchw_nchw_align2x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x128x32_32x32x32_2_nchw_nchw_align2x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x128x32_32x32x32_2_nchw_nchw_align2x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x64x32_32x32x32_2_nchw_nchw_align2x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x64x32_32x32x32_2_nchw_nchw_align2x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x256x32_64x64x32_2_nchw_nchw_align1x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x128x32_32x32x32_2_nchw_nchw_align1x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x128x32_32x32x32_2_nchw_nchw_align1x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x64x32_32x32x32_2_nchw_nchw_align1x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x64x32_32x32x32_2_nchw_nchw_align1x8.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x256x32_64x64x32_2_nchw_nchw_align1x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x128x32_32x32x32_2_nchw_nchw_align1x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x128x32_32x32x32_2_nchw_nchw_align1x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x64x32_32x32x32_2_nchw_nchw_align1x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x64x32_32x32x32_2_nchw_nchw_align1x2.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x256x32_64x64x32_2_nchw_nchw_align1x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x128x32_32x32x32_2_nchw_nchw_align1x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x128x32_32x32x32_2_nchw_nchw_align1x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_128x64x32_32x32x32_2_nchw_nchw_align1x1.cu", | |||
| "cutlass_tensorop_s884dwwgrad_id_f16_64x64x32_32x32x32_2_nchw_nchw_align1x1.cu", | |||
| "all_dwconv2d_wgrad_tensorop884_operations.cu", | |||
| ] | |||
| @@ -185,6 +185,8 @@ if(MGE_WITH_CUDA) | |||
| gen_cutlass_kimpl(dwconv2d_fprop tensorop884 CUTLASS_SOURCES) | |||
| gen_cutlass_kimpl(dwconv2d_dgrad simt CUTLASS_SOURCES) | |||
| gen_cutlass_kimpl(dwconv2d_dgrad tensorop884 CUTLASS_SOURCES) | |||
| gen_cutlass_kimpl(dwconv2d_wgrad simt CUTLASS_SOURCES) | |||
| gen_cutlass_kimpl(dwconv2d_wgrad tensorop884 CUTLASS_SOURCES) | |||
| list(APPEND SOURCES ${CUTLASS_SOURCES}) | |||
| list(APPEND SOURCES ${CUSOURCES}) | |||
| endif() | |||
| @@ -317,7 +317,7 @@ void ConvBiasForwardImpl::AlgoPack::fill_dwconv_algos() { | |||
| for (auto&& algo : f32_implicit_bmm) { | |||
| all_algos.push_back(&algo); | |||
| } | |||
| #if CUDA_VERSION >= 10020 | |||
| #if CUDA_VERSION >= 10010 | |||
| /// preferred algo | |||
| f16_implicit_bmm.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| f16_implicit_bmm.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| @@ -50,6 +50,7 @@ bool ConvBiasForwardImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::is_available( | |||
| RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
| // check if channelwise convolution | |||
| RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
| RETURN_IF_FALSE(param.dilate_h == 1 && param.dilate_w == 1); | |||
| const auto* op = get_cutlass_conv_op( | |||
| args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||
| RETURN_IF_FALSE(op != nullptr); | |||
| @@ -50,6 +50,7 @@ bool ConvBiasForwardImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::is_available( | |||
| RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
| // check if channelwise convolution | |||
| RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
| RETURN_IF_FALSE(param.dilate_h == 1 && param.dilate_w == 1); | |||
| const auto* op = get_cutlass_conv_op( | |||
| args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||
| RETURN_IF_FALSE(op != nullptr); | |||
| @@ -146,15 +146,17 @@ ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic( | |||
| args.filter_meta.stride[0] != 1 || | |||
| args.filter_meta.stride[1] != 1 || hw_size < 512; | |||
| //! choose for large kernel cases | |||
| size_t fh = args.filter_meta.spatial[2], fw = args.filter_meta.spatial[3]; | |||
| size_t fh = args.filter_meta.spatial[0], fw = args.filter_meta.spatial[1]; | |||
| size_t hi = src[2], wi = src[3]; | |||
| const bool prefer_dnn_lk_implbmm = hi <= 2 * fh && wi <= 2 * fw; | |||
| //! avoid bad case in cudnn, check dnn chanwise impl first | |||
| if (is_chanwise) { | |||
| if (prefer_dnn_lk_implbmm) { | |||
| #if CUDA_VERSION >= 10020 | |||
| if (sm_algo_pack.f16_implicit_bmm[0].is_available_attribute( | |||
| args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
| return &sm_algo_pack.f16_implicit_bmm[0]; | |||
| #endif | |||
| if (sm_algo_pack.f32_implicit_bmm[0].is_available_attribute( | |||
| args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
| return &sm_algo_pack.f32_implicit_bmm[0]; | |||
| @@ -72,7 +72,7 @@ void ConvolutionBackwardDataImpl::AlgoPack::fill_dwconv_algos() { | |||
| all_algos.push_back(&algo); | |||
| } | |||
| } | |||
| #if CUDA_VERSION >= 10020 | |||
| #if CUDA_VERSION >= 10010 | |||
| { | |||
| using AlgoParam = AlgoFloat16NCHWHMMAImplicitBatchedGemm::AlgoParam; | |||
| /// preferred algo | |||
| @@ -24,8 +24,10 @@ const void* ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm: | |||
| int alignment_diff = 0; | |||
| int wo = args.diff_layout->dtype.size(args.diff_layout->operator[](3)); | |||
| for (int candidate : {16, 4, 2}) { | |||
| if (wo % candidate == 0) | |||
| if (wo % candidate == 0) { | |||
| alignment_diff = candidate; | |||
| break; | |||
| } | |||
| } | |||
| alignment_diff /= args.diff_layout->dtype.size(1); | |||
| NumericTypeID accumulator_dtype = | |||
| @@ -85,6 +87,7 @@ bool ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::is_ava | |||
| RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
| // check if channelwise convolution | |||
| RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
| RETURN_IF_FALSE(param.dilate_h == 1 && param.dilate_w == 1); | |||
| const auto* op = get_available_op(args); | |||
| RETURN_IF_FALSE(op != nullptr); | |||
| return true; | |||
| @@ -24,8 +24,10 @@ const void* ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm:: | |||
| int alignment_diff = 0; | |||
| int wo = args.diff_layout->dtype.size(args.diff_layout->operator[](3)); | |||
| for (int candidate : {16, 4}) { | |||
| if (wo % candidate == 0) | |||
| if (wo % candidate == 0) { | |||
| alignment_diff = candidate; | |||
| break; | |||
| } | |||
| } | |||
| alignment_diff /= args.diff_layout->dtype.size(1); | |||
| ConvolutionKey key{ | |||
| @@ -81,6 +83,7 @@ bool ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::is_avai | |||
| RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
| // check if channelwise convolution | |||
| RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
| RETURN_IF_FALSE(param.dilate_h == 1 && param.dilate_w == 1); | |||
| const auto* op = get_available_op(args); | |||
| RETURN_IF_FALSE(op != nullptr); | |||
| return true; | |||
| @@ -25,6 +25,7 @@ ConvolutionBackwardFilterImpl::AlgoPack::AlgoPack() { | |||
| for (auto&& i : cudnn) { | |||
| all_algos.push_back(&i); | |||
| } | |||
| fill_dwconv_algos(); | |||
| all_algos.push_back(&matmul); | |||
| all_algos.push_back(&group); | |||
| @@ -48,6 +49,39 @@ ConvolutionBackwardFilterImpl::AlgoCUDNN* ConvolutionBackwardFilterImpl::AlgoPac | |||
| "can not find cudnn bwd_filter algorithm %d", static_cast<int>(algo))); | |||
| } | |||
| void ConvolutionBackwardFilterImpl::AlgoPack::fill_dwconv_algos() { | |||
| { | |||
| using AlgoParam = AlgoFloat32NCHWFMAImplicitBatchedGemm::AlgoParam; | |||
| /// preferred algo | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{64, 128, 8, 32, 64, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{128, 128, 8, 32, 64, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{128, 64, 8, 64, 32, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{128, 32, 8, 64, 32, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{32, 128, 8, 32, 64, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{64, 64, 8, 32, 64, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{32, 64, 8, 32, 64, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{32, 32, 8, 32, 32, 8, 2}); | |||
| implbmm_nchw_fma.emplace_back(AlgoParam{64, 32, 8, 64, 32, 8, 2}); | |||
| for (auto&& algo : implbmm_nchw_fma) { | |||
| all_algos.push_back(&algo); | |||
| } | |||
| } | |||
| #if CUDA_VERSION >= 10010 | |||
| { | |||
| using AlgoParam = AlgoFloat16NCHWHMMAImplicitBatchedGemm::AlgoParam; | |||
| /// preferred algo | |||
| implbmm_nchw_hmma.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| implbmm_nchw_hmma.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| implbmm_nchw_hmma.emplace_back(AlgoParam{128, 256, 32, 64, 64, 32, 8, 8, 4, 2}); | |||
| implbmm_nchw_hmma.emplace_back(AlgoParam{128, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| implbmm_nchw_hmma.emplace_back(AlgoParam{64, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
| for (auto&& algo : implbmm_nchw_hmma) { | |||
| all_algos.push_back(&algo); | |||
| } | |||
| } | |||
| #endif | |||
| } | |||
| ConvolutionBackwardFilterImpl::AlgoPack ConvolutionBackwardFilterImpl::sm_algo_pack; | |||
| ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs::SizeArgs( | |||
| @@ -37,6 +37,8 @@ public: | |||
| CUDA_CHANWISE, | |||
| CUDA_BFLOAT16, | |||
| CUDA_GROUP_CONV_GENERAL, | |||
| CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32, | |||
| CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16, | |||
| }; | |||
| using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>; | |||
| @@ -210,9 +212,86 @@ private: | |||
| WorkspaceBundle get_workspace_bundle(void* ptr, const SizeArgs& args) const; | |||
| }; | |||
| class ConvolutionBackwardFilterImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm final | |||
| : public AlgoBase { | |||
| public: | |||
| struct AlgoParam { | |||
| int threadblock_m; | |||
| int threadblock_n; | |||
| int threadblock_k; | |||
| int warp_m; | |||
| int warp_n; | |||
| int warp_k; | |||
| int stage; | |||
| std::string to_string() { | |||
| return ssprintf( | |||
| "_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m, threadblock_n, | |||
| threadblock_k, warp_m, warp_n, warp_k, stage); | |||
| } | |||
| }; | |||
| AlgoFloat32NCHWFMAImplicitBatchedGemm(AlgoParam algo_param) | |||
| : m_algo_param{algo_param}, | |||
| m_name{ssprintf( | |||
| "FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM%s", | |||
| m_algo_param.to_string().c_str())} {} | |||
| bool is_available(const SizeArgs& args) const override; | |||
| size_t get_workspace_in_bytes(const SizeArgs& args) const override { return 0; } | |||
| void exec(const ExecArgs& args) const override; | |||
| const char* name() const override { return m_name.c_str(); } | |||
| AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
| MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32) | |||
| private: | |||
| const void* get_available_op(const SizeArgs& args) const; | |||
| AlgoParam m_algo_param; | |||
| std::string m_name; | |||
| }; | |||
| class ConvolutionBackwardFilterImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm final | |||
| : public AlgoBase { | |||
| public: | |||
| /// add instruction shape as member of algo param, because f16 tensor core has 2 | |||
| /// different matrix shapes (i.e. mma.884 and mma.1688) | |||
| struct AlgoParam { | |||
| int threadblock_m; | |||
| int threadblock_n; | |||
| int threadblock_k; | |||
| int warp_m; | |||
| int warp_n; | |||
| int warp_k; | |||
| int instruction_m; | |||
| int instruction_n; | |||
| int instruction_k; | |||
| int stage; | |||
| std::string to_string() { | |||
| return ssprintf( | |||
| "_%dX%dX%d_%dX%dX%d_mma%dX%dX%d_%dstage", threadblock_m, | |||
| threadblock_n, threadblock_k, warp_m, warp_n, warp_k, instruction_m, | |||
| instruction_n, instruction_k, stage); | |||
| } | |||
| }; | |||
| AlgoFloat16NCHWHMMAImplicitBatchedGemm(AlgoParam algo_param) | |||
| : m_algo_param{algo_param}, | |||
| m_name{ssprintf( | |||
| "FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM%s", | |||
| m_algo_param.to_string().c_str())} {} | |||
| bool is_available(const SizeArgs& args) const override; | |||
| size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
| void exec(const ExecArgs& args) const override; | |||
| const char* name() const override { return m_name.c_str(); } | |||
| AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
| MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16) | |||
| private: | |||
| const void* get_available_op(const SizeArgs& args) const; | |||
| AlgoParam m_algo_param; | |||
| std::string m_name; | |||
| }; | |||
| class ConvolutionBackwardFilterImpl::AlgoPack : NonCopyableObj { | |||
| // defined in cudnn.cpp | |||
| void fill_cudnn_algos(); | |||
| void fill_dwconv_algos(); | |||
| AlgoBase::Mapper m_all_algos_map; | |||
| @@ -224,6 +303,8 @@ public: | |||
| AlgoChanwise chanwise; | |||
| AlgoGroupConvGeneral group; | |||
| AlgoBFloat16 bfloat16; | |||
| std::vector<AlgoFloat32NCHWFMAImplicitBatchedGemm> implbmm_nchw_fma; | |||
| std::vector<AlgoFloat16NCHWHMMAImplicitBatchedGemm> implbmm_nchw_hmma; | |||
| std::vector<AlgoBase*> | |||
| //! all algorithms | |||
| @@ -0,0 +1,172 @@ | |||
| /** | |||
| * \file | |||
| * dnn/src/cuda/convolution/backward_filter/implicit_batched_gemm_float16_nchw_hmma.cpp | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "src/cuda/convolution/backward_filter/algo.h" | |||
| #include "src/cuda/cutlass/singleton.h" | |||
| #include "src/cuda/utils.h" | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| using namespace cutlass::library; | |||
| const void* ConvolutionBackwardFilterImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm:: | |||
| get_available_op(const SizeArgs& args) const { | |||
| auto get_alignment = [](const TensorLayout& layout) { | |||
| int alignment = 0; | |||
| int width = layout.dtype.size(layout[3]); | |||
| for (int candidate : {16, 4, 2}) { | |||
| if (width % candidate == 0) { | |||
| alignment = candidate; | |||
| break; | |||
| } | |||
| } | |||
| alignment /= layout.dtype.size(1); | |||
| return alignment; | |||
| }; | |||
| int alignment_src = get_alignment(*args.src_layout); | |||
| int alignment_diff = get_alignment(*args.diff_layout); | |||
| megdnn_assert(alignment_src >= 1 && alignment_diff >= 1); | |||
| NumericTypeID accumulator_dtype = | |||
| args.opr->param().compute_mode == param::Convolution::ComputeMode::DEFAULT | |||
| ? NumericTypeID::kF16 | |||
| : NumericTypeID::kF32; | |||
| ConvolutionKey key{ | |||
| cutlass::conv::Operator::kWgrad, | |||
| NumericTypeID::kF16, // src tensor data type | |||
| LayoutTypeID::kTensorNCHW, // src tensor layout | |||
| NumericTypeID::kF16, // diff tensor data type | |||
| LayoutTypeID::kTensorNCHW, // diff tensor layout | |||
| NumericTypeID::kF32, // grad tensor data type | |||
| LayoutTypeID::kTensorNCHW, // grad tensor layout | |||
| NumericTypeID::kF32, // dummy argument, not used. | |||
| LayoutTypeID::kTensorNCHW, // dummy argument, not used | |||
| accumulator_dtype, | |||
| cutlass::conv::ConvType::kDepthwiseConvolution, | |||
| m_algo_param.threadblock_m, | |||
| m_algo_param.threadblock_n, | |||
| m_algo_param.threadblock_k, | |||
| m_algo_param.warp_m, | |||
| m_algo_param.warp_n, | |||
| m_algo_param.warp_k, | |||
| m_algo_param.instruction_m, | |||
| m_algo_param.instruction_n, | |||
| m_algo_param.instruction_k, | |||
| cutlass::epilogue::EpilogueType::kLinearCombination, // no bias | |||
| m_algo_param.stage, | |||
| cutlass::conv::SpecialOptimizeDesc::NONE, | |||
| alignment_src, | |||
| alignment_diff, | |||
| true}; | |||
| return (void*)Singleton::get().operation_table.find_op(key); | |||
| } | |||
| bool ConvolutionBackwardFilterImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm:: | |||
| is_available(const SizeArgs& args) const { | |||
| #define RETURN_IF_FALSE(stmt_) \ | |||
| if (!(stmt_)) \ | |||
| return false; | |||
| RETURN_IF_FALSE(is_compute_capability_required(7, 0)); | |||
| RETURN_IF_FALSE( | |||
| args.src_layout->is_contiguous() && args.diff_layout->is_contiguous() && | |||
| args.grad_layout->is_contiguous()); | |||
| using Param = param::Convolution; | |||
| using Format = Param::Format; | |||
| using Sparse = Param::Sparse; | |||
| using Mode = Param::Mode; | |||
| using ComputeMode = Param::ComputeMode; | |||
| auto&& param = args.opr->param(); | |||
| auto&& fm = args.grad_filter_meta; | |||
| RETURN_IF_FALSE(param.compute_mode == ComputeMode::FLOAT32); | |||
| RETURN_IF_FALSE( | |||
| param.format == Format::NCHW && | |||
| args.src_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
| args.diff_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
| args.grad_layout->dtype.enumv() == DTypeEnum::Float16); | |||
| RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||
| RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
| // check if channelwise convolution | |||
| RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
| RETURN_IF_FALSE(param.dilate_h == 1 && param.dilate_w == 1); | |||
| const auto* op = get_available_op(args); | |||
| RETURN_IF_FALSE(op != nullptr); | |||
| return true; | |||
| #undef RETURN_IF_FALSE | |||
| } | |||
| size_t ConvolutionBackwardFilterImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm:: | |||
| get_workspace_in_bytes(const SizeArgs& args) const { | |||
| auto layout = *args.grad_layout; | |||
| // modify data type | |||
| layout.modify_dtype_inplace(dtype::Float32()); | |||
| return layout.span().dist_byte(); | |||
| } | |||
| void ConvolutionBackwardFilterImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::exec( | |||
| const ExecArgs& args) const { | |||
| auto&& param = args.opr->param(); | |||
| auto&& fm = args.grad_filter_meta; | |||
| int hi = args.src_layout->operator[](2), wi = args.src_layout->operator[](3); | |||
| int n = args.diff_layout->operator[](0), ho = args.diff_layout->operator[](2), | |||
| wo = args.diff_layout->operator[](3); | |||
| int co = fm.group, ci = co, groups = co; | |||
| int fh = fm.spatial[0], fw = fm.spatial[1]; | |||
| int sh = fm.stride[0], sw = fm.stride[1]; | |||
| int ph = fm.padding[0], pw = fm.padding[1]; | |||
| int dh = param.dilate_h, dw = param.dilate_w; | |||
| // check if channelwise convolution | |||
| megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||
| auto&& stream = cuda_stream(args.opr->handle()); | |||
| float alpha = 1.f; | |||
| float beta = 0.f; | |||
| const Operation* op = (const Operation*)get_available_op(args); | |||
| cutlass::conv::Conv2dProblemSize problem_size{ | |||
| n, hi, wi, ci, co, fh, fw, ho, | |||
| wo, ph, pw, sh, sw, dh, dw, cutlass::conv::Mode::kCrossCorrelation, | |||
| 1, // split k slices, always 1 | |||
| groups, // groups | |||
| }; | |||
| cutlass::library::ConvolutionArguments conv_args{ | |||
| problem_size, | |||
| args.src_tensor->raw_ptr(), | |||
| args.diff_tensor->raw_ptr(), | |||
| nullptr, | |||
| nullptr, | |||
| args.workspace.raw_ptr, | |||
| &alpha, | |||
| &beta, | |||
| nullptr, | |||
| nullptr, | |||
| nullptr, | |||
| nullptr, | |||
| nullptr, | |||
| nullptr}; | |||
| cutlass_check(op->run(&conv_args, nullptr, stream)); | |||
| after_kernel_launch(); | |||
| auto&& typecvt = args.opr->handle()->create_operator<TypeCvt>(); | |||
| auto f32_grad_layout = *args.grad_layout; | |||
| // modify data type | |||
| f32_grad_layout.modify_dtype_inplace(dtype::Float32()); | |||
| TensorND src{args.workspace.raw_ptr, f32_grad_layout}, | |||
| dst{args.grad_tensor->raw_ptr(), *args.grad_layout}; | |||
| typecvt->exec(src, dst); | |||
| } | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -0,0 +1,135 @@ | |||
| /** | |||
| * \file | |||
| * dnn/src/cuda/convolution/backward_filter/implicit_batched_gemm_float32_nchw_fma.cpp | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "src/cuda/convolution/backward_filter/algo.h" | |||
| #include "src/cuda/cutlass/singleton.h" | |||
| #include "src/cuda/utils.h" | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| using namespace cutlass::library; | |||
| const void* ConvolutionBackwardFilterImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm:: | |||
| get_available_op(const SizeArgs& args) const { | |||
| ConvolutionKey key{ | |||
| cutlass::conv::Operator::kWgrad, | |||
| NumericTypeID::kF32, // src tensor data type | |||
| LayoutTypeID::kTensorNCHW, // src tensor layout | |||
| NumericTypeID::kF32, // diff tensor data type | |||
| LayoutTypeID::kTensorNCHW, // diff tensor layout | |||
| NumericTypeID::kF32, // grad tensor data type | |||
| LayoutTypeID::kTensorNCHW, // grad tensor layout | |||
| NumericTypeID::kF32, // dummy argument, not used. | |||
| LayoutTypeID::kTensorNCHW, // dummy argument, not used | |||
| NumericTypeID::kF32, | |||
| cutlass::conv::ConvType::kDepthwiseConvolution, | |||
| m_algo_param.threadblock_m, | |||
| m_algo_param.threadblock_n, | |||
| m_algo_param.threadblock_k, | |||
| m_algo_param.warp_m, | |||
| m_algo_param.warp_n, | |||
| m_algo_param.warp_k, | |||
| 1, | |||
| 1, | |||
| 1, | |||
| cutlass::epilogue::EpilogueType::kLinearCombination, // no bias | |||
| m_algo_param.stage, | |||
| cutlass::conv::SpecialOptimizeDesc::NONE, | |||
| 1, | |||
| 1, | |||
| true}; | |||
| return (void*)Singleton::get().operation_table.find_op(key); | |||
| } | |||
| bool ConvolutionBackwardFilterImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::is_available( | |||
| const SizeArgs& args) const { | |||
| #define RETURN_IF_FALSE(stmt_) \ | |||
| if (!(stmt_)) \ | |||
| return false; | |||
| RETURN_IF_FALSE(is_compute_capability_required(6, 1)); | |||
| RETURN_IF_FALSE( | |||
| args.src_layout->is_contiguous() && args.diff_layout->is_contiguous() && | |||
| args.grad_layout->is_contiguous()); | |||
| using Param = param::Convolution; | |||
| using Format = Param::Format; | |||
| using Sparse = Param::Sparse; | |||
| using Mode = Param::Mode; | |||
| auto&& param = args.opr->param(); | |||
| auto&& fm = args.grad_filter_meta; | |||
| RETURN_IF_FALSE( | |||
| param.format == Format::NCHW && | |||
| args.src_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
| args.diff_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
| args.grad_layout->dtype.enumv() == DTypeEnum::Float32); | |||
| RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||
| RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
| // check if channelwise convolution | |||
| RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
| RETURN_IF_FALSE(param.dilate_h == 1 && param.dilate_w == 1); | |||
| const auto* op = get_available_op(args); | |||
| RETURN_IF_FALSE(op != nullptr); | |||
| return true; | |||
| #undef RETURN_IF_FALSE | |||
| } | |||
| void ConvolutionBackwardFilterImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::exec( | |||
| const ExecArgs& args) const { | |||
| auto&& param = args.opr->param(); | |||
| auto&& fm = args.grad_filter_meta; | |||
| int hi = args.src_layout->operator[](2), wi = args.src_layout->operator[](3); | |||
| int n = args.diff_layout->operator[](0), ho = args.diff_layout->operator[](2), | |||
| wo = args.diff_layout->operator[](3); | |||
| int co = fm.group, ci = co, groups = co; | |||
| int fh = fm.spatial[0], fw = fm.spatial[1]; | |||
| int sh = fm.stride[0], sw = fm.stride[1]; | |||
| int ph = fm.padding[0], pw = fm.padding[1]; | |||
| int dh = param.dilate_h, dw = param.dilate_w; | |||
| // check if channelwise convolution | |||
| megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||
| auto&& stream = cuda_stream(args.opr->handle()); | |||
| float alpha = 1.f; | |||
| float beta = 0.f; | |||
| const Operation* op = (const Operation*)get_available_op(args); | |||
| cutlass::conv::Conv2dProblemSize problem_size{ | |||
| n, hi, wi, ci, co, fh, fw, ho, | |||
| wo, ph, pw, sh, sw, dh, dw, cutlass::conv::Mode::kCrossCorrelation, | |||
| 1, // split k slices, always 1 | |||
| groups, // groups | |||
| }; | |||
| cutlass::library::ConvolutionArguments conv_args{ | |||
| problem_size, | |||
| args.src_tensor->raw_ptr(), | |||
| args.diff_tensor->raw_ptr(), | |||
| nullptr, | |||
| nullptr, | |||
| args.grad_tensor->raw_ptr(), | |||
| &alpha, | |||
| &beta, | |||
| nullptr, | |||
| nullptr, | |||
| nullptr, | |||
| nullptr, | |||
| nullptr, | |||
| nullptr}; | |||
| cutlass_check(op->run(&conv_args, nullptr, stream)); | |||
| after_kernel_launch(); | |||
| } | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -116,15 +116,18 @@ ConvolutionBackwardDataImpl::Algorithm* ConvolutionBackwardDataImpl:: | |||
| AlgoBase::SizeArgs args(this, filter, diff, grad); | |||
| //! choose for large kernel cases | |||
| size_t fh = args.filter_meta.spatial[2], fw = args.filter_meta.spatial[3]; | |||
| size_t fh = args.filter_meta.spatial[0], fw = args.filter_meta.spatial[1]; | |||
| size_t ho = diff[2], wo = diff[3]; | |||
| const bool prefer_dnn_lk_implbmm = args.filter_meta.format == Param::Format::NCHW && | |||
| ho <= 2 * fh && wo <= 2 * fw; | |||
| if (prefer_dnn_lk_implbmm) { | |||
| if (sm_algo_pack.implbmm_nchw_hmma.is_available_attribute( | |||
| #if CUDA_VERSION >= 10020 | |||
| if (sm_algo_pack.implbmm_nchw_hmma[0].is_available_attribute( | |||
| args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
| return &sm_algo_pack.implbmm_nchw_hmma[0]; | |||
| if (sm_algo_pack.implbmm_nchw_fma.is_available_attribute(args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
| #endif | |||
| if (sm_algo_pack.implbmm_nchw_fma[0].is_available_attribute( | |||
| args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
| return &sm_algo_pack.implbmm_nchw_fma[0]; | |||
| } | |||
| @@ -255,6 +258,23 @@ ConvolutionBackwardFilterImpl::Algorithm* ConvolutionBackwardFilterImpl:: | |||
| const AlgoAttribute& negative_attr) { | |||
| AlgoBase::SizeArgs args(this, src, diff, grad); | |||
| //! choose for large kernel cases | |||
| size_t fh = args.grad_filter_meta.spatial[0], fw = args.grad_filter_meta.spatial[1]; | |||
| size_t ho = diff[2], wo = diff[3]; | |||
| const bool prefer_dnn_lk_implbmm = | |||
| args.grad_filter_meta.format == Param::Format::NCHW && ho <= 2 * fh && | |||
| wo <= 2 * fw; | |||
| if (prefer_dnn_lk_implbmm) { | |||
| #if CUDA_VERSION >= 10020 | |||
| if (sm_algo_pack.implbmm_nchw_hmma[0].is_available_attribute( | |||
| args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
| return &sm_algo_pack.implbmm_nchw_hmma[0]; | |||
| #endif | |||
| if (sm_algo_pack.implbmm_nchw_fma[0].is_available_attribute( | |||
| args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
| return &sm_algo_pack.implbmm_nchw_fma[0]; | |||
| } | |||
| if (args.grad_filter_meta.group > 1 && | |||
| sm_algo_pack.chanwise.is_available_attribute( | |||
| args, positive_attr, negative_attr, workspace_limit_in_bytes)) { | |||
| @@ -156,6 +156,8 @@ public: | |||
| class AlgoChanwise; | |||
| class AlgoGroupConvGeneral; | |||
| class AlgoBFloat16; | |||
| class AlgoFloat32NCHWFMAImplicitBatchedGemm; | |||
| class AlgoFloat16NCHWHMMAImplicitBatchedGemm; | |||
| class AlgoPack; | |||
| @@ -135,6 +135,15 @@ namespace detail { | |||
| template <typename EpilogueOp, epilogue::EpilogueType type> | |||
| struct init_epilogue_param_; | |||
| template <typename EpilogueOp> | |||
| struct init_epilogue_param_<EpilogueOp, epilogue::EpilogueType::kLinearCombination> { | |||
| using ElementCompute = typename EpilogueOp::ElementCompute; | |||
| typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) { | |||
| return {*static_cast<ElementCompute const*>(conv_args->alpha), | |||
| *static_cast<ElementCompute const*>(conv_args->beta)}; | |||
| } | |||
| }; | |||
| template <typename EpilogueOp> | |||
| struct init_epilogue_param_< | |||
| EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombination> { | |||
| @@ -290,6 +299,159 @@ public: | |||
| /////////////////////////////////////////////////////////////////////////////////////////////////// | |||
| /// We add a new template class to handle convolution backward filter operation, because | |||
| /// the device-level convolution operator of backward filter is different from the | |||
| /// others (convolution forward and convolution backward data). | |||
| /// But the description object is reused in this wrapper of convolution backward filter. | |||
| /// The reason is that we do not want to introduce an another unnecessary structure. | |||
| /// TODO: Maybe the device-level operator in cutlass for convoluton forward, backward | |||
| /// data and backward filter should be combined. | |||
| template <typename Operator_> | |||
| class ConvolutionBackwardFilterOperationBase : public Operation { | |||
| public: | |||
| using Operator = Operator_; | |||
| using ElementSrc = typename Operator::ElementSrc; | |||
| using LayoutSrc = typename Operator::LayoutSrc; | |||
| using ElementDiff = typename Operator::ElementDiff; | |||
| using LayoutDiff = typename Operator::LayoutDiff; | |||
| using ElementGrad = typename Operator::ElementGrad; | |||
| using LayoutGrad = typename Operator::LayoutGrad; | |||
| using ElementAccumulator = typename Operator::ElementAccumulator; | |||
| ConvolutionBackwardFilterOperationBase(char const* name = "unknown_convolution") { | |||
| m_description.name = name; | |||
| m_description.provider = Provider::kCUTLASS; | |||
| m_description.kind = OperationKind::kConvolution; | |||
| m_description.conv_op = Operator::kConvolutionalOperator; | |||
| m_description.tile_description.threadblock_shape = make_Coord( | |||
| Operator::ThreadblockShape::kM, Operator::ThreadblockShape::kN, | |||
| Operator::ThreadblockShape::kK); | |||
| m_description.tile_description.threadblock_stages = Operator::kStages; | |||
| m_description.tile_description.warp_count = make_Coord( | |||
| Operator::ConvolutionKernel::WarpCount::kM, | |||
| Operator::ConvolutionKernel::WarpCount::kN, | |||
| Operator::ConvolutionKernel::WarpCount::kK); | |||
| m_description.tile_description.math_instruction.instruction_shape = make_Coord( | |||
| Operator::InstructionShape::kM, Operator::InstructionShape::kN, | |||
| Operator::InstructionShape::kK); | |||
| m_description.tile_description.math_instruction.element_accumulator = | |||
| NumericTypeMap<ElementAccumulator>::kId; | |||
| m_description.tile_description.math_instruction.opcode_class = | |||
| OpcodeClassMap<typename Operator::OperatorClass>::kId; | |||
| m_description.tile_description.math_instruction.math_operation = | |||
| MathOperationMap<typename Operator::Operator>::kId; | |||
| m_description.tile_description.minimum_compute_capability = | |||
| ArchMap<typename Operator::ArchTag, | |||
| typename Operator::OperatorClass>::kMin; | |||
| m_description.tile_description.maximum_compute_capability = | |||
| ArchMap<typename Operator::ArchTag, | |||
| typename Operator::OperatorClass>::kMax; | |||
| /// src in description -> src in C++ template | |||
| m_description.src = | |||
| make_TensorDescription<ElementSrc, LayoutSrc>(Operator::kAlignmentSrc); | |||
| /// filter in description -> diff in C++ template | |||
| m_description.filter = make_TensorDescription<ElementDiff, LayoutDiff>( | |||
| Operator::kAlignmentDiff); | |||
| /// dst in description -> grad in C++ template | |||
| m_description.dst = make_TensorDescription<ElementGrad, LayoutGrad>( | |||
| Operator::kAlignmentGrad); | |||
| /// because bias tensor is not used in ConvolutionBackwardFilter operation, the | |||
| /// following tensor description is a dummy arguments | |||
| m_description.bias = make_TensorDescription<ElementGrad, LayoutGrad>( | |||
| Operator::kAlignmentGrad); | |||
| m_description.convolution_type = Operator::kConvolutionType; | |||
| m_description.arch_tag = ArchTagMap<typename Operator::ArchTag>::kId; | |||
| m_description.epilogue_type = Operator::EpilogueOutputOp::kType; | |||
| m_description.epilogue_count = Operator::EpilogueOutputOp::kCount; | |||
| m_description.threadblock_swizzle = | |||
| ThreadblockSwizzleMap<typename Operator::ThreadblockSwizzle>::kId; | |||
| m_description.special_optimization = Operator::kSpecialOpt; | |||
| m_description.gemm_mode = Operator::kGemmMode; | |||
| /// ConvolutionBackwardFilter operation is only used for depthwise convolution, | |||
| /// so the option without_shared_load is always true | |||
| m_description.without_shared_load = true; | |||
| } | |||
| virtual OperationDescription const& description() const { return m_description; } | |||
| protected: | |||
| ConvolutionDescription m_description; | |||
| }; | |||
| /////////////////////////////////////////////////////////////////////////////////////////////////// | |||
| template <typename Operator_> | |||
| class ConvolutionBackwardFilterOperation | |||
| : public ConvolutionBackwardFilterOperationBase<Operator_> { | |||
| public: | |||
| using Operator = Operator_; | |||
| using ElementSrc = typename Operator::ElementSrc; | |||
| using LayoutSrc = typename Operator::LayoutSrc; | |||
| using ElementDiff = typename Operator::ElementDiff; | |||
| using LayoutDiff = typename Operator::LayoutDiff; | |||
| using ElementGrad = typename Operator::ElementGrad; | |||
| using LayoutGrad = typename Operator::LayoutGrad; | |||
| using ElementAccumulator = typename Operator::ElementAccumulator; | |||
| using ElementCompute = typename Operator::EpilogueOutputOp::ElementCompute; | |||
| using OperatorArguments = typename Operator::Arguments; | |||
| ConvolutionBackwardFilterOperation(char const* name = "unknown_gemm") | |||
| : ConvolutionBackwardFilterOperationBase<Operator_>(name) {} | |||
| virtual Status run( | |||
| void const* arguments_ptr, void* device_workspace = nullptr, | |||
| cudaStream_t stream = nullptr) const { | |||
| cutlass::conv::Operator conv_op = this->m_description.conv_op; | |||
| ConvolutionArguments const* conv_args = | |||
| reinterpret_cast<ConvolutionArguments const*>(arguments_ptr); | |||
| const auto& ps = conv_args->problem_size; | |||
| OperatorArguments args; | |||
| args.problem_size = ps; | |||
| /// src in convolution arguments -> ref_src | |||
| args.ref_src = { | |||
| static_cast<ElementSrc*>(const_cast<void*>(conv_args->src)), | |||
| LayoutSrc::packed(implicit_gemm_tensor_b_extent(conv_op, ps))}; | |||
| /// filter in convolution arguments -> ref_diff | |||
| args.ref_diff = { | |||
| static_cast<ElementDiff*>(const_cast<void*>(conv_args->filter)), | |||
| LayoutDiff::packed(implicit_gemm_tensor_a_extent(conv_op, ps))}; | |||
| /// dst in convolution arguments -> ref_grad | |||
| args.ref_grad = { | |||
| static_cast<ElementGrad*>(conv_args->dst), | |||
| LayoutGrad::packed(implicit_gemm_tensor_c_extent(conv_op, ps))}; | |||
| args.output_op = init_epilogue_param<typename Operator::EpilogueOutputOp>().get( | |||
| conv_args); | |||
| Operator op; | |||
| Status status = op.initialize(args, device_workspace); | |||
| if (status != Status::kSuccess) { | |||
| return status; | |||
| } | |||
| return op.run(stream); | |||
| } | |||
| }; | |||
| /////////////////////////////////////////////////////////////////////////////////////////////////// | |||
| } // namespace library | |||
| } // namespace cutlass | |||
| @@ -44,6 +44,11 @@ namespace cutlass { | |||
| namespace library { | |||
| ///////////////////////////////////////////////////////////////////////////////////////////////// | |||
| #if ((__CUDACC_VER_MAJOR__ > 10) || \ | |||
| (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 1)) | |||
| #define CUTLASS_ARCH_MMA_SM70_SUPPORTED 1 | |||
| #endif | |||
| #if ((__CUDACC_VER_MAJOR__ > 10) || \ | |||
| (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2)) | |||
| #define CUTLASS_ARCH_MMA_SM75_SUPPORTED 1 | |||
| @@ -56,14 +61,18 @@ void initialize_all_conv2d_simt_operations(Manifest& manifest); | |||
| void initialize_all_deconv_simt_operations(Manifest& manifest); | |||
| void initialize_all_dwconv2d_fprop_simt_operations(Manifest& manifest); | |||
| void initialize_all_dwconv2d_dgrad_simt_operations(Manifest& manifest); | |||
| #if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | |||
| void initialize_all_dwconv2d_wgrad_simt_operations(Manifest& manifest); | |||
| #if defined(CUTLASS_ARCH_MMA_SM70_SUPPORTED) && CUTLASS_ARCH_MMA_SM70_SUPPORTED | |||
| void initialize_all_gemm_tensorop884_operations(Manifest& manifest); | |||
| void initialize_all_dwconv2d_fprop_tensorop884_operations(Manifest& manifest); | |||
| void initialize_all_dwconv2d_dgrad_tensorop884_operations(Manifest& manifest); | |||
| void initialize_all_dwconv2d_wgrad_tensorop884_operations(Manifest& manifest); | |||
| #endif | |||
| #if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | |||
| void initialize_all_gemm_tensorop1688_operations(Manifest& manifest); | |||
| void initialize_all_conv2d_tensorop8816_operations(Manifest& manifest); | |||
| void initialize_all_conv2d_tensorop8832_operations(Manifest& manifest); | |||
| void initialize_all_deconv_tensorop8816_operations(Manifest& manifest); | |||
| void initialize_all_dwconv2d_fprop_tensorop884_operations(Manifest& manifest); | |||
| void initialize_all_dwconv2d_dgrad_tensorop884_operations(Manifest& manifest); | |||
| #endif | |||
| void initialize_all(Manifest& manifest) { | |||
| @@ -72,14 +81,18 @@ void initialize_all(Manifest& manifest) { | |||
| initialize_all_deconv_simt_operations(manifest); | |||
| initialize_all_dwconv2d_fprop_simt_operations(manifest); | |||
| initialize_all_dwconv2d_dgrad_simt_operations(manifest); | |||
| #if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | |||
| initialize_all_dwconv2d_wgrad_simt_operations(manifest); | |||
| #if defined(CUTLASS_ARCH_MMA_SM70_SUPPORTED) && CUTLASS_ARCH_MMA_SM70_SUPPORTED | |||
| initialize_all_gemm_tensorop884_operations(manifest); | |||
| initialize_all_dwconv2d_fprop_tensorop884_operations(manifest); | |||
| initialize_all_dwconv2d_dgrad_tensorop884_operations(manifest); | |||
| initialize_all_dwconv2d_wgrad_tensorop884_operations(manifest); | |||
| #endif | |||
| #if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | |||
| initialize_all_gemm_tensorop1688_operations(manifest); | |||
| initialize_all_conv2d_tensorop8816_operations(manifest); | |||
| initialize_all_conv2d_tensorop8832_operations(manifest); | |||
| initialize_all_deconv_tensorop8816_operations(manifest); | |||
| initialize_all_dwconv2d_fprop_tensorop884_operations(manifest); | |||
| initialize_all_dwconv2d_dgrad_tensorop884_operations(manifest); | |||
| #endif | |||
| } | |||
| @@ -279,7 +279,6 @@ struct ConvolutionKey { | |||
| struct ConvolutionKeyHasher { | |||
| inline size_t operator()(ConvolutionKey const& key) const { | |||
| return Hash() | |||
| .update(&key.conv_op, sizeof(key.conv_op)) | |||
| .update(&key.conv_op, sizeof(key.conv_op)) | |||
| .update(&key.element_src, sizeof(key.element_src)) | |||
| .update(&key.layout_src, sizeof(key.layout_src)) | |||
| @@ -1322,6 +1322,8 @@ static struct { | |||
| {"batch_convolution", "BatchConvolution", conv::ConvType::kBatchConvolution}, | |||
| {"local", "Local", conv::ConvType::kLocal}, | |||
| {"local_share", "LocalShare", conv::ConvType::kLocalShare}, | |||
| {"depthwise_convolution", "DepthwiseConvolution", | |||
| conv::ConvType::kDepthwiseConvolution}, | |||
| }; | |||
| /// Converts a ConvType enumerant to a string | |||
| @@ -44,7 +44,7 @@ MatrixMulForwardImpl::AlgoPack::AlgoPack() { | |||
| for (auto&& algo : simt_float32_gemv_batched_strided) { | |||
| all_algos.push_back(&algo); | |||
| } | |||
| #if CUDA_VERSION >= 10020 | |||
| #if CUDA_VERSION >= 10010 | |||
| for (auto&& algo : tensorop_float16) { | |||
| all_algos.push_back(&algo); | |||
| } | |||
| @@ -113,21 +113,26 @@ void MatrixMulForwardImpl::AlgoPack::fill_cutlass_algos() { | |||
| simt_float32_gemv_batched_strided.emplace_back(128); | |||
| simt_float32_gemv_batched_strided.emplace_back(64); | |||
| simt_float32_gemv_batched_strided.emplace_back(32); | |||
| #define FOREACH_CUTLASS_MATMUL_F16_SHAPES(cb) \ | |||
| cb(256, 128, 32, 64, 64, 32, 8, 8, 4); \ | |||
| cb(128, 256, 32, 64, 64, 32, 8, 8, 4); \ | |||
| cb(128, 128, 32, 64, 64, 32, 8, 8, 4); \ | |||
| cb(256, 128, 32, 64, 64, 32, 16, 8, 8); \ | |||
| cb(128, 256, 32, 64, 64, 32, 16, 8, 8); \ | |||
| #define FOREACH_CUTLASS_MATMUL_MMA_SM70_SHAPES(cb) \ | |||
| cb(256, 128, 32, 64, 64, 32, 8, 8, 4); \ | |||
| cb(128, 256, 32, 64, 64, 32, 8, 8, 4); \ | |||
| cb(128, 128, 32, 64, 64, 32, 8, 8, 4); | |||
| #define FOREACH_CUTLASS_MATMUL_MMA_SM75_SHAPES(cb) \ | |||
| cb(256, 128, 32, 64, 64, 32, 16, 8, 8); \ | |||
| cb(128, 256, 32, 64, 64, 32, 16, 8, 8); \ | |||
| cb(128, 128, 32, 64, 64, 32, 16, 8, 8); | |||
| #define cb(...) \ | |||
| tensorop_float16.emplace_back(AlgoParam{__VA_ARGS__}); \ | |||
| tensorop_float16_split_k.emplace_back(AlgoParam{__VA_ARGS__}); | |||
| #if CUDA_VERSION >= 10010 | |||
| FOREACH_CUTLASS_MATMUL_MMA_SM70_SHAPES(cb) | |||
| #endif | |||
| #if CUDA_VERSION >= 10020 | |||
| FOREACH_CUTLASS_MATMUL_F16_SHAPES(cb) | |||
| FOREACH_CUTLASS_MATMUL_MMA_SM75_SHAPES(cb) | |||
| #endif | |||
| #undef cb | |||
| #undef FOREACH_CUTLASS_MATMUL_F16_SHAPES | |||
| #undef FOREACH_CUTLASS_MATMUL_MMA_SM70_SHAPES | |||
| #undef FOREACH_CUTLASS_MATMUL_MMA_SM75_SHAPES | |||
| } | |||
| #endif | |||
| @@ -350,7 +350,7 @@ private: | |||
| std::string m_name; | |||
| }; | |||
| #if CUDA_VERSION >= 10020 | |||
| #if CUDA_VERSION >= 10010 | |||
| class MatrixMulForwardImpl::AlgoFloat16TensorOp final | |||
| : public AlgoCutlassMatrixMulBase { | |||
| public: | |||
| @@ -418,7 +418,7 @@ public: | |||
| std::vector<AlgoFloat32SIMT> simt_float32; | |||
| std::vector<AlgoFloat32SIMTSplitK> simt_float32_split_k; | |||
| std::vector<AlgoFloat32SIMTGemvBatchedStrided> simt_float32_gemv_batched_strided; | |||
| #if CUDA_VERSION >= 10020 | |||
| #if CUDA_VERSION >= 10010 | |||
| std::vector<AlgoFloat16TensorOp> tensorop_float16; | |||
| std::vector<AlgoFloat16TensorOpSplitK> tensorop_float16_split_k; | |||
| #endif | |||
| @@ -15,7 +15,7 @@ | |||
| #include "src/cuda/matrix_mul/algos.h" | |||
| #include "src/cuda/utils.h" | |||
| #if CUDA_VERSION >= 10020 | |||
| #if CUDA_VERSION >= 10010 | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| @@ -15,7 +15,7 @@ | |||
| #include "src/cuda/matrix_mul/algos.h" | |||
| #include "src/cuda/utils.h" | |||
| #if CUDA_VERSION >= 10020 | |||
| #if CUDA_VERSION >= 10010 | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| @@ -46,8 +46,10 @@ public: | |||
| class AlgoFloat32SIMT; | |||
| class AlgoFloat32SIMTSplitK; | |||
| class AlgoFloat32SIMTGemvBatchedStrided; | |||
| #if CUDA_VERSION >= 10010 | |||
| class AlgoFloat16TensorOp; | |||
| class AlgoFloat16TensorOpSplitK; | |||
| #endif | |||
| #endif | |||
| class AlgoPack; | |||
| @@ -494,6 +494,21 @@ void check_chanwise(DType io_type, DType comp_type, Handle* handle, const char* | |||
| checker.set_param(gconv_param({M, 7, 7, 2, 2}, io16xc32)) | |||
| .execs({{2, 1, 1, 15, 15}, {8, 2, 7, 7}, {8, 2, 14, 14}}); | |||
| } else if (std::is_same<Op, ConvolutionBackwardFilter>::value) { | |||
| // align 8 | |||
| checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
| .execs({{8, 2, 16, 16}, {8, 2, 16, 16}, {2, 1, 1, 15, 15}}); | |||
| // align 1 | |||
| checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
| .execs({{8, 2, 15, 15}, {8, 2, 15, 15}, {2, 1, 1, 15, 15}}); | |||
| // align 2 | |||
| checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
| .execs({{8, 2, 14, 14}, {8, 2, 14, 14}, {2, 1, 1, 15, 15}}); | |||
| // custom padding | |||
| checker.set_param(gconv_param({M, 3, 3, 1, 1}, io16xc32)) | |||
| .execs({{8, 2, 16, 16}, {8, 2, 8, 8}, {2, 1, 1, 15, 15}}); | |||
| // custom stride | |||
| checker.set_param(gconv_param({M, 7, 7, 2, 2}, io16xc32)) | |||
| .execs({{8, 2, 14, 14}, {8, 2, 7, 7}, {2, 1, 1, 15, 15}}); | |||
| } | |||
| } | |||
| } // namespace | |||
| @@ -535,14 +550,32 @@ MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb) | |||
| #undef cb | |||
| #define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
| TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_FILTER_CUTLASS_FMA_##tag) { \ | |||
| require_compute_capability(6, 1); \ | |||
| check_chanwise<ConvolutionBackwardFilter>( \ | |||
| dtype::Float32(), dtype::Float32(), handle_cuda(), \ | |||
| "FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
| "_" #wm "X" #wn "X" #wk "_2stage"); \ | |||
| } | |||
| MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb) | |||
| #undef cb | |||
| #undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL | |||
| #if CUDA_VERSION >= 10010 | |||
| #define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) \ | |||
| cb(1, 128, 128, 32, 32, 32, 32); \ | |||
| cb(2, 128, 256, 32, 64, 64, 32); \ | |||
| cb(3, 128, 64, 32, 32, 32, 32); \ | |||
| cb(4, 64, 128, 32, 32, 32, 32); \ | |||
| cb(5, 64, 64, 32, 32, 32, 32); | |||
| #else | |||
| // hmma instruction need cuda version >= 10.2, disable hmma testcases in this path | |||
| #define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) | |||
| #endif | |||
| // check both ioc16 and io16xc32 | |||
| #define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
| @@ -579,6 +612,19 @@ MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) | |||
| #undef cb | |||
| #define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
| TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_FILTER_CUTLASS_HMMA_##tag) { \ | |||
| require_compute_capability(7, 0); \ | |||
| check_chanwise<ConvolutionBackwardData>( \ | |||
| dtype::Float16(), dtype::Float32(), handle_cuda(), \ | |||
| "FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
| "_" #wm "X" #wn "X" #wk "_mma8X8X4_2stage"); \ | |||
| } | |||
| MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) | |||
| #undef cb | |||
| #undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL | |||
| #if MEGDNN_WITH_BENCHMARK | |||
| @@ -1434,6 +1480,77 @@ TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BACKWARD_DATA_LARGE_KERNEL) { | |||
| } | |||
| // clang-format on | |||
| } | |||
| TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BACKWARD_FILTER_LARGE_KERNEL) { | |||
| CUBenchmarker<ConvolutionBackwardFilter> bencher(handle_cuda()); | |||
| size_t RUNS = 100; | |||
| bencher.set_display(false).set_times(RUNS); | |||
| std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{ | |||
| new OprProxy<ConvolutionBackwardFilter>{true}}; | |||
| bencher.set_proxy(proxy); | |||
| Convolution::Param param; | |||
| param.format = ConvBias::Param::Format::NCHW; | |||
| param.sparse = Convolution::Param::Sparse::GROUP; | |||
| NormalRNG rng; | |||
| auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) { | |||
| param.pad_h = f / 2; | |||
| param.pad_w = f / 2; | |||
| param.stride_h = s; | |||
| param.stride_w = s; | |||
| param.compute_mode = param::Convolution::ComputeMode::DEFAULT; | |||
| TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f}; | |||
| TensorLayout dst_layout; | |||
| auto opr = handle_cuda()->create_operator<Convolution>(); | |||
| opr->param() = param; | |||
| opr->deduce_layout( | |||
| {src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout); | |||
| float bandwith = static_cast<float>( | |||
| src.total_nr_elems() + filter.total_nr_elems() + | |||
| dst_layout.total_nr_elems()) / | |||
| (1024 * 1024 * 1024) * 1e3; | |||
| bencher.set_param(param) | |||
| .set_dtype(0, dtype::Float32()) | |||
| .set_dtype(1, dtype::Float32()) | |||
| .set_dtype(2, dtype::Float32()) | |||
| .set_rng(0, &rng) | |||
| .set_rng(1, &rng); | |||
| bencher.proxy()->target_execution_policy = {}; | |||
| auto time_in_ms_fp32 = bencher.execs({src, src, filter}) / RUNS; | |||
| bencher.set_param(param) | |||
| .set_dtype(0, dtype::Float16()) | |||
| .set_dtype(1, dtype::Float16()) | |||
| .set_dtype(2, dtype::Float16()) | |||
| .set_rng(0, &rng) | |||
| .set_rng(1, &rng); | |||
| bencher.proxy()->target_execution_policy = {}; | |||
| param.compute_mode = param::Convolution::ComputeMode::FLOAT32; | |||
| bencher.set_param(param); | |||
| auto time_in_ms_pseudo_fp16 = bencher.execs({src, src, filter}) / RUNS; | |||
| printf("stride=%zu src=%s, filter=%s, float32: %.2fms %.2fGB/s " | |||
| "pseudo float16: %.2fms %.2fGB/s " | |||
| "speedup: " | |||
| "%0.2f (fp16/fp32) \n", | |||
| s, src.to_string().c_str(), filter.to_string().c_str(), time_in_ms_fp32, | |||
| bandwith * 4 / time_in_ms_fp32, time_in_ms_pseudo_fp16, | |||
| bandwith * 2 / time_in_ms_pseudo_fp16, | |||
| time_in_ms_fp32 / time_in_ms_pseudo_fp16); | |||
| }; | |||
| // clang-format off | |||
| for (size_t b : {32, 64}) | |||
| for (size_t f : {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}) { | |||
| run(b, 384, 32, 32, f, 1); | |||
| run(b, 384, 64, 64, f, 1); | |||
| } | |||
| // clang-format on | |||
| } | |||
| #endif | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -1093,8 +1093,11 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_GROUP) { | |||
| run(2, 32, 7, 7, 3, 3, 64, 1, 1, 1, 1, 1, 1, 4, nlmode); | |||
| // strided case | |||
| run(2, 32, 7, 7, 3, 3, 64, 0, 0, 2, 2, 1, 1, 8, nlmode); | |||
| // dilate conv is supported in CUDNN since version 7.5.0 | |||
| #if CUDNN_VERSION >= 7500 | |||
| // dilated case | |||
| run(2, 32, 7, 7, 3, 3, 64, 0, 0, 1, 1, 2, 2, 8, nlmode); | |||
| #endif | |||
| } | |||
| } | |||
| @@ -213,7 +213,7 @@ std::vector<BenchArgs> get_feat_model_args() { | |||
| return args; | |||
| } | |||
| #if CUDA_VERSION >= 10020 | |||
| #if CUDA_VERSION >= 10010 | |||
| std::vector<BenchArgs> get_f16_feat_model_args() { | |||
| std::vector<BenchArgs> args; | |||
| args.emplace_back(BenchArgs{128, 9216, 9216}); | |||
| @@ -367,7 +367,7 @@ MEGDNN_FOREACH_CUTLASS_KERNEL(cb) | |||
| #undef cb | |||
| #undef MEGDNN_FOREACH_CUTLASS_KERNEL | |||
| #if CUDA_VERSION >= 10020 | |||
| #if CUDA_VERSION >= 10010 | |||
| #define MEGDNN_FOREACH_CUTLASS_KERNEL(cb) \ | |||
| cb(1, 256, 128, 32, 64, 64, 32, 8, 8, 4); \ | |||
| cb(2, 128, 256, 32, 64, 64, 32, 8, 8, 4); \ | |||
| @@ -403,7 +403,9 @@ MEGDNN_FOREACH_CUTLASS_KERNEL(cb) | |||
| #undef cb | |||
| #undef MEGDNN_FOREACH_CUTLASS_KERNEL | |||
| #endif | |||
| #if CUDA_VERSION >= 10020 | |||
| #define MEGDNN_FOREACH_CUTLASS_KERNEL(cb) \ | |||
| cb(1, 256, 128, 32, 64, 64, 32, 16, 8, 8); \ | |||
| cb(2, 128, 256, 32, 64, 64, 32, 16, 8, 8); \ | |||
| @@ -454,7 +456,7 @@ TEST_F(CUDA, BENCHMARK_CUTLASS_MATMUL_FEAT) { | |||
| dtype::Float32(), "CUTLASS_FLOAT32_SIMT"); | |||
| } | |||
| #if CUDA_VERSION >= 10020 | |||
| #if CUDA_VERSION >= 10010 | |||
| TEST_F(CUDA, BENCHMARK_CUTLASS_F16_MATMUL_FEAT) { | |||
| benchmark_matrix_mul( | |||
| handle_cuda(), get_f16_feat_model_args(), dtype::Float16(), | |||