| @@ -754,6 +754,42 @@ std::unique_ptr<ConvertF32ToF16Pass> ConvertF32ToF16Pass::make( | |||
| return new_conv_opr.node()->owner_opr(); | |||
| }; | |||
| auto replace_convbias_opr = [use_f32_comp](OperatorNodeBase* opr, | |||
| const VarNodeArray& new_inp) { | |||
| auto& convbias_opr = opr->cast_final_safe<opr::ConvBiasForward>(); | |||
| auto new_param = convbias_opr.param(); | |||
| if (use_f32_comp) { | |||
| new_param.compute_mode = | |||
| megdnn::param::ConvBias::ComputeMode::FLOAT32; | |||
| } | |||
| mgb_assert(new_inp[0]->dtype() == dtype::Float16(), | |||
| "inp %s:%s, owner_opr:%s", new_inp[0]->dtype().name(), | |||
| new_inp[0]->name().c_str(), | |||
| new_inp[0]->owner_opr()->name().c_str()); | |||
| mgb_assert(new_inp[1]->dtype() == dtype::Float16(), | |||
| "inp %s:%s, owner_opr:%s", new_inp[1]->dtype().name(), | |||
| new_inp[1]->name().c_str(), | |||
| new_inp[1]->owner_opr()->name().c_str()); | |||
| if(opr->input().size() == 2) { | |||
| auto new_conv_opr = opr::ConvBias::make( | |||
| new_inp[0], new_inp[1], new_param, convbias_opr.execution_policy(), | |||
| convbias_opr.config()); | |||
| return new_conv_opr.node()->owner_opr(); | |||
| } else if(opr->input().size() == 3) { | |||
| auto new_conv_opr = opr::ConvBias::make( | |||
| new_inp[0], new_inp[1], new_inp[2], new_param, convbias_opr.execution_policy(), | |||
| convbias_opr.config()); | |||
| return new_conv_opr.node()->owner_opr(); | |||
| } else { | |||
| mgb_assert(opr->input().size() == 4, "invalid input size %zu", | |||
| opr->input().size()); | |||
| auto new_conv_opr = opr::ConvBias::make( | |||
| new_inp[0], new_inp[1], new_inp[2], new_inp[3], new_param, convbias_opr.execution_policy(), | |||
| convbias_opr.config()); | |||
| return new_conv_opr.node()->owner_opr(); | |||
| } | |||
| }; | |||
| auto replace_matmul_opr = [use_f32_comp](OperatorNodeBase* opr, | |||
| const VarNodeArray& new_inp) { | |||
| mgb_assert(opr->input().size() == new_inp.size()); | |||
| @@ -888,6 +924,7 @@ std::unique_ptr<ConvertF32ToF16Pass> ConvertF32ToF16Pass::make( | |||
| replace_func[opr::Host2DeviceCopy::typeinfo()] = replace_h2d_opr; | |||
| replace_func[opr::SharedDeviceTensor::typeinfo()] = replace_sdt_opr; | |||
| replace_func[opr::Convolution::typeinfo()] = replace_conv_opr; | |||
| replace_func[opr::ConvBias::typeinfo()] = replace_convbias_opr; | |||
| replace_func[opr::MatrixMul::typeinfo()] = replace_matmul_opr; | |||
| replace_func[opr::Reduce::typeinfo()] = replace_reduce_opr; | |||
| replace_func[opr::ImmutableTensor::typeinfo()] = replace_imt_opr; | |||
| @@ -1622,7 +1659,9 @@ void FuseConvBiasNonlinPass::apply(OptState& state) const { | |||
| param.stride_h, | |||
| param.stride_w, | |||
| param.dilate_h, | |||
| param.dilate_w}; | |||
| param.dilate_w, | |||
| 0, | |||
| param.compute_mode}; | |||
| }; | |||
| auto check_bias_shape = [&](opr::Convolution* conv, VarNode* bias) -> bool { | |||
| @@ -880,6 +880,64 @@ TEST(TestGoptInference, Float32TOFloat16) { | |||
| MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3); | |||
| } | |||
| TEST(TestGoptInference, Float32TOFloat16C32) { | |||
| CompNode cn = CompNode::load("cpu0"); | |||
| HostTensorGenerator<> gen(0, 1, 0); | |||
| auto host_x0 = gen({1, 4, 1, 1}, cn), host_x1 = gen({2, 3, 16, 8}, cn), | |||
| host_x2 = gen({4, 3, 1, 1}, cn); | |||
| auto graph = ComputingGraph::make(); | |||
| auto make_f32_to_f16_graph = [&]() { | |||
| graph->options().graph_opt_level = 0; | |||
| auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0), | |||
| d1 = opr::Host2DeviceCopy::make(*graph, host_x1), | |||
| d2 = opr::SharedDeviceTensor::make(*graph, *host_x2); | |||
| auto y = opr::ConvBias::make(d1, d2, d0); | |||
| y = opr::Reduce::make(y, {}, y.make_scalar(1)); | |||
| SymbolVar y_opt; | |||
| auto options = gopt::OptimizeForInferenceOptions{}; | |||
| options.enable_f16_io_f32_comp(); | |||
| unpack_vector(gopt::optimize_for_inference({y}, options), y_opt); | |||
| return y_opt; | |||
| }; | |||
| auto make_f16_graph = [&]() { | |||
| auto d0 = opr::TypeCvt::make(opr::TypeCvt::make( | |||
| opr::Host2DeviceCopy::make(*graph, host_x0), | |||
| dtype::Float16{}), dtype::Float32{}), | |||
| d1 = opr::TypeCvt::make(opr::TypeCvt::make( | |||
| opr::Host2DeviceCopy::make(*graph, host_x1), | |||
| dtype::Float16{}), dtype::Float32{}), | |||
| d2 = opr::TypeCvt::make(opr::TypeCvt::make( | |||
| opr::SharedDeviceTensor::make(*graph, *host_x2), | |||
| dtype::Float16{}), dtype::Float32{}); | |||
| auto y = opr::ConvBias::make(d1, d2, d0); | |||
| y = opr::Reduce::make(y, {}, y.make_scalar(1)); | |||
| y = opr::TypeCvt::make( | |||
| opr::TypeCvt::make(y, dtype::Float16{}), | |||
| dtype::Float32{}); | |||
| return y; | |||
| }; | |||
| auto y_opt = make_f32_to_f16_graph(); | |||
| auto y = make_f16_graph(); | |||
| ASSERT_EQ(find_opr<opr::ConvBias>(y_opt).param().compute_mode, | |||
| opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32); | |||
| ASSERT_EQ(y_opt.dtype(), dtype::Float32{}); | |||
| ASSERT_EQ(y.dtype(), dtype::Float32{}); | |||
| HostTensorND host_y_opt, host_y; | |||
| auto func = graph->compile({make_callback_copy(y, host_y), | |||
| make_callback_copy(y_opt, host_y_opt)}); | |||
| func->execute(); | |||
| MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3); | |||
| } | |||
| TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) { | |||
| CompNode cn = CompNode::load("cpu0"); | |||
| HostTensorGenerator<> gen(0, 1, 0); | |||