GitOrigin-RevId: bd1b80c84f
tags/v1.1.0
| @@ -753,12 +753,14 @@ install(TARGETS mgb_opr_param_defs EXPORT ${MGE_EXPORT_TARGETS}) | |||
| if(MGE_WITH_JIT_MLIR) | |||
| # generate param_defs.td | |||
| set(MGE_GENFILE_DIR ${PROJECT_BINARY_DIR}/src/genfiles) | |||
| set(MGE_GEN_IR_DIR ${PROJECT_BINARY_DIR}/src/core/include/megbrain/ir) | |||
| set(OPR_PARAM_DEFS_SRCS ${MGE_GENFILE_DIR}/opr_param_defs.py) | |||
| set(OPR_PARAM_DEFS_SCRIPT ${PROJECT_SOURCE_DIR}/dnn/scripts/gen_tablegen.py) | |||
| set(OPR_PARAM_DEFS_OUT ${MGE_GENFILE_DIR}/param_defs.td) | |||
| set(OPR_PARAM_DEFS_OUT ${MGE_GEN_IR_DIR}/param_defs.td) | |||
| file(COPY ${PROJECT_SOURCE_DIR}/dnn/scripts/opr_param_defs.py DESTINATION ${MGE_GENFILE_DIR}) | |||
| file(READ ${PROJECT_SOURCE_DIR}/tools/param_defs/mgb_opr_param_defs.py CONTENTS) | |||
| file(APPEND ${OPR_PARAM_DEFS_SRCS} ${CONTENTS}) | |||
| file(MAKE_DIRECTORY ${MGE_GEN_IR_DIR}) | |||
| add_custom_target(param_defs_tblgen | |||
| COMMAND ${PYTHON_EXECUTABLE} ${OPR_PARAM_DEFS_SCRIPT} ${OPR_PARAM_DEFS_SRCS} ${OPR_PARAM_DEFS_OUT} | |||
| DEPENDS ${OPR_PARAM_DEFS_SRCS} ${OPR_PARAM_DEFS_SCRIPT} | |||
| @@ -766,7 +768,7 @@ if(MGE_WITH_JIT_MLIR) | |||
| ) | |||
| # mlir tblgen sources | |||
| set(MGE_IR_DIR ${PROJECT_SOURCE_DIR}/src/core/include/megbrain/ir) | |||
| set(MGE_IR_INCLUDE_DIRS ${MLIR_LLVM_INCLUDE_DIR} ${MGE_GENFILE_DIR} ${MGE_IR_DIR}) | |||
| set(MGE_IR_INCLUDE_DIRS ${MLIR_LLVM_INCLUDE_DIR} ${MGE_IR_DIR} ${MGE_GEN_IR_DIR}) | |||
| list(TRANSFORM MGE_IR_INCLUDE_DIRS PREPEND "-I") | |||
| file(GLOB_RECURSE MGE_IR_TDS ${MGE_IR_DIR}/*.td) | |||
| endif() | |||
| @@ -1,5 +1,5 @@ | |||
| if(MGE_WITH_JIT_MLIR) | |||
| add_subdirectory(jit/impl/mlir/ir) | |||
| add_subdirectory(jit/include/megbrain/jit/mlir/ir) | |||
| endif() | |||
| file(GLOB_RECURSE SOURCES core/impl/*.cpp gopt/impl/*.cpp opr/impl/*.cpp opr/impl/nvof/*.cpp plugin/impl/*.cpp serialization/impl/*.cpp core/impl/*.inl gopt/impl/*.inl opr/impl/*.inl plugin/impl/*.inl serialization/impl/*.inl) | |||
| @@ -100,9 +100,10 @@ if(MGE_WITH_JIT AND MGE_WITH_HALIDE) | |||
| target_link_libraries(megbrain PRIVATE ${HALIDE_LLVM_LIBS}) | |||
| endif() | |||
| if(MGE_WITH_JIT_MLIR) | |||
| target_link_libraries(megbrain PRIVATE mlir_op_def) | |||
| target_link_libraries(megbrain PRIVATE mlir_shape_inference) | |||
| target_include_directories(megbrain PRIVATE ${MLIR_LLVM_INCLUDE_DIR}) | |||
| target_link_libraries(megbrain PRIVATE ${MLIR_LLVM_LIBS}) | |||
| add_dependencies(megbrain mgb_dialect) | |||
| target_include_directories(megbrain PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/jit/include) | |||
| endif() | |||
| if (MGB_WITH_FLATBUFFERS) | |||
| set (GEN_FLATBUFFERS_SCHEMA_PY ${PROJECT_SOURCE_DIR}/dnn/scripts/gen_flatbuffers_schema.py) | |||
| @@ -17,6 +17,7 @@ | |||
| #include "./executable_cpu.h" | |||
| #include "./executable_cuda.h" | |||
| #include "./mlir_gen.h" | |||
| #include "megbrain/common.h" | |||
| #include "megbrain/comp_node_env.h" | |||
| #include "megbrain/jit/mlir/ir/dialect.h" | |||
| @@ -14,37 +14,44 @@ | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #include "./executable_cpu.h" | |||
| #include "./ir/types.h" | |||
| #include "megbrain/jit/mlir/ir/utils.h" | |||
| #include <mlir/ExecutionEngine/OptUtils.h> | |||
| #include <mlir/ExecutionEngine/CRunnerUtils.h> | |||
| #include <mlir/ExecutionEngine/OptUtils.h> | |||
| using namespace mgb; | |||
| using namespace jit; | |||
| namespace { | |||
| template <typename T, int N> | |||
| StridedMemRefType<T, N>* get_strided_memref_type( | |||
| const megdnn::TensorND& tensor) { | |||
| using DescType = StridedMemRefType<T, N>; | |||
| DescType* desc = static_cast<DescType*>(malloc(sizeof(DescType))); | |||
| desc->basePtr = tensor.ptr<T>(); | |||
| desc->data = tensor.ptr<T>(); | |||
| desc->offset = 0; | |||
| for (size_t i = 0; i < tensor.layout.ndim; i++) { | |||
| desc->sizes[i] = tensor.layout.shape[i]; | |||
| desc->strides[i] = tensor.layout.stride[i]; | |||
| } | |||
| return desc; | |||
| } | |||
| template <int N> | |||
| void* tensor2memref_dim(const megdnn::TensorND& tensor) { | |||
| switch (tensor.layout.dtype.enumv()) { | |||
| case megdnn::DTypeEnum::Float32: { | |||
| StridedMemRefType<float, N>* desc = | |||
| static_cast<StridedMemRefType<float, N>*>( | |||
| malloc(sizeof(StridedMemRefType<float, N>))); | |||
| desc->basePtr = tensor.ptr<float>(); | |||
| desc->data = tensor.ptr<float>(); | |||
| desc->offset = 0; | |||
| for (size_t i = 0; i < tensor.layout.ndim; i++) { | |||
| desc->sizes[i] = tensor.layout.shape[i]; | |||
| desc->strides[i] = tensor.layout.stride[i]; | |||
| } | |||
| return desc; | |||
| break; | |||
| } | |||
| #define cb(_dtype, _type) \ | |||
| case megdnn::DTypeEnum::_dtype: \ | |||
| return get_strided_memref_type<_type, N>(tensor); | |||
| FOR_EACH_DNN_DTYPE(cb) | |||
| #undef cb | |||
| default: | |||
| mgb_throw(InternalError, "Unsupport dtype, got %s", | |||
| mgb_throw(InternalError, "Unsupported dtype: %s", | |||
| tensor.layout.dtype.name()); | |||
| break; | |||
| } | |||
| return nullptr; | |||
| } | |||
| @@ -10,18 +10,18 @@ | |||
| * implied. | |||
| */ | |||
| #include <vector> | |||
| #include "megbrain_build_config.h" | |||
| #include "megdnn/dtype.h" | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #if MGB_CUDA | |||
| #include "./executable_cuda.h" | |||
| #include "./ir/types.h" | |||
| #include "megbrain/comp_node_env.h" | |||
| #include "megbrain/jit/mlir/ir/utils.h" | |||
| #include "megbrain/utils/persistent_cache.h" | |||
| #include "megbrain/utils/timer.h" | |||
| #include "megdnn/dtype.h" | |||
| #include <mlir/Dialect/GPU/GPUDialect.h> | |||
| #include <mlir/ExecutionEngine/CRunnerUtils.h> | |||
| @@ -83,6 +83,24 @@ void setup_and_launch(const JITExecutor* fusion_opr, CUfunction func, | |||
| MGB_CUDA_CU_CHECK(cuLaunchKernel(func, num_block, 1, 1, block_size, 1, 1, 0, | |||
| env.cuda_env().stream, params.data(), 0)); | |||
| } | |||
| template <int out_dim> | |||
| void setup_and_launch_dim(const megdnn::DType dtype, | |||
| const JITExecutor* fusion_opr, CUfunction func, | |||
| int block_size) { | |||
| switch (dtype.enumv()) { | |||
| #define cb(_dtype, _type) \ | |||
| case megdnn::DTypeEnum::_dtype: \ | |||
| setup_and_launch<out_dim, _type>(fusion_opr, func, block_size); \ | |||
| return; | |||
| FOR_EACH_DNN_DTYPE(cb) | |||
| #undef cb | |||
| default: | |||
| mgb_throw(InternalError, "Unsupported dtype: %s", dtype.name()); | |||
| } | |||
| return; | |||
| } | |||
| } // namespace | |||
| const std::string MLIRCUDAExecutable::sm_blob_annotation = "nvvm.cubin"; | |||
| @@ -136,30 +154,19 @@ void MLIRCUDAExecutable::FuncCache::exec(const JITExecutor* fusion_opr, | |||
| fusion_opr->args().outputs.size()); | |||
| int out_dim = fusion_opr->args().outputs[0].from->layout().ndim; | |||
| DType dtype = fusion_opr->args().outputs[0].from->layout().dtype; | |||
| #define cb_outdim(_ndim, _dtype) \ | |||
| if (_ndim == out_dim) { \ | |||
| setup_and_launch<_ndim, _dtype>(fusion_opr, func->func, \ | |||
| func->block_size); \ | |||
| return; \ | |||
| } | |||
| #define cb(_dtype) \ | |||
| cb_outdim(1, float); \ | |||
| cb_outdim(2, float); \ | |||
| cb_outdim(3, float); \ | |||
| cb_outdim(4, float); \ | |||
| mgb_throw(InternalError, "unsupported out_dim=%zu", \ | |||
| static_cast<size_t>(out_dim)); \ | |||
| return; | |||
| switch (dtype.enumv()) { | |||
| case DTypeEnum::Float32: | |||
| cb(float); | |||
| default: | |||
| mgb_throw(InternalError, "unsupport dtype: %s", dtype.name()); | |||
| } | |||
| switch (out_dim) { | |||
| #define cb(_ndim) \ | |||
| case _ndim: \ | |||
| setup_and_launch_dim<_ndim>(dtype, fusion_opr, func->func, \ | |||
| func->block_size); \ | |||
| break; | |||
| cb(1); | |||
| cb(2); | |||
| cb(3); | |||
| cb(4); | |||
| #undef cb | |||
| #undef cb_outdim | |||
| } | |||
| } | |||
| #endif // MGB_CUDA | |||
| @@ -1,39 +0,0 @@ | |||
| set(MGB_MLIR_TABLEGEN_INC_BASE ${CMAKE_CURRENT_BINARY_DIR}/include/) | |||
| file(MAKE_DIRECTORY ${MGB_MLIR_TABLEGEN_INC_BASE}/megbrain/jit/mlir/ir/) | |||
| list(APPEND MGB_MLIR_TABLEGEN_INC ${MGB_MLIR_TABLEGEN_INC_BASE}) | |||
| external_tablegen_library( | |||
| NAME | |||
| mlir_shape_inference | |||
| TBLGEN | |||
| MLIR | |||
| SRCS | |||
| "interfaces.td" | |||
| INCLUDES | |||
| ${MGB_MLIR_TABLEGEN_INC} ${MLIR_LLVM_INCLUDE_DIR} | |||
| OUTS | |||
| -gen-op-interface-decls include/megbrain/jit/mlir/ir/interfaces.h.inc | |||
| -gen-op-interface-defs include/megbrain/jit/mlir/ir/interfaces.cpp.inc | |||
| ) | |||
| external_tablegen_library( | |||
| NAME | |||
| mlir_op_def | |||
| TBLGEN | |||
| MLIR | |||
| SRCS | |||
| "ops.td" | |||
| INCLUDES | |||
| ${MGB_MLIR_TABLEGEN_INC} ${MLIR_LLVM_INCLUDE_DIR} | |||
| OUTS | |||
| -gen-op-decls include/megbrain/jit/mlir/ir/ops.h.inc | |||
| -gen-op-defs include/megbrain/jit/mlir/ir/ops.cpp.inc | |||
| ) | |||
| # mgb_dialect | |||
| set(MGB_DIALECT_TD ${PROJECT_SOURCE_DIR}/src/jit/include/megbrain/jit/mlir/ir/mgb_dialect.td) | |||
| set(LLVM_TARGET_DEFINITIONS ${MGB_DIALECT_TD}) | |||
| tablegen(MLIR mgb_dialect.h.inc ${MGE_IR_INCLUDE_DIRS} "--gen-op-decls") | |||
| tablegen(MLIR mgb_dialect.cpp.inc ${MGE_IR_INCLUDE_DIRS} "--gen-op-defs") | |||
| add_custom_target(mgb_dialect DEPENDS mgb_dialect.h.inc mgb_dialect.cpp.inc ${MGB_DIALECT_TD} ${MGE_IR_TDS}) | |||
| add_dependencies(mgb_dialect param_defs_tblgen) | |||
| @@ -14,91 +14,99 @@ | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #include "./common.h" | |||
| #include "megbrain/jit/mlir/ir/utils.h" | |||
| #include "mlir/Dialect/StandardOps/IR/Ops.h" | |||
| #include <mlir/Dialect/Affine/IR/AffineOps.h> | |||
| #include <mlir/Dialect/StandardOps/IR/Ops.h> | |||
| using namespace mgb; | |||
| using namespace jit; | |||
| /* ===================== trivial unary functions ===================== */ | |||
| #define cb(name, op) \ | |||
| mlir::Value ValueBuilderHelper::name(mlir::Value lhs) { \ | |||
| return m_builder.create<mlir::op>(m_location, lhs); \ | |||
| } | |||
| cb(abs, AbsFOp); | |||
| cb(ceil, CeilFOp); | |||
| cb(cos, CosOp); | |||
| cb(exp2, Exp2Op); | |||
| cb(exp, ExpOp); | |||
| cb(floor, FloorFOp); | |||
| cb(log10, Log10Op); | |||
| cb(log2, Log2Op); | |||
| cb(log, LogOp); | |||
| cb(neg, NegFOp); | |||
| cb(rsqrt, RsqrtOp); | |||
| cb(sin, SinOp); | |||
| cb(sqrt, SqrtOp); | |||
| cb(tanh, TanhOp); | |||
| #undef cb | |||
| /* ===================== trivial binary functions ===================== */ | |||
| #define cb(name, op) \ | |||
| mlir::Value ValueBuilderHelper::name(mlir::Value lhs, mlir::Value rhs) { \ | |||
| return m_builder.create<mlir::op>(m_location, lhs, rhs); \ | |||
| } | |||
| cb(add, AddFOp); | |||
| cb(sub, SubFOp); | |||
| cb(mul, MulFOp); | |||
| cb(div, DivFOp); | |||
| cb(divI, SignedDivIOp); | |||
| cb(mod, RemFOp); | |||
| cb(bit_and, AndOp); | |||
| cb(bit_or, OrOp); | |||
| cb(div, DivFOp); | |||
| cb(divI, SignedDivIOp); | |||
| cb(modI, SignedRemIOp); | |||
| cb(mod, RemFOp); | |||
| cb(mul, MulFOp); | |||
| cb(sub, SubFOp); | |||
| #undef cb | |||
| /* ===================== compare functions ===================== */ | |||
| #define cb(name, mode) \ | |||
| mlir::Value ValueBuilderHelper::name(mlir::Value lhs, mlir::Value rhs) { \ | |||
| return m_builder.create<mlir::CmpFOp>( \ | |||
| m_location, mlir::CmpFPredicate::mode, lhs, rhs); \ | |||
| } | |||
| cb(gt, OGT); | |||
| cb(eq, OEQ); | |||
| cb(ge, OGE); | |||
| cb(lt, OLT); | |||
| cb(gt, OGT); | |||
| cb(le, OLE); | |||
| cb(eq, OEQ); | |||
| cb(lt, OLT); | |||
| #undef cb | |||
| mlir::Value ValueBuilderHelper::min(mlir::Value lhs, mlir::Value rhs) { | |||
| mlir::Value ValueBuilderHelper::max(mlir::Value lhs, mlir::Value rhs) { | |||
| mlir::Value cmp = m_builder.create<mlir::CmpFOp>( | |||
| m_location, mlir::CmpFPredicate::OLT, lhs, rhs); | |||
| m_location, mlir::CmpFPredicate::OGT, lhs, rhs); | |||
| return m_builder.create<mlir::SelectOp>(m_location, cmp, lhs, rhs); | |||
| } | |||
| mlir::Value ValueBuilderHelper::max(mlir::Value lhs, mlir::Value rhs) { | |||
| mlir::Value ValueBuilderHelper::min(mlir::Value lhs, mlir::Value rhs) { | |||
| mlir::Value cmp = m_builder.create<mlir::CmpFOp>( | |||
| m_location, mlir::CmpFPredicate::OGT, lhs, rhs); | |||
| m_location, mlir::CmpFPredicate::OLT, lhs, rhs); | |||
| return m_builder.create<mlir::SelectOp>(m_location, cmp, lhs, rhs); | |||
| } | |||
| mlir::Value ValueBuilderHelper::const_val(float val) { | |||
| /* ===================== constant functions ===================== */ | |||
| mlir::Value ValueBuilderHelper::const_f32(float val) { | |||
| return m_builder.create<mlir::ConstantOp>(m_location, | |||
| m_builder.getF32FloatAttr(val)); | |||
| } | |||
| mlir::Value ValueBuilderHelper::constI(int32_t val) { | |||
| mlir::Value ValueBuilderHelper::const_i32(int32_t val) { | |||
| return m_builder.create<mlir::ConstantOp>(m_location, | |||
| m_builder.getIndexAttr(val)); | |||
| } | |||
| #define cb(name, op) \ | |||
| mlir::Value ValueBuilderHelper::name(mlir::Value lhs) { \ | |||
| return m_builder.create<mlir::op>(m_location, lhs); \ | |||
| } | |||
| cb(neg, NegFOp); | |||
| cb(ceil, CeilFOp); | |||
| cb(cos, CosOp); | |||
| cb(exp, ExpOp); | |||
| cb(exp2, Exp2Op); | |||
| cb(log10, Log10Op); | |||
| cb(log2, Log2Op); | |||
| cb(log, LogOp); | |||
| cb(rsqrt, RsqrtOp); | |||
| cb(sin, SinOp); | |||
| cb(sqrt, SqrtOp); | |||
| cb(tanh, TanhOp); | |||
| #undef cb | |||
| mlir::Value ValueBuilderHelper::abs(mlir::Value lhs) { | |||
| auto zero = const_val(0.f); | |||
| return select(ge(lhs, zero), lhs, sub(zero, lhs)); | |||
| } | |||
| mlir::Value ValueBuilderHelper::floor(mlir::Value lhs) { | |||
| //! FIXME use standard floor when upgrade llvm | |||
| return neg(ceil(neg(lhs))); | |||
| } | |||
| /* ===================== select function ===================== */ | |||
| mlir::Value ValueBuilderHelper::select(mlir::Value cond, mlir::Value true_val, | |||
| mlir::Value false_val) { | |||
| @@ -106,6 +114,8 @@ mlir::Value ValueBuilderHelper::select(mlir::Value cond, mlir::Value true_val, | |||
| false_val); | |||
| } | |||
| /* ===================== helper functions ===================== */ | |||
| mlir::AffineMap jit::get_affinemap(mlir::OpBuilder& builder, | |||
| const mlir::Value& val, | |||
| const megdnn::TensorLayout& layout) { | |||
| @@ -125,10 +135,10 @@ mlir::AffineMap jit::get_affinemap(mlir::OpBuilder& builder, | |||
| } | |||
| mlir::Value jit::get_affine_load_op(mlir::OpBuilder& builder, | |||
| const mlir::Location& loc, | |||
| const mlir::Value& val, | |||
| const mlir::ValueRange& index, | |||
| const megdnn::TensorLayout& dst) { | |||
| const mlir::Location& loc, | |||
| const mlir::Value& val, | |||
| const mlir::ValueRange& index, | |||
| const megdnn::TensorLayout& dst) { | |||
| if (val.getType().isa<mlir::MemRefType>()) { | |||
| auto type = val.getType().cast<mlir::MemRefType>(); | |||
| megdnn::TensorLayout src_layout = mlir_type_to_layout(type); | |||
| @@ -14,7 +14,9 @@ | |||
| #include "megbrain_build_config.h" | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #include "megbrain/tensor.h" | |||
| #include <mlir/Dialect/StandardOps/IR/Ops.h> | |||
| #include <mlir/IR/OperationSupport.h> | |||
| #include <mlir/IR/Value.h> | |||
| @@ -30,50 +32,59 @@ public: | |||
| ValueBuilderHelper(mlir::OpBuilder& b, mlir::Location location) | |||
| : m_builder{b}, m_location{location} {}; | |||
| #define cb(name) \ | |||
| mlir::Value name(mlir::ValueRange operands) { \ | |||
| return name(operands[0], operands[1]); \ | |||
| } \ | |||
| mlir::Value name(mlir::Value lhs, mlir::Value rhs) | |||
| cb(add); | |||
| cb(sub); | |||
| cb(mul); | |||
| cb(div); | |||
| cb(divI); | |||
| cb(max); | |||
| cb(min); | |||
| cb(mod); | |||
| cb(modI); | |||
| cb(gt); | |||
| cb(ge); | |||
| cb(lt); | |||
| cb(le); | |||
| cb(eq); | |||
| cb(bit_and); | |||
| cb(bit_or); | |||
| #undef cb | |||
| mlir::Value const_val(float val); | |||
| mlir::Value constI(int32_t val); | |||
| #define cb(name) \ | |||
| mlir::Value name(mlir::ValueRange operands) { return name(operands[0]); } \ | |||
| mlir::Value name(mlir::Value lhs) | |||
| cb(neg); | |||
| // unary functions | |||
| cb(abs); | |||
| cb(ceil); | |||
| cb(floor); | |||
| cb(cos); | |||
| cb(exp); | |||
| cb(exp2); | |||
| cb(floor); | |||
| cb(log); | |||
| cb(log10); | |||
| cb(log2); | |||
| cb(log); | |||
| cb(neg); | |||
| cb(rsqrt); | |||
| cb(sin); | |||
| cb(sqrt); | |||
| cb(tanh); | |||
| #undef cb | |||
| #define cb(name) \ | |||
| mlir::Value name(mlir::ValueRange operands) { \ | |||
| return name(operands[0], operands[1]); \ | |||
| } \ | |||
| mlir::Value name(mlir::Value lhs, mlir::Value rhs) | |||
| // binary functions | |||
| cb(add); | |||
| cb(bit_and); | |||
| cb(bit_or); | |||
| cb(div); | |||
| cb(divI); | |||
| cb(eq); | |||
| cb(ge); | |||
| cb(gt); | |||
| cb(le); | |||
| cb(lt); | |||
| cb(max); | |||
| cb(min); | |||
| cb(mod); | |||
| cb(modI); | |||
| cb(mul); | |||
| cb(sub); | |||
| #undef cb | |||
| // constant functions | |||
| mlir::Value const_f32(float val); | |||
| mlir::Value const_i32(int32_t val); | |||
| // select function | |||
| mlir::Value select(mlir::Value cond, mlir::Value true_val, | |||
| mlir::Value false_val); | |||
| @@ -14,6 +14,7 @@ | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #include "megbrain/jit/mlir/ir/dialect.h" | |||
| #include "./types.h" | |||
| #include <mlir/IR/Builders.h> | |||
| @@ -28,14 +29,12 @@ MgbDialect::MgbDialect(mlir::MLIRContext* ctx) | |||
| : mlir::Dialect("mgb", ctx, mlir::TypeID::get<MgbDialect>()) { | |||
| addOperations< | |||
| #define GET_OP_LIST | |||
| #include "megbrain/jit/mlir/ir/ops.cpp.inc" | |||
| #include "megbrain/jit/mlir/ir/mgb_dialect.cpp.inc" | |||
| >(); | |||
| } | |||
| #define GET_OP_CLASSES | |||
| #include "megbrain/jit/mlir/ir/ops.cpp.inc" | |||
| #include "megbrain/jit/mlir/ir/interfaces.cpp.inc" | |||
| #include "megbrain/jit/mlir/ir/mgb_dialect.cpp.inc" | |||
| #endif // MGB_JIT && MGB_JIT_MLIR | |||
| @@ -0,0 +1,480 @@ | |||
| /** | |||
| * \file src/jit/impl/mlir/ir/each_mode.cpp | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "megbrain_build_config.h" | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #include "./common.h" | |||
| #include "./each_mode.h" | |||
| #include "./numerical.h" | |||
| #include "./types.h" | |||
| #include "megbrain/common.h" | |||
| #include "megbrain/exception.h" | |||
| #include "megbrain/jit/mlir/ir/dialect.h" | |||
| #include <mlir/Dialect/StandardOps/IR/Ops.h> | |||
| namespace mgb { | |||
| namespace jit { | |||
| using Mode = megdnn::param::Elemwise::Mode; | |||
| template <Mode mode> | |||
| mlir::Value lower_mode(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands); | |||
| /* ===================== trivial implementations ===================== */ | |||
| #define cb(mode, fun) \ | |||
| template <> \ | |||
| mlir::Value lower_mode<Mode::mode>(mlir::OpBuilder & builder, \ | |||
| mlir::Location loc, \ | |||
| ValueRange operands) { \ | |||
| ValueBuilderHelper helper(builder, loc); \ | |||
| return helper.fun(operands); \ | |||
| } | |||
| //! unary | |||
| cb(ABS, abs); | |||
| cb(CEIL, ceil); | |||
| cb(COS, cos); | |||
| cb(EXP, exp); | |||
| cb(FLOOR, floor); | |||
| cb(LOG, log); | |||
| cb(NEGATE, neg); | |||
| cb(SIN, sin); | |||
| cb(TANH, tanh); | |||
| //! binary | |||
| cb(ADD, add); | |||
| cb(MAX, max); | |||
| cb(MIN, min); | |||
| cb(MOD, mod); | |||
| cb(MUL, mul); | |||
| cb(SUB, sub); | |||
| cb(TRUE_DIV, div); | |||
| #undef cb | |||
| /* ===================== unary op ===================== */ | |||
| //! ACOS: pi / 2 - arctan2(x, sqrt(1 - x * x)) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::ACOS>(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto x = operands[0]; | |||
| auto one_minus_x_2 = helper.sub(helper.const_f32(1.f), helper.mul(x, x)); | |||
| auto asin = atan2_approx(helper, x, helper.sqrt(one_minus_x_2)); | |||
| auto pi_over_2 = helper.const_f32(1.57079637f); | |||
| return helper.sub(pi_over_2, asin); | |||
| } | |||
| //! ASIN: arctan2(x, sqrt(1 - x * x)) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::ASIN>(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto x = operands[0]; | |||
| auto one_minus_x_2 = helper.sub(helper.const_f32(1.f), helper.mul(x, x)); | |||
| return atan2_approx(helper, x, helper.sqrt(one_minus_x_2)); | |||
| } | |||
| //! ERFCINV: inverse of complementary gauss error function | |||
| //! https://github.com/scipy/scipy/blob/master/scipy/special/cephes/erfinv.c | |||
| template <> | |||
| mlir::Value lower_mode<Mode::ERFCINV>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto minus_sqrt2 = helper.const_f32(-1.4142135623f); | |||
| auto x = helper.mul(helper.const_f32(0.5f), operands[0]); | |||
| return helper.div(ndtri_approx(helper, x), minus_sqrt2); | |||
| } | |||
| //! ERFC: complementary error function | |||
| template <> | |||
| mlir::Value lower_mode<Mode::ERFC>(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.sub(helper.const_f32(1.f), erf_approx(helper, operands[0])); | |||
| } | |||
| //! ERFINV: inverse of gauss error function | |||
| //! https://github.com/scipy/scipy/blob/master/scipy/special/cephes/erfinv.c | |||
| template <> | |||
| mlir::Value lower_mode<Mode::ERFINV>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto sqrt2 = helper.const_f32(1.4142135623f); | |||
| auto x = helper.mul(helper.const_f32(0.5f), | |||
| helper.add(operands[0], helper.const_f32(1.f))); | |||
| return helper.div(ndtri_approx(helper, x), sqrt2); | |||
| } | |||
| //! ERF: gauss error function | |||
| template <> | |||
| mlir::Value lower_mode<Mode::ERF>(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return erf_approx(helper, operands[0]); | |||
| } | |||
| //! EXPM1: exp(x) - 1 | |||
| template <> | |||
| mlir::Value lower_mode<Mode::EXPM1>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.sub(helper.exp(operands[0]), helper.const_f32(1.f)); | |||
| } | |||
| //! FAST_TANH: x * (27.f + x * x) / (27.f + 9.f * x * x); | |||
| template <> | |||
| mlir::Value lower_mode<Mode::FAST_TANH>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto square = helper.mul(operands[0], operands[0]); | |||
| return helper.div( | |||
| helper.mul(operands[0], helper.add(helper.const_f32(27.f), square)), | |||
| helper.add(helper.const_f32(27.f), | |||
| helper.mul(helper.const_f32(9.f), square))); | |||
| } | |||
| //! H_SWISH: x * clip(x + 3, 0, 6) / 6 | |||
| template <> | |||
| mlir::Value lower_mode<Mode::H_SWISH>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto const_3 = helper.const_f32(3.f); | |||
| auto const_0 = helper.const_f32(0.f); | |||
| auto const_6 = helper.const_f32(6.f); | |||
| auto tmp = helper.add(operands[0], const_3); | |||
| return helper.div(helper.mul(operands[0], | |||
| helper.min(helper.max(tmp, const_0), const_6)), | |||
| const_6); | |||
| } | |||
| //! LOG1P: log(1 + p) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::LOG1P>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.log(helper.add(operands[0], helper.const_f32(1.f))); | |||
| } | |||
| //! RELU: max(x, 0) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::RELU>(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.max(operands[0], helper.const_f32(0.f)); | |||
| } | |||
| //! ROUND | |||
| template <> | |||
| mlir::Value lower_mode<Mode::ROUND>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.select( | |||
| helper.gt(operands[0], helper.const_f32(0.f)), | |||
| helper.floor(helper.add(operands[0], helper.const_f32(0.5f))), | |||
| helper.ceil(helper.sub(operands[0], helper.const_f32(0.5f)))); | |||
| } | |||
| //! SIGMOID: 1.f / (expf(-y) + 1.f)) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::SIGMOID>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.div(helper.const_f32(1.f), | |||
| helper.add(helper.exp(helper.neg(operands[0])), | |||
| helper.const_f32(1.f))); | |||
| } | |||
| /* ===================== binary op ===================== */ | |||
| //! ABS_GRAD: x > 0 ? y : -y | |||
| template <> | |||
| mlir::Value lower_mode<Mode::ABS_GRAD>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.select(helper.gt(operands[0], helper.const_f32(0.f)), | |||
| operands[1], helper.neg(operands[1])); | |||
| } | |||
| //! ATAN2 | |||
| template <> | |||
| mlir::Value lower_mode<Mode::ATAN2>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return atan2_approx(helper, operands[0], operands[1]); | |||
| } | |||
| //! EQ: x == y ? 1 : 0 | |||
| template <> | |||
| mlir::Value lower_mode<Mode::EQ>(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.select(helper.eq(operands[0], operands[1]), | |||
| helper.const_f32(1.f), helper.const_f32(0.f)); | |||
| } | |||
| //! FAST_TANH_GRAD: ((-48.f * x * x) / (3.f + x * x) + 27.f + x * x) / (3.f + x | |||
| //! * x) * y | |||
| template <> | |||
| mlir::Value lower_mode<Mode::FAST_TANH_GRAD>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto x_pow2 = helper.mul(operands[0], operands[0]); | |||
| auto deno = helper.add(helper.const_f32(3.f), x_pow2); | |||
| return helper.mul( | |||
| helper.div( | |||
| helper.add( | |||
| helper.add(helper.div(helper.mul(helper.const_f32( | |||
| -48.f), | |||
| x_pow2), | |||
| deno), | |||
| helper.const_f32(27.f)), | |||
| x_pow2), | |||
| helper.mul(deno, helper.const_f32(9.f))), | |||
| operands[1]); | |||
| } | |||
| //! FLOOR_DIV: floor(x/y) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::FLOOR_DIV>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.floor(helper.div(operands[0], operands[1])); | |||
| } | |||
| //! FUSE_ADD_H_SWISH: (x+y) * min(max(x + y + 3, 0), 6) * (1/6) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::FUSE_ADD_H_SWISH>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto sum = helper.add(operands[0], operands[1]); | |||
| auto const_3 = helper.const_f32(3.f); | |||
| auto const_0 = helper.const_f32(0.f); | |||
| auto const_6 = helper.const_f32(6.f); | |||
| auto tmp = helper.add(sum, const_3); | |||
| return helper.div( | |||
| helper.mul(sum, helper.min(helper.max(tmp, const_0), const_6)), | |||
| const_6); | |||
| } | |||
| //! FUSE_ADD_RELU: (x + y) <= ctype(0) ? ctype(0) : (x + y) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::FUSE_ADD_RELU>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto sum = helper.add(operands[0], operands[1]); | |||
| return helper.max(sum, helper.const_f32(0.f)); | |||
| } | |||
| //! FUSE_ADD_SIGMOID: 1.f / (expf(-(x+y)) + 1.f)) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::FUSE_ADD_SIGMOID>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.div(helper.const_f32(1.f), | |||
| helper.add(helper.exp(helper.neg( | |||
| helper.add(operands[0], operands[1]))), | |||
| helper.const_f32(1.f))); | |||
| } | |||
| //! FUSE_ADD_TANH: tanh(x + y) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::FUSE_ADD_TANH>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.tanh(helper.add(operands[0], operands[1])); | |||
| } | |||
| //! H_SWISH_GRAD: x < -3.f ? 0.f : (x > 3.f ? y : (2.f * x + 3.f) / 6.f * y) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::H_SWISH_GRAD>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.select( | |||
| helper.lt(operands[0], helper.const_f32(-3.f)), | |||
| helper.const_f32(0.f), | |||
| helper.select( | |||
| helper.gt(operands[0], helper.const_f32(3.f)), operands[1], | |||
| helper.mul( | |||
| helper.div( | |||
| helper.add(helper.mul(helper.const_f32(2.f), | |||
| operands[0]), | |||
| helper.const_f32(3.f)), | |||
| helper.const_f32(6.f)), | |||
| operands[1]))); | |||
| } | |||
| //! LEQ: x <= y ? 1 : 0 | |||
| template <> | |||
| mlir::Value lower_mode<Mode::LEQ>(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.select(helper.le(operands[0], operands[1]), | |||
| helper.const_f32(1.f), helper.const_f32(0.f)); | |||
| } | |||
| //! LOG_SUM_EXP: log(exp(x) + exp(y)) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::LOG_SUM_EXP>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.log( | |||
| helper.add(helper.exp(operands[0]), helper.exp(operands[1]))); | |||
| } | |||
| //! LT: x < y ? 1 : 0 | |||
| template <> | |||
| mlir::Value lower_mode<Mode::LT>(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.select(helper.lt(operands[0], operands[1]), | |||
| helper.const_f32(1.f), helper.const_f32(0.f)); | |||
| } | |||
| //! POW: x^y = exp(y * log(x)) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::POW>(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.exp(helper.mul(operands[1], helper.log(operands[0]))); | |||
| } | |||
| //! SIGMOID_GRAD: x * (1 - x) * y | |||
| template <> | |||
| mlir::Value lower_mode<Mode::SIGMOID_GRAD>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.mul(helper.mul(operands[0], helper.sub(helper.const_f32(1.f), | |||
| operands[0])), | |||
| operands[1]); | |||
| } | |||
| //! SWITCH_GT0: (x > 0) * y | |||
| template <> | |||
| mlir::Value lower_mode<Mode::SWITCH_GT0>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.select(helper.gt(operands[0], helper.const_f32(0.f)), | |||
| operands[1], helper.const_f32(0.f)); | |||
| } | |||
| //! TANH_GRAD: (1 - x * x) * y | |||
| template <> | |||
| mlir::Value lower_mode<Mode::TANH_GRAD>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.mul(helper.sub(helper.const_f32(1.0f), | |||
| helper.mul(operands[0], operands[0])), | |||
| operands[1]); | |||
| } | |||
| /* ===================== ternary op ===================== */ | |||
| //! COND_LEQ_MOV: x <= y ? z : ctype(0) | |||
| template <> | |||
| mlir::Value lower_mode<Mode::COND_LEQ_MOV>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.select(helper.le(operands[0], operands[1]), operands[2], | |||
| helper.const_f32(0.f)); | |||
| } | |||
| //! FUSE_MUL_ADD3: x * y + z | |||
| template <> | |||
| mlir::Value lower_mode<Mode::FUSE_MUL_ADD3>(mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.add(helper.mul(operands[0], operands[1]), operands[2]); | |||
| } | |||
| /* ===================== elemwise ===================== */ | |||
| mlir::Value lower_elemwise_to_std(mlir::Operation* op, mlir::OpBuilder& builder, | |||
| mlir::Location loc, ValueRange operands) { | |||
| auto mode = llvm::dyn_cast<dialect::Elemwise>(op).mode(); | |||
| switch (mode) { | |||
| #define cb(_, _mode) \ | |||
| case Mode::_mode: \ | |||
| return lower_mode<Mode::_mode>(builder, loc, operands); | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_UNARY(cb); | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_BINARY(cb); | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_TERNARY(cb); | |||
| default: | |||
| return nullptr; | |||
| } | |||
| #undef cb | |||
| } | |||
| /* ===================== typecvt ===================== */ | |||
| mlir::Value lower_typecvt_to_std(mlir::Operation* op, mlir::OpBuilder& builder, | |||
| mlir::Location loc, mlir::Value input) { | |||
| auto&& typecvt = llvm::dyn_cast<dialect::TypeCvt>(op); | |||
| megdnn::DType idtype = typecvt.idtype(); | |||
| megdnn::DType odtype = typecvt.odtype(); | |||
| mlir::Type itype = input.getType(); | |||
| mlir::Type otype = megdnn_dtype_to_mlir_type(odtype, builder.getContext()); | |||
| if (mlir::FPExtOp::areCastCompatible(itype, otype)) { | |||
| return builder.create<mlir::FPExtOp>(loc, otype, input); | |||
| } else if (mlir::FPTruncOp::areCastCompatible(itype, otype)) { | |||
| return builder.create<mlir::FPTruncOp>(loc, otype, input); | |||
| } else if (mlir::FPToSIOp::areCastCompatible(itype, otype) and | |||
| is_signed_int_dtype(odtype)) { | |||
| return builder.create<mlir::FPToSIOp>(loc, otype, input); | |||
| } else if (mlir::FPToUIOp::areCastCompatible(itype, otype) and | |||
| is_unsigned_int_dtype(odtype)) { | |||
| return builder.create<mlir::FPToUIOp>(loc, otype, input); | |||
| } else if (mlir::SIToFPOp::areCastCompatible(itype, otype) and | |||
| is_signed_int_dtype(idtype)) { | |||
| return builder.create<mlir::SIToFPOp>(loc, otype, input); | |||
| } else if (mlir::UIToFPOp::areCastCompatible(itype, otype) and | |||
| is_unsigned_int_dtype(idtype)) { | |||
| return builder.create<mlir::UIToFPOp>(loc, otype, input); | |||
| } else { | |||
| mgb_throw(InternalError, "cannot convert from %s to %s", idtype.name(), | |||
| odtype.name()); | |||
| } | |||
| return nullptr; | |||
| } | |||
| } // namespace jit | |||
| } // namespace mgb | |||
| #endif // MGB_JIT && MGB_JIT_MLIR | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -15,65 +15,60 @@ | |||
| #include "megbrain_build_config.h" | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #include "megbrain/jit/mlir/ir/dialect.h" | |||
| #include "megdnn/opr_param_defs.h" | |||
| #include "./common.h" | |||
| #include "./numerical.h" | |||
| #include <mlir/Dialect/StandardOps/IR/Ops.h> | |||
| #include <mlir/IR/Builders.h> | |||
| #include <mlir/IR/Value.h> | |||
| // clang-format off | |||
| #define MLIR_MGB_FOREACH_ELEMWISE_MODE_UNARY(cb) \ | |||
| cb(ReluOp, RELU) \ | |||
| cb(AbsOp, ABS) \ | |||
| cb(NegOp, NEGATE) \ | |||
| cb(AcosOp, ACOS) \ | |||
| cb(AsinOp, ASIN) \ | |||
| cb(CeilOp, CEIL) \ | |||
| cb(CosOp, COS) \ | |||
| cb(ErfCInvOp, ERFCINV) \ | |||
| cb(ErfCOp, ERFC) \ | |||
| cb(ErfInvOp, ERFINV) \ | |||
| cb(ErfOp, ERF) \ | |||
| cb(ExpM1Op, EXPM1) \ | |||
| cb(ExpOp, EXP) \ | |||
| cb(FastTanhOp, FAST_TANH) \ | |||
| cb(FloorOp, FLOOR) \ | |||
| cb(LogOp, LOG) \ | |||
| cb(HswishOp, H_SWISH) \ | |||
| cb(Log1POp, LOG1P) \ | |||
| cb(LogOp, LOG) \ | |||
| cb(NegOp, NEGATE) \ | |||
| cb(ReluOp, RELU) \ | |||
| cb(RoundOp, ROUND) \ | |||
| cb(SigmoidOp, SIGMOID) \ | |||
| cb(SinOp, SIN) \ | |||
| cb(TanhOp, TANH) \ | |||
| cb(FastTanhOp, FAST_TANH) \ | |||
| cb(HswishOp, H_SWISH) \ | |||
| cb(ExpM1Op, EXPM1) \ | |||
| cb(RoundOp, ROUND) \ | |||
| cb(ErfOp, ERF) \ | |||
| cb(ErfInvOp, ERFINV) \ | |||
| cb(ErfCOp, ERFC) \ | |||
| cb(ErfCInvOp, ERFCINV) | |||
| cb(TanhOp, TANH) | |||
| #define MLIR_MGB_FOREACH_ELEMWISE_MODE_BINARY(cb) \ | |||
| cb(AbsGradOp, ABS_GRAD) \ | |||
| cb(AddOp, ADD) \ | |||
| cb(Atan2Op, ATAN2) \ | |||
| cb(EqOp, EQ) \ | |||
| cb(FastTanhGradOp, FAST_TANH_GRAD) \ | |||
| cb(FloorDivOp, FLOOR_DIV) \ | |||
| cb(FuseAddHswishOp, FUSE_ADD_H_SWISH) \ | |||
| cb(FuseAddReluOp, FUSE_ADD_RELU) \ | |||
| cb(FuseAddSigmoidOp, FUSE_ADD_SIGMOID) \ | |||
| cb(FuseAddTanhOp, FUSE_ADD_TANH) \ | |||
| cb(HswishGradOp, H_SWISH_GRAD) \ | |||
| cb(LeqOp, LEQ) \ | |||
| cb(LogSumExpOp, LOG_SUM_EXP) \ | |||
| cb(LtOp, LT) \ | |||
| cb(MaxOp, MAX) \ | |||
| cb(MinOp, MIN) \ | |||
| cb(ModOp, MOD) \ | |||
| cb(SubOp, SUB) \ | |||
| cb(MulOp, MUL) \ | |||
| cb(TrueDivOp, TRUE_DIV) \ | |||
| cb(PowOp, POW) \ | |||
| cb(SigmoidGradOp, SIGMOID_GRAD) \ | |||
| cb(SubOp, SUB) \ | |||
| cb(SwishGt0Op, SWITCH_GT0) \ | |||
| cb(TanhGradOp, TANH_GRAD) \ | |||
| cb(LtOp, LT) \ | |||
| cb(LeqOp, LEQ) \ | |||
| cb(EqOp, EQ) \ | |||
| cb(FuseAddReluOp, FUSE_ADD_RELU) \ | |||
| cb(LogSumExpOp, LOG_SUM_EXP) \ | |||
| cb(FuseAddTanhOp, FUSE_ADD_TANH) \ | |||
| cb(FastTanhGradOp, FAST_TANH_GRAD) \ | |||
| cb(FuseAddSigmoidOp, FUSE_ADD_SIGMOID) \ | |||
| cb(HswishGradOp, H_SWISH_GRAD) \ | |||
| cb(FuseAddHswishOp, FUSE_ADD_H_SWISH) \ | |||
| cb(Atan2Op, ATAN2) | |||
| cb(TrueDivOp, TRUE_DIV) | |||
| #define MLIR_MGB_FOREACH_ELEMWISE_MODE_TERNARY(cb) \ | |||
| cb(CondLeqMovOp, COND_LEQ_MOV) \ | |||
| @@ -83,432 +78,19 @@ | |||
| namespace mgb { | |||
| namespace jit { | |||
| template <typename mgb_op> | |||
| struct StandardOp; | |||
| #define cb(mgb_op, fun) \ | |||
| template <> \ | |||
| struct StandardOp<jit::mgb_op> { \ | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, \ | |||
| ValueRange operands) { \ | |||
| ValueBuilderHelper helper(builder, loc); \ | |||
| return helper.fun(operands); \ | |||
| } \ | |||
| } | |||
| //! unary | |||
| cb(AbsOp, abs); | |||
| cb(NegOp, neg); | |||
| cb(ExpOp, exp); | |||
| cb(CosOp, cos); | |||
| cb(CeilOp, ceil); | |||
| cb(FloorOp, floor); | |||
| cb(LogOp, log); | |||
| cb(SinOp, sin); | |||
| cb(TanhOp, tanh); | |||
| //! binary | |||
| cb(AddOp, add); | |||
| cb(MaxOp, max); | |||
| cb(MinOp, min); | |||
| cb(SubOp, sub); | |||
| cb(MulOp, mul); | |||
| cb(ModOp, mod); | |||
| cb(TrueDivOp, div); | |||
| #undef cb | |||
| /////////////////////////// unary op /////////////////////////// | |||
| //! max(x, 0) | |||
| template <> | |||
| struct StandardOp<jit::ReluOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.max(operands[0], helper.const_val(0.f)); | |||
| } | |||
| }; | |||
| //! x * (27.f + x * x) / (27.f + 9.f * x * x); | |||
| template <> | |||
| struct StandardOp<jit::FastTanhOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto square = helper.mul(operands[0], operands[0]); | |||
| return helper.div( | |||
| helper.mul(operands[0], | |||
| helper.add(helper.const_val(27.f), square)), | |||
| helper.add(helper.const_val(27.f), | |||
| helper.mul(helper.const_val(9.f), square))); | |||
| } | |||
| }; | |||
| //! x * clip(x + 3, 0, 6) / 6 | |||
| template <> | |||
| struct StandardOp<jit::HswishOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto const_3 = helper.const_val(3.f); | |||
| auto const_0 = helper.const_val(0.f); | |||
| auto const_6 = helper.const_val(6.f); | |||
| auto tmp = helper.add(operands[0], const_3); | |||
| return helper.div( | |||
| helper.mul(operands[0], | |||
| helper.min(helper.max(tmp, const_0), const_6)), | |||
| const_6); | |||
| } | |||
| }; | |||
| //! log(1 + p) | |||
| template <> | |||
| struct StandardOp<jit::Log1POp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.log(helper.add(operands[0], helper.const_val(1.f))); | |||
| } | |||
| }; | |||
| //! 1.f / (expf(-y) + 1.f)) | |||
| template <> | |||
| struct StandardOp<jit::SigmoidOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.div(helper.const_val(1.f), | |||
| helper.add(helper.exp(helper.neg(operands[0])), | |||
| helper.const_val(1.f))); | |||
| } | |||
| }; | |||
| //! exp(x) - 1 | |||
| template <> | |||
| struct StandardOp<jit::ExpM1Op> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.sub(helper.exp(operands[0]), helper.const_val(1.f)); | |||
| } | |||
| }; | |||
| template <> | |||
| struct StandardOp<jit::RoundOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.select( | |||
| helper.gt(operands[0], helper.const_val(0.f)), | |||
| helper.floor(helper.add(operands[0], helper.const_val(0.5f))), | |||
| helper.ceil(helper.sub(operands[0], helper.const_val(0.5f)))); | |||
| } | |||
| }; | |||
| //! pi / 2 - arctan2(x, sqrt(1 - x * x)) | |||
| template <> | |||
| struct StandardOp<jit::AcosOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto x = operands[0]; | |||
| auto one_minus_x_2 = helper.sub(helper.const_val(1.f), helper.mul(x, x)); | |||
| auto asin = atan2_approx(helper, x, helper.sqrt(one_minus_x_2)); | |||
| auto pi_over_2 = helper.const_val(1.57079637f); | |||
| return helper.sub(pi_over_2, asin); | |||
| } | |||
| }; | |||
| //! arctan2(x, sqrt(1 - x * x)) | |||
| template <> | |||
| struct StandardOp<jit::AsinOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto x = operands[0]; | |||
| auto one_minus_x_2 = helper.sub(helper.const_val(1.f), helper.mul(x, x)); | |||
| return atan2_approx(helper, x, helper.sqrt(one_minus_x_2)); | |||
| } | |||
| }; | |||
| //! gauss error function | |||
| template <> | |||
| struct StandardOp<jit::ErfOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return erf_approx(helper, operands[0]); | |||
| } | |||
| }; | |||
| //! inverse of gauss error function | |||
| //! https://github.com/scipy/scipy/blob/master/scipy/special/cephes/erfinv.c | |||
| template <> | |||
| struct StandardOp<jit::ErfInvOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto sqrt2 = helper.const_val(1.4142135623f); | |||
| auto x = helper.mul(helper.const_val(0.5f), | |||
| helper.add(operands[0], helper.const_val(1.f))); | |||
| return helper.div(ndtri_approx(helper, x), sqrt2); | |||
| } | |||
| }; | |||
| //! complementary error function | |||
| template <> | |||
| struct StandardOp<jit::ErfCOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.sub(helper.const_val(1.f), erf_approx(helper, operands[0])); | |||
| } | |||
| }; | |||
| //! inverse of complementary gauss error function | |||
| //! https://github.com/scipy/scipy/blob/master/scipy/special/cephes/erfinv.c | |||
| template <> | |||
| struct StandardOp<jit::ErfCInvOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto minus_sqrt2 = helper.const_val(-1.4142135623f); | |||
| auto x = helper.mul(helper.const_val(0.5f), operands[0]); | |||
| return helper.div(ndtri_approx(helper, x), minus_sqrt2); | |||
| } | |||
| }; | |||
| /////////////////////////// binary op /////////////////////////// | |||
| //! binary: x > 0 ? y : -y | |||
| template <> | |||
| struct StandardOp<jit::AbsGradOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.select(helper.gt(operands[0], helper.const_val(0.f)), | |||
| operands[1], helper.neg(operands[1])); | |||
| } | |||
| }; | |||
| //! x^y = exp(y * log(x)) | |||
| template <> | |||
| struct StandardOp<jit::PowOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.exp(helper.mul(operands[1], helper.log(operands[0]))); | |||
| } | |||
| }; | |||
| //! x * (1 - x) * y | |||
| template <> | |||
| struct StandardOp<jit::SigmoidGradOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.mul( | |||
| helper.mul(operands[0], | |||
| helper.sub(helper.const_val(1.f), operands[0])), | |||
| operands[1]); | |||
| } | |||
| }; | |||
| //! (x > 0) * y | |||
| template <> | |||
| struct StandardOp<jit::SwishGt0Op> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.select(helper.gt(operands[0], helper.const_val(0.f)), | |||
| operands[1], helper.const_val(0.f)); | |||
| } | |||
| }; | |||
| //! (1 - x * x) * y | |||
| template <> | |||
| struct StandardOp<jit::TanhGradOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.mul(helper.sub(helper.const_val(1.0f), | |||
| helper.mul(operands[0], operands[0])), | |||
| operands[1]); | |||
| } | |||
| }; | |||
| #define cb(op, fun) \ | |||
| template <> \ | |||
| struct StandardOp<jit::op> { \ | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, \ | |||
| ValueRange operands) { \ | |||
| ValueBuilderHelper helper(builder, loc); \ | |||
| return helper.select(helper.fun(operands[0], operands[1]), \ | |||
| helper.const_val(1.f), \ | |||
| helper.const_val(0.f)); \ | |||
| } \ | |||
| } | |||
| cb(LtOp, lt); | |||
| cb(LeqOp, le); | |||
| cb(EqOp, eq); | |||
| #undef cb | |||
| //! (x + y) <= ctype(0) ? ctype(0) : (x + y) | |||
| template <> | |||
| struct StandardOp<jit::FuseAddReluOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto sum = helper.add(operands[0], operands[1]); | |||
| return helper.max(sum, helper.const_val(0.f)); | |||
| } | |||
| }; | |||
| //! log(exp(x) + exp(y)) | |||
| template <> | |||
| struct StandardOp<jit::LogSumExpOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.log( | |||
| helper.add(helper.exp(operands[0]), helper.exp(operands[1]))); | |||
| } | |||
| }; | |||
| //! floor(x/y) | |||
| template <> | |||
| struct StandardOp<jit::FloorDivOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.floor(helper.div(operands[0], operands[1])); | |||
| } | |||
| }; | |||
| //! tanh(x + y) | |||
| template <> | |||
| struct StandardOp<jit::FuseAddTanhOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.tanh(helper.add(operands[0], operands[1])); | |||
| } | |||
| }; | |||
| //! ((-48.f * x * x) / (3.f + x * x) + 27.f + x * x) / (3.f + x * x) * y | |||
| template <> | |||
| struct StandardOp<jit::FastTanhGradOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto x_pow2 = helper.mul(operands[0], operands[0]); | |||
| auto deno = helper.add(helper.const_val(3.f), x_pow2); | |||
| return helper.mul( | |||
| helper.div( | |||
| helper.add( | |||
| helper.add( | |||
| helper.div(helper.mul(helper.const_val( | |||
| -48.f), | |||
| x_pow2), | |||
| deno), | |||
| helper.const_val(27.f)), | |||
| x_pow2), | |||
| helper.mul(deno, helper.const_val(9.f))), | |||
| operands[1]); | |||
| } | |||
| }; | |||
| //! 1.f / (expf(-(x+y)) + 1.f)) | |||
| template <> | |||
| struct StandardOp<jit::FuseAddSigmoidOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.div(helper.const_val(1.f), | |||
| helper.add(helper.exp(helper.neg(helper.add( | |||
| operands[0], operands[1]))), | |||
| helper.const_val(1.f))); | |||
| } | |||
| }; | |||
| //! x < -3.f ? 0.f : (x > 3.f ? y : (2.f * x + 3.f) / 6.f * y) | |||
| template <> | |||
| struct StandardOp<jit::HswishGradOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.select( | |||
| helper.lt(operands[0], helper.const_val(-3.f)), | |||
| helper.const_val(0.f), | |||
| helper.select( | |||
| helper.gt(operands[0], helper.const_val(3.f)), | |||
| operands[1], | |||
| helper.mul( | |||
| helper.div( | |||
| helper.add(helper.mul(helper.const_val( | |||
| 2.f), | |||
| operands[0]), | |||
| helper.const_val(3.f)), | |||
| helper.const_val(6.f)), | |||
| operands[1]))); | |||
| } | |||
| }; | |||
| //! (x+y) * min(max(x + y + 3, 0), 6) * (1/6) | |||
| template <> | |||
| struct StandardOp<jit::FuseAddHswishOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| auto sum = helper.add(operands[0], operands[1]); | |||
| auto const_3 = helper.const_val(3.f); | |||
| auto const_0 = helper.const_val(0.f); | |||
| auto const_6 = helper.const_val(6.f); | |||
| auto tmp = helper.add(sum, const_3); | |||
| return helper.div( | |||
| helper.mul(sum, helper.min(helper.max(tmp, const_0), const_6)), | |||
| const_6); | |||
| } | |||
| }; | |||
| //! arctan | |||
| template <> | |||
| struct StandardOp<jit::Atan2Op> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return atan2_approx(helper, operands[0], operands[1]); | |||
| } | |||
| }; | |||
| /////////////////////////// ternary op /////////////////////////// | |||
| //! x <= y ? z : ctype(0) | |||
| template <> | |||
| struct StandardOp<jit::CondLeqMovOp> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.select(helper.le(operands[0], operands[1]), operands[2], | |||
| helper.const_val(0.f)); | |||
| } | |||
| }; | |||
| mlir::Value lower_elemwise_to_std(mlir::Operation* op, | |||
| mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| mlir::ValueRange operands); | |||
| //! x * y + z | |||
| template <> | |||
| struct StandardOp<jit::FuseMulAdd3Op> { | |||
| mlir::Value operator()(mlir::OpBuilder& builder, mlir::Location loc, | |||
| ValueRange operands) { | |||
| ValueBuilderHelper helper(builder, loc); | |||
| return helper.add(helper.mul(operands[0], operands[1]), operands[2]); | |||
| } | |||
| }; | |||
| mlir::Value lower_typecvt_to_std(mlir::Operation* op, | |||
| mlir::OpBuilder& builder, | |||
| mlir::Location loc, | |||
| mlir::Value input); | |||
| } // namespace jit | |||
| } // namespace mgb | |||
| #endif // MGB_JIT_MLIR | |||
| #endif // MGB_JIT && MGB_JIT_MLIR | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -1,33 +0,0 @@ | |||
| /** | |||
| * \file src/jit/impl/mlir/ir/interfaces.td | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #ifndef MGB_MLIR_INTERFACES | |||
| #define MGB_MLIR_INTERFACES | |||
| #ifndef OP_BASE | |||
| include "mlir/IR/OpBase.td" | |||
| #endif | |||
| def GenericBuilderInterface : OpInterface<"GenericBuilder"> { | |||
| let methods = [ | |||
| StaticInterfaceMethod<"TODO", "Type", "getResultType", (ins "ArrayRef<Value>":$operands)>, | |||
| StaticInterfaceMethod<"TODO", "Operation*", "create", (ins | |||
| "OpBuilder*":$builder, | |||
| "Location":$loc, | |||
| "ArrayRef<Value>":$operands | |||
| )>, | |||
| ]; | |||
| } | |||
| def ElemwiseOpInterface : OpInterface<"ElemwiseOp">; | |||
| #endif | |||
| @@ -13,18 +13,19 @@ | |||
| #include "megbrain_build_config.h" | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #include "./common.h" | |||
| #include "./each_mode.h" | |||
| #include "megbrain/common.h" | |||
| #include "megbrain/jit/mlir/ir/dialect.h" | |||
| #include "megbrain/jit/mlir/ir/passes.h" | |||
| #include "megbrain/jit/mlir/ir/utils.h" | |||
| #include "./each_mode.h" | |||
| #include <llvm/ADT/Sequence.h> | |||
| #include <mlir/Dialect/Affine/IR/AffineOps.h> | |||
| #include <mlir/IR/StandardTypes.h> | |||
| #include <mlir/Pass/Pass.h> | |||
| #include <mlir/Transforms/DialectConversion.h> | |||
| #include "mlir/IR/StandardTypes.h" | |||
| using namespace mgb; | |||
| using namespace jit; | |||
| @@ -57,41 +58,10 @@ void lower_op_to_loops(Operation* op, ValueRange operands, | |||
| rewriter.replaceOp(op, alloc); | |||
| } | |||
| template <typename Op, typename LoweredOp> | |||
| struct UnaryOpLowering : public ConversionPattern { | |||
| UnaryOpLowering(MLIRContext* ctx) | |||
| : ConversionPattern(Op::getOperationName(), 1, ctx) {} | |||
| LogicalResult matchAndRewrite( | |||
| Operation* op, ArrayRef<Value> operands, | |||
| ConversionPatternRewriter& rewriter) const final { | |||
| auto loc = op->getLoc(); | |||
| lower_op_to_loops( | |||
| op, operands, rewriter, | |||
| [loc](OpBuilder& builder, ValueRange memref_operands, | |||
| ValueRange loop_ivs) { | |||
| typename Op::Adaptor binary_adaptor(memref_operands); | |||
| LoweredOp lower_op; | |||
| auto loaded_lhs = get_operand<AffineLoadOp>( | |||
| builder, loc, binary_adaptor.lhs(), loop_ivs); | |||
| return lower_op(builder, loc, {loaded_lhs}); | |||
| }); | |||
| return success(); | |||
| } | |||
| }; | |||
| #define cb(_op, _) \ | |||
| using _op##Lowering = UnaryOpLowering<jit::_op, jit::StandardOp<jit::_op>>; | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_UNARY(cb) | |||
| #undef cb | |||
| template <typename Op, typename LoweredOp> | |||
| struct BinaryOpLowering : public ConversionPattern { | |||
| BinaryOpLowering(MLIRContext* ctx) | |||
| : ConversionPattern(Op::getOperationName(), 1, ctx) {} | |||
| struct ElemwiseLowering : public ConversionPattern { | |||
| ElemwiseLowering(MLIRContext* ctx) | |||
| : ConversionPattern(mgb::dialect::Elemwise::getOperationName(), 1, | |||
| ctx) {} | |||
| LogicalResult matchAndRewrite( | |||
| Operation* op, ArrayRef<Value> operands, | |||
| ConversionPatternRewriter& rewriter) const final { | |||
| @@ -101,83 +71,51 @@ struct BinaryOpLowering : public ConversionPattern { | |||
| dst_layout.init_contiguous_stride(); | |||
| lower_op_to_loops( | |||
| op, operands, rewriter, | |||
| [dst_layout, loc, this](OpBuilder& builder, | |||
| ValueRange memref_operands, | |||
| ValueRange loop_ivs) { | |||
| typename Op::Adaptor binary_adaptor(memref_operands); | |||
| LoweredOp lower_op; | |||
| auto loaded_lhs = get_affine_load_op(builder, loc, | |||
| binary_adaptor.lhs(), | |||
| loop_ivs, dst_layout); | |||
| auto loaded_rhs = get_affine_load_op(builder, loc, | |||
| binary_adaptor.rhs(), | |||
| loop_ivs, dst_layout); | |||
| return lower_op(builder, loc, {loaded_lhs, loaded_rhs}); | |||
| [dst_layout, loc, op](OpBuilder& builder, | |||
| ValueRange memref_operands, | |||
| ValueRange loop_ivs) { | |||
| auto inputs = llvm::to_vector<4>(llvm::map_range( | |||
| memref_operands, [&](mlir::Value val) { | |||
| return get_affine_load_op(builder, loc, val, | |||
| loop_ivs, dst_layout); | |||
| })); | |||
| return lower_elemwise_to_std(op, builder, loc, inputs); | |||
| }); | |||
| return success(); | |||
| } | |||
| }; | |||
| #define cb(_op, _) \ | |||
| using _op##Lowering = BinaryOpLowering<jit::_op, jit::StandardOp<jit::_op>>; | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_BINARY(cb) | |||
| #undef cb | |||
| template <typename Op, typename LoweredOp> | |||
| struct TernaryOpLowering : public ConversionPattern { | |||
| TernaryOpLowering(MLIRContext* ctx) | |||
| : ConversionPattern(Op::getOperationName(), 1, ctx) {} | |||
| struct TypeCvtLowering : public ConversionPattern { | |||
| TypeCvtLowering(MLIRContext* ctx) | |||
| : ConversionPattern(mgb::dialect::TypeCvt::getOperationName(), 1, | |||
| ctx) {} | |||
| LogicalResult matchAndRewrite( | |||
| Operation* op, ArrayRef<Value> operands, | |||
| ConversionPatternRewriter& rewriter) const final { | |||
| auto loc = op->getLoc(); | |||
| auto dst_memref_type = (*op->result_type_begin()).cast<MemRefType>(); | |||
| megdnn::TensorLayout dst_layout = mlir_type_to_layout(dst_memref_type); | |||
| dst_layout.init_contiguous_stride(); | |||
| lower_op_to_loops( | |||
| op, operands, rewriter, | |||
| [dst_layout, loc](OpBuilder& builder, | |||
| ValueRange memref_operands, | |||
| ValueRange loop_ivs) { | |||
| typename Op::Adaptor ternary_adaptor(memref_operands); | |||
| LoweredOp lower_op; | |||
| auto loaded_x = get_affine_load_op(builder, loc, | |||
| ternary_adaptor.x(), | |||
| loop_ivs, dst_layout); | |||
| auto loaded_y = get_affine_load_op(builder, loc, | |||
| ternary_adaptor.y(), | |||
| loop_ivs, dst_layout); | |||
| auto loaded_z = get_affine_load_op(builder, loc, | |||
| ternary_adaptor.z(), | |||
| loop_ivs, dst_layout); | |||
| return lower_op(builder, loc, | |||
| {loaded_x, loaded_y, loaded_z}); | |||
| [loc, op](OpBuilder& builder, ValueRange memref_operands, | |||
| ValueRange loop_ivs) { | |||
| mlir::Value input = get_operand<AffineLoadOp>( | |||
| builder, loc, memref_operands[0], loop_ivs); | |||
| return lower_typecvt_to_std(op, builder, loc, input); | |||
| }); | |||
| return success(); | |||
| } | |||
| }; | |||
| #define cb(_op, _) \ | |||
| using _op##Lowering = \ | |||
| TernaryOpLowering<jit::_op, jit::StandardOp<jit::_op>>; | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_TERNARY(cb) | |||
| #undef cb | |||
| struct AssignOpLowering : public ConversionPattern { | |||
| AssignOpLowering(MLIRContext* ctx) | |||
| : ConversionPattern(jit::AssignOp::getOperationName(), 1, ctx) {} | |||
| : ConversionPattern(dialect::AssignOp::getOperationName(), 1, ctx) { | |||
| } | |||
| LogicalResult matchAndRewrite( | |||
| Operation* op, ArrayRef<Value> operands, | |||
| ConversionPatternRewriter& rewriter) const final { | |||
| auto loc = op->getLoc(); | |||
| auto memref_type = operands[0].getType().cast<MemRefType>(); | |||
| AssignOpAdaptor assign_adaptor(operands); | |||
| dialect::AssignOpAdaptor assign_adaptor(operands); | |||
| llvm::SmallVector<int64_t, 4> lower_bounds(memref_type.getRank(), 0); | |||
| llvm::SmallVector<int64_t, 4> steps(memref_type.getRank(), 1); | |||
| @@ -195,10 +133,10 @@ struct AssignOpLowering : public ConversionPattern { | |||
| } | |||
| }; | |||
| struct ReturnOpLowering : public OpRewritePattern<jit::ReturnOp> { | |||
| using OpRewritePattern<jit::ReturnOp>::OpRewritePattern; | |||
| struct ReturnOpLowering : public OpRewritePattern<dialect::ReturnOp> { | |||
| using OpRewritePattern<dialect::ReturnOp>::OpRewritePattern; | |||
| LogicalResult matchAndRewrite(jit::ReturnOp op, | |||
| LogicalResult matchAndRewrite(dialect::ReturnOp op, | |||
| PatternRewriter& rewriter) const final { | |||
| // We lower "mgb.return" directly to "std.return". | |||
| rewriter.replaceOpWithNewOp<mlir::ReturnOp>(op); | |||
| @@ -207,12 +145,12 @@ struct ReturnOpLowering : public OpRewritePattern<jit::ReturnOp> { | |||
| }; | |||
| struct ConstantScalarOpLowering | |||
| : public OpRewritePattern<jit::ConstantScalarOp> { | |||
| using OpRewritePattern<jit::ConstantScalarOp>::OpRewritePattern; | |||
| : public OpRewritePattern<dialect::ConstantScalarOp> { | |||
| using OpRewritePattern<dialect::ConstantScalarOp>::OpRewritePattern; | |||
| LogicalResult matchAndRewrite(jit::ConstantScalarOp op, | |||
| LogicalResult matchAndRewrite(dialect::ConstantScalarOp op, | |||
| PatternRewriter& rewriter) const final { | |||
| ConstantScalarOpAdaptor constant_scalar_adaptor(op); | |||
| dialect::ConstantScalarOpAdaptor constant_scalar_adaptor(op); | |||
| rewriter.replaceOpWithNewOp<mlir::ConstantOp>( | |||
| op, constant_scalar_adaptor.value()); | |||
| return success(); | |||
| @@ -234,14 +172,9 @@ public: | |||
| target.addIllegalDialect<MgbDialect>(); | |||
| OwningRewritePatternList patterns; | |||
| #define cb(_op, _) _op##Lowering, | |||
| patterns.insert<MLIR_MGB_FOREACH_ELEMWISE_MODE_UNARY( | |||
| cb) MLIR_MGB_FOREACH_ELEMWISE_MODE_BINARY(cb) | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_TERNARY(cb) | |||
| ReturnOpLowering, | |||
| patterns.insert<ElemwiseLowering, TypeCvtLowering, ReturnOpLowering, | |||
| AssignOpLowering, ConstantScalarOpLowering>( | |||
| &getContext()); | |||
| #undef cb | |||
| if (failed(applyPartialConversion(getFunction(), target, patterns))) { | |||
| signalPassFailure(); | |||
| @@ -13,12 +13,19 @@ | |||
| #include "megbrain_build_config.h" | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #include "./common.h" | |||
| #include "./each_mode.h" | |||
| #include "megbrain/common.h" | |||
| #include "megbrain/jit/mlir/ir/dialect.h" | |||
| #include "megbrain/jit/mlir/ir/passes.h" | |||
| #include "megbrain/jit/mlir/ir/utils.h" | |||
| #include <llvm/ADT/PointerUnion.h> | |||
| #include <llvm/ADT/Sequence.h> | |||
| #include <llvm/ADT/SetVector.h> | |||
| #include <llvm/ADT/Twine.h> | |||
| #include <llvm/IR/Type.h> | |||
| #include <mlir/Dialect/GPU/GPUDialect.h> | |||
| #include <mlir/Dialect/SCF/SCF.h> | |||
| #include <mlir/Dialect/StandardOps/IR/Ops.h> | |||
| @@ -27,12 +34,6 @@ | |||
| #include <mlir/Pass/Pass.h> | |||
| #include <mlir/Transforms/DialectConversion.h> | |||
| #include <llvm/ADT/PointerUnion.h> | |||
| #include <llvm/ADT/Sequence.h> | |||
| #include <llvm/ADT/SetVector.h> | |||
| #include <llvm/ADT/Twine.h> | |||
| #include <llvm/IR/Type.h> | |||
| using namespace mgb; | |||
| using namespace jit; | |||
| @@ -59,7 +60,7 @@ megdnn::TensorLayout output_layout(gpu::LaunchOp& launch_op) { | |||
| block_iter++) { | |||
| for (auto op_iter = block_iter->rbegin(); op_iter != block_iter->rend(); | |||
| op_iter++) { | |||
| auto op = llvm::dyn_cast_or_null<AssignOp>(&(*op_iter)); | |||
| auto op = llvm::dyn_cast_or_null<dialect::AssignOp>(&(*op_iter)); | |||
| if (op && op.getNumOperands() > 0) { | |||
| return mlir_type_to_layout(*(op.operand_type_begin())); | |||
| } | |||
| @@ -81,64 +82,27 @@ std::vector<mlir::Value> get_multidim_tid(ConversionPatternRewriter& rewriter, | |||
| idxs.resize(dst.ndim); | |||
| mlir::Value dim_index = index; | |||
| for (int i = dst.ndim - 1; i >= 0; i--) { | |||
| auto cur_index = helper.modI(dim_index, helper.constI(dst[i])); | |||
| auto cur_index = helper.modI(dim_index, helper.const_i32(dst[i])); | |||
| idxs[i] = cur_index; | |||
| dim_index = helper.divI(dim_index, helper.constI(dst[i])); | |||
| dim_index = helper.divI(dim_index, helper.const_i32(dst[i])); | |||
| } | |||
| megdnn::TensorLayout src_layout = mlir_type_to_layout(type); | |||
| src_layout.init_contiguous_stride(); | |||
| for (int i = 0; i < type.getRank(); ++i) { | |||
| if (src_layout[i] == 1) { | |||
| idxs[i] = helper.constI(0); | |||
| idxs[i] = helper.const_i32(0); | |||
| } | |||
| } | |||
| return idxs; | |||
| } else { | |||
| return {index}; | |||
| } | |||
| } | |||
| template <typename Op, typename LoweredOp> | |||
| struct UnaryOpLowering : public ConversionPattern { | |||
| UnaryOpLowering(MLIRContext* ctx, gpu::LaunchOp& launch_op) | |||
| : ConversionPattern(Op::getOperationName(), 1, ctx), | |||
| m_launch_op{launch_op} {} | |||
| LogicalResult matchAndRewrite( | |||
| Operation* op, ArrayRef<Value> operands, | |||
| ConversionPatternRewriter& rewriter) const final { | |||
| auto loc = op->getLoc(); | |||
| typename Op::Adaptor binary_adaptor(operands); | |||
| rewriter.setInsertionPointToEnd(&(m_launch_op.body().front())); | |||
| auto dst_layout = output_layout(m_launch_op); | |||
| auto index = get_multidim_tid(rewriter, loc, binary_adaptor.lhs(), | |||
| dst_layout); | |||
| auto loaded_lhs = | |||
| get_operand<LoadOp>(rewriter, loc, binary_adaptor.lhs(), index); | |||
| LoweredOp lower_op; | |||
| rewriter.replaceOp(op, lower_op(rewriter, loc, {loaded_lhs})); | |||
| return success(); | |||
| } | |||
| private: | |||
| gpu::LaunchOp& m_launch_op; | |||
| }; | |||
| #define cb(_op, _) \ | |||
| using _op##Lowering = UnaryOpLowering<jit::_op, jit::StandardOp<jit::_op>>; | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_UNARY(cb) | |||
| #undef cb | |||
| template <typename Op, typename LoweredOp> | |||
| struct BinaryOpLowering : public ConversionPattern { | |||
| BinaryOpLowering(MLIRContext* ctx, gpu::LaunchOp& launch_op) | |||
| : ConversionPattern(Op::getOperationName(), 1, ctx), | |||
| struct ElemwiseLowering : public ConversionPattern { | |||
| ElemwiseLowering(MLIRContext* ctx, gpu::LaunchOp& launch_op) | |||
| : ConversionPattern(dialect::Elemwise::getOperationName(), 1, ctx), | |||
| m_launch_op{launch_op} {} | |||
| LogicalResult matchAndRewrite( | |||
| @@ -146,23 +110,18 @@ struct BinaryOpLowering : public ConversionPattern { | |||
| ConversionPatternRewriter& rewriter) const final { | |||
| auto loc = op->getLoc(); | |||
| typename Op::Adaptor binary_adaptor(operands); | |||
| rewriter.setInsertionPointToEnd(&(m_launch_op.body().front())); | |||
| auto dst_layout = output_layout(m_launch_op); | |||
| auto lhs_index = get_multidim_tid(rewriter, loc, binary_adaptor.lhs(), | |||
| dst_layout); | |||
| auto rhs_index = get_multidim_tid(rewriter, loc, binary_adaptor.rhs(), | |||
| dst_layout); | |||
| auto loaded_lhs = get_operand<LoadOp>(rewriter, loc, | |||
| binary_adaptor.lhs(), lhs_index); | |||
| auto loaded_rhs = get_operand<LoadOp>(rewriter, loc, | |||
| binary_adaptor.rhs(), rhs_index); | |||
| LoweredOp lower_op; | |||
| auto inputs = llvm::to_vector<4>( | |||
| llvm::map_range(operands, [&](mlir::Value val) { | |||
| auto index = | |||
| get_multidim_tid(rewriter, loc, val, dst_layout); | |||
| return get_operand<LoadOp>(rewriter, loc, val, index); | |||
| })); | |||
| rewriter.replaceOp(op, | |||
| lower_op(rewriter, loc, {loaded_lhs, loaded_rhs})); | |||
| lower_elemwise_to_std(op, rewriter, loc, inputs)); | |||
| return success(); | |||
| } | |||
| @@ -170,43 +129,22 @@ private: | |||
| gpu::LaunchOp& m_launch_op; | |||
| }; | |||
| #define cb(_op, _) \ | |||
| using _op##Lowering = BinaryOpLowering<jit::_op, jit::StandardOp<jit::_op>>; | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_BINARY(cb) | |||
| #undef cb | |||
| template <typename Op, typename LoweredOp> | |||
| struct TernaryOpLowering : public ConversionPattern { | |||
| TernaryOpLowering(MLIRContext* ctx, gpu::LaunchOp& launch_op) | |||
| : ConversionPattern(Op::getOperationName(), 1, ctx), | |||
| struct TypeCvtLowering : public ConversionPattern { | |||
| TypeCvtLowering(MLIRContext* ctx, gpu::LaunchOp& launch_op) | |||
| : ConversionPattern(dialect::TypeCvt::getOperationName(), 1, ctx), | |||
| m_launch_op{launch_op} {} | |||
| LogicalResult matchAndRewrite( | |||
| Operation* op, ArrayRef<Value> operands, | |||
| ConversionPatternRewriter& rewriter) const final { | |||
| auto loc = op->getLoc(); | |||
| typename Op::Adaptor ternary_adaptor(operands); | |||
| rewriter.setInsertionPointToEnd(&(m_launch_op.body().front())); | |||
| auto dst_layout = output_layout(m_launch_op); | |||
| auto index_x = get_multidim_tid(rewriter, loc, ternary_adaptor.x(), | |||
| dst_layout); | |||
| auto index_y = get_multidim_tid(rewriter, loc, ternary_adaptor.y(), | |||
| dst_layout); | |||
| auto index_z = get_multidim_tid(rewriter, loc, ternary_adaptor.z(), | |||
| dst_layout); | |||
| auto loaded_x = get_operand<LoadOp>(rewriter, loc, ternary_adaptor.x(), | |||
| index_x); | |||
| auto loaded_y = get_operand<LoadOp>(rewriter, loc, ternary_adaptor.y(), | |||
| index_y); | |||
| auto loaded_z = get_operand<LoadOp>(rewriter, loc, ternary_adaptor.z(), | |||
| index_z); | |||
| LoweredOp lower_op; | |||
| rewriter.replaceOp( | |||
| op, lower_op(rewriter, loc, {loaded_x, loaded_y, loaded_z})); | |||
| auto index = get_multidim_tid(rewriter, loc, operands[0], dst_layout); | |||
| auto input = get_operand<LoadOp>(rewriter, loc, operands[0], index); | |||
| rewriter.replaceOp(op, lower_typecvt_to_std(op, rewriter, loc, input)); | |||
| return success(); | |||
| } | |||
| @@ -214,15 +152,9 @@ private: | |||
| gpu::LaunchOp& m_launch_op; | |||
| }; | |||
| #define cb(_op, _) \ | |||
| using _op##Lowering = \ | |||
| TernaryOpLowering<jit::_op, jit::StandardOp<jit::_op>>; | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_TERNARY(cb) | |||
| #undef cb | |||
| struct ReturnOpLowering : public ConversionPattern { | |||
| ReturnOpLowering(MLIRContext* ctx, gpu::LaunchOp& launch_op) | |||
| : ConversionPattern(jit::ReturnOp::getOperationName(), 1, ctx), | |||
| : ConversionPattern(dialect::ReturnOp::getOperationName(), 1, ctx), | |||
| m_launch_op{launch_op} {} | |||
| LogicalResult matchAndRewrite( | |||
| @@ -270,14 +202,14 @@ private: | |||
| }; | |||
| struct ConstantScalarOpLowering | |||
| : public OpRewritePattern<jit::ConstantScalarOp> { | |||
| : public OpRewritePattern<dialect::ConstantScalarOp> { | |||
| ConstantScalarOpLowering(MLIRContext* ctx, gpu::LaunchOp& launch_op) | |||
| : OpRewritePattern<jit::ConstantScalarOp>(ctx), | |||
| : OpRewritePattern<dialect::ConstantScalarOp>(ctx), | |||
| m_launch_op{launch_op} {} | |||
| LogicalResult matchAndRewrite(jit::ConstantScalarOp op, | |||
| LogicalResult matchAndRewrite(dialect::ConstantScalarOp op, | |||
| PatternRewriter& rewriter) const final { | |||
| ConstantScalarOpAdaptor constant_scalar_adaptor(op); | |||
| dialect::ConstantScalarOpAdaptor constant_scalar_adaptor(op); | |||
| rewriter.setInsertionPointToEnd(&(m_launch_op.body().front())); | |||
| rewriter.replaceOpWithNewOp<mlir::ConstantOp>( | |||
| @@ -291,7 +223,7 @@ private: | |||
| struct AssignOpLowering : public ConversionPattern { | |||
| AssignOpLowering(MLIRContext* ctx, gpu::LaunchOp& launch_op) | |||
| : ConversionPattern(jit::AssignOp::getOperationName(), 2, ctx), | |||
| : ConversionPattern(dialect::AssignOp::getOperationName(), 2, ctx), | |||
| m_launch_op{launch_op} {} | |||
| LogicalResult matchAndRewrite( | |||
| @@ -299,7 +231,7 @@ struct AssignOpLowering : public ConversionPattern { | |||
| ConversionPatternRewriter& rewriter) const final { | |||
| auto loc = op->getLoc(); | |||
| AssignOpAdaptor assign_adaptor(operands); | |||
| dialect::AssignOpAdaptor assign_adaptor(operands); | |||
| rewriter.setInsertionPointToEnd(&(m_launch_op.body().front())); | |||
| auto dst_layout = output_layout(m_launch_op); | |||
| @@ -343,14 +275,9 @@ public: | |||
| target.addLegalDialect<gpu::GPUDialect>(); | |||
| target.addIllegalDialect<MgbDialect>(); | |||
| #define cb(_op, _) _op##Lowering, | |||
| patterns.insert<MLIR_MGB_FOREACH_ELEMWISE_MODE_UNARY( | |||
| cb) MLIR_MGB_FOREACH_ELEMWISE_MODE_BINARY(cb) | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_TERNARY(cb) | |||
| ReturnOpLowering, | |||
| patterns.insert<ElemwiseLowering, TypeCvtLowering, ReturnOpLowering, | |||
| ConstantScalarOpLowering, AssignOpLowering>( | |||
| &getContext(), launch_op); | |||
| #undef cb | |||
| if (failed(applyPartialConversion(func_op, target, patterns))) { | |||
| signalPassFailure(); | |||
| @@ -22,7 +22,7 @@ mlir::Value polynomial(ValueBuilderHelper& helper, mlir::Value x, | |||
| std::vector<mlir::Value>& coeff) { | |||
| size_t n = coeff.size(); | |||
| if (n == 0) { | |||
| return helper.const_val(0); | |||
| return helper.const_f32(0); | |||
| } | |||
| mlir::Value r = coeff[0]; | |||
| @@ -40,23 +40,23 @@ mlir::Value atan2_approx(ValueBuilderHelper& helper, mlir::Value y, | |||
| mlir::Value x) { | |||
| auto atan_poly = [&](mlir::Value t) { | |||
| std::vector<mlir::Value> coeff = { | |||
| helper.const_val(2.90188402868807315826416015625E-3), | |||
| helper.const_val(-1.62907354533672332763671875E-2), | |||
| helper.const_val(4.3082617223262786865234375E-2), | |||
| helper.const_val(-7.5408883392810821533203125E-2), | |||
| helper.const_val(0.1066047251224517822265625), | |||
| helper.const_val(-0.14209578931331634521484375), | |||
| helper.const_val(0.19993579387664794921875), | |||
| helper.const_val(-0.3333314359188079833984375)}; | |||
| helper.const_f32(2.90188402868807315826416015625E-3), | |||
| helper.const_f32(-1.62907354533672332763671875E-2), | |||
| helper.const_f32(4.3082617223262786865234375E-2), | |||
| helper.const_f32(-7.5408883392810821533203125E-2), | |||
| helper.const_f32(0.1066047251224517822265625), | |||
| helper.const_f32(-0.14209578931331634521484375), | |||
| helper.const_f32(0.19993579387664794921875), | |||
| helper.const_f32(-0.3333314359188079833984375)}; | |||
| auto t2 = helper.mul(t, t); | |||
| auto p = polynomial(helper, t2, coeff); | |||
| return helper.add(helper.mul(helper.mul(p, t2), t), t); | |||
| }; | |||
| // constants | |||
| auto zero = helper.const_val(0); | |||
| auto pi = helper.const_val(3.141592653589793); | |||
| auto pi_over_2 = helper.const_val(1.570796326794897); | |||
| auto zero = helper.const_f32(0); | |||
| auto pi = helper.const_f32(3.141592653589793); | |||
| auto pi_over_2 = helper.const_f32(1.570796326794897); | |||
| // transform the angle into interval [0, pi/4] | |||
| auto ax = helper.abs(x); | |||
| @@ -83,23 +83,23 @@ mlir::Value atan2_approx(ValueBuilderHelper& helper, mlir::Value y, | |||
| // original book: | |||
| // Numerical Recipes in Fortran 77: The Art of Scientific Computing | |||
| mlir::Value erf_approx(ValueBuilderHelper& helper, mlir::Value x) { | |||
| auto zero = helper.const_val(0); | |||
| auto one = helper.const_val(1); | |||
| auto half = helper.const_val(0.5); | |||
| auto zero = helper.const_f32(0); | |||
| auto one = helper.const_f32(1); | |||
| auto half = helper.const_f32(0.5); | |||
| auto t = helper.div(one, helper.add(one, helper.mul(half, helper.abs(x)))); | |||
| std::vector<mlir::Value> coeff = { | |||
| helper.const_val(0.17087277), | |||
| helper.const_val(-0.82215223), | |||
| helper.const_val(1.48851587), | |||
| helper.const_val(-1.13520398), | |||
| helper.const_val(0.27886807), | |||
| helper.const_val(-0.18628806), | |||
| helper.const_val(0.09678418), | |||
| helper.const_val(0.37409196), | |||
| helper.const_val(1.00002368), | |||
| helper.const_val(-1.26551223)}; | |||
| helper.const_f32(0.17087277), | |||
| helper.const_f32(-0.82215223), | |||
| helper.const_f32(1.48851587), | |||
| helper.const_f32(-1.13520398), | |||
| helper.const_f32(0.27886807), | |||
| helper.const_f32(-0.18628806), | |||
| helper.const_f32(0.09678418), | |||
| helper.const_f32(0.37409196), | |||
| helper.const_f32(1.00002368), | |||
| helper.const_f32(-1.26551223)}; | |||
| auto p = polynomial(helper, t, coeff); | |||
| auto r = helper.mul(t, helper.exp(helper.sub(p, helper.mul(x, x)))); | |||
| @@ -130,25 +130,25 @@ mlir::Value ndtri_approx(ValueBuilderHelper& helper, mlir::Value x) { | |||
| // polynomial P | |||
| auto P = [&](mlir::Value i, mlir::Value cond) { | |||
| std::vector<mlir::Value> coeff0 = { | |||
| helper.const_val(4.05544892305962419923E0), | |||
| helper.const_val(3.15251094599893866154E1), | |||
| helper.const_val(5.71628192246421288162E1), | |||
| helper.const_val(4.40805073893200834700E1), | |||
| helper.const_val(1.46849561928858024014E1), | |||
| helper.const_val(2.18663306850790267539E0), | |||
| helper.const_val(-1.40256079171354495875E-1), | |||
| helper.const_val(-3.50424626827848203418E-2), | |||
| helper.const_val(-8.57456785154685413611E-4)}; | |||
| helper.const_f32(4.05544892305962419923E0), | |||
| helper.const_f32(3.15251094599893866154E1), | |||
| helper.const_f32(5.71628192246421288162E1), | |||
| helper.const_f32(4.40805073893200834700E1), | |||
| helper.const_f32(1.46849561928858024014E1), | |||
| helper.const_f32(2.18663306850790267539E0), | |||
| helper.const_f32(-1.40256079171354495875E-1), | |||
| helper.const_f32(-3.50424626827848203418E-2), | |||
| helper.const_f32(-8.57456785154685413611E-4)}; | |||
| std::vector<mlir::Value> coeff1 = { | |||
| helper.const_val(3.23774891776946035970E0), | |||
| helper.const_val(6.91522889068984211695E0), | |||
| helper.const_val(3.93881025292474443415E0), | |||
| helper.const_val(1.33303460815807542389E0), | |||
| helper.const_val(2.01485389549179081538E-1), | |||
| helper.const_val(1.23716634817820021358E-2), | |||
| helper.const_val(3.01581553508235416007E-4), | |||
| helper.const_val(2.65806974686737550832E-6), | |||
| helper.const_val(6.23974539184983293730E-9)}; | |||
| helper.const_f32(3.23774891776946035970E0), | |||
| helper.const_f32(6.91522889068984211695E0), | |||
| helper.const_f32(3.93881025292474443415E0), | |||
| helper.const_f32(1.33303460815807542389E0), | |||
| helper.const_f32(2.01485389549179081538E-1), | |||
| helper.const_f32(1.23716634817820021358E-2), | |||
| helper.const_f32(3.01581553508235416007E-4), | |||
| helper.const_f32(2.65806974686737550832E-6), | |||
| helper.const_f32(6.23974539184983293730E-9)}; | |||
| return helper.select(cond, | |||
| polynomial(helper, i, coeff0), | |||
| polynomial(helper, i, coeff1)); | |||
| @@ -157,25 +157,25 @@ mlir::Value ndtri_approx(ValueBuilderHelper& helper, mlir::Value x) { | |||
| // polynomial Q | |||
| auto Q = [&](mlir::Value i, mlir::Value cond) { | |||
| std::vector<mlir::Value> coeff0 = { | |||
| helper.const_val(1.f), | |||
| helper.const_val(1.57799883256466749731E1), | |||
| helper.const_val(4.53907635128879210584E1), | |||
| helper.const_val(4.13172038254672030440E1), | |||
| helper.const_val(1.50425385692907503408E1), | |||
| helper.const_val(2.50464946208309415979E0), | |||
| helper.const_val(-1.42182922854787788574E-1), | |||
| helper.const_val(-3.80806407691578277194E-2), | |||
| helper.const_val(-9.33259480895457427372E-4)}; | |||
| helper.const_f32(1.f), | |||
| helper.const_f32(1.57799883256466749731E1), | |||
| helper.const_f32(4.53907635128879210584E1), | |||
| helper.const_f32(4.13172038254672030440E1), | |||
| helper.const_f32(1.50425385692907503408E1), | |||
| helper.const_f32(2.50464946208309415979E0), | |||
| helper.const_f32(-1.42182922854787788574E-1), | |||
| helper.const_f32(-3.80806407691578277194E-2), | |||
| helper.const_f32(-9.33259480895457427372E-4)}; | |||
| std::vector<mlir::Value> coeff1 = { | |||
| helper.const_val(1.f), | |||
| helper.const_val(6.02427039364742014255E0), | |||
| helper.const_val(3.67983563856160859403E0), | |||
| helper.const_val(1.37702099489081330271E0), | |||
| helper.const_val(2.16236993594496635890E-1), | |||
| helper.const_val(1.34204006088543189037E-2), | |||
| helper.const_val(3.28014464682127739104E-4), | |||
| helper.const_val(2.89247864745380683936E-6), | |||
| helper.const_val(6.79019408009981274425E-9)}; | |||
| helper.const_f32(1.f), | |||
| helper.const_f32(6.02427039364742014255E0), | |||
| helper.const_f32(3.67983563856160859403E0), | |||
| helper.const_f32(1.37702099489081330271E0), | |||
| helper.const_f32(2.16236993594496635890E-1), | |||
| helper.const_f32(1.34204006088543189037E-2), | |||
| helper.const_f32(3.28014464682127739104E-4), | |||
| helper.const_f32(2.89247864745380683936E-6), | |||
| helper.const_f32(6.79019408009981274425E-9)}; | |||
| return helper.select(cond, | |||
| polynomial(helper, i, coeff0), | |||
| polynomial(helper, i, coeff1)); | |||
| @@ -184,37 +184,37 @@ mlir::Value ndtri_approx(ValueBuilderHelper& helper, mlir::Value x) { | |||
| // polynomial R | |||
| auto R = [&](mlir::Value i) { | |||
| std::vector<mlir::Value> coeff = { | |||
| helper.const_val(-5.99633501014107895267E1), | |||
| helper.const_val(9.80010754185999661536E1), | |||
| helper.const_val(-5.66762857469070293439E1), | |||
| helper.const_val(1.39312609387279679503E1), | |||
| helper.const_val(-1.23916583867381258016E0)}; | |||
| helper.const_f32(-5.99633501014107895267E1), | |||
| helper.const_f32(9.80010754185999661536E1), | |||
| helper.const_f32(-5.66762857469070293439E1), | |||
| helper.const_f32(1.39312609387279679503E1), | |||
| helper.const_f32(-1.23916583867381258016E0)}; | |||
| return polynomial(helper, i, coeff); | |||
| }; | |||
| // polynomial S | |||
| auto S = [&](mlir::Value i) { | |||
| std::vector<mlir::Value> coeff = { | |||
| helper.const_val(1.f), | |||
| helper.const_val(1.95448858338141759834E0), | |||
| helper.const_val(4.67627912898881538453E0), | |||
| helper.const_val(8.63602421390890590575E1), | |||
| helper.const_val(-2.25462687854119370527E2), | |||
| helper.const_val(2.00260212380060660359E2), | |||
| helper.const_val(-8.20372256168333339912E1), | |||
| helper.const_val(1.59056225126211695515E1), | |||
| helper.const_val(-1.18331621121330003142E0)}; | |||
| helper.const_f32(1.f), | |||
| helper.const_f32(1.95448858338141759834E0), | |||
| helper.const_f32(4.67627912898881538453E0), | |||
| helper.const_f32(8.63602421390890590575E1), | |||
| helper.const_f32(-2.25462687854119370527E2), | |||
| helper.const_f32(2.00260212380060660359E2), | |||
| helper.const_f32(-8.20372256168333339912E1), | |||
| helper.const_f32(1.59056225126211695515E1), | |||
| helper.const_f32(-1.18331621121330003142E0)}; | |||
| return polynomial(helper, i, coeff); | |||
| }; | |||
| // constants | |||
| auto zero = helper.const_val(0); | |||
| auto one = helper.const_val(1); | |||
| auto half = helper.const_val(0.5); | |||
| auto eight = helper.const_val(8); | |||
| auto minus_2 = helper.const_val(-2); | |||
| auto exp_minus_2 = helper.const_val(0.135335283236); // exp(-2) | |||
| auto sqrt_2pi = helper.const_val(2.506628274631); // sqrt(2pi) | |||
| auto zero = helper.const_f32(0); | |||
| auto one = helper.const_f32(1); | |||
| auto half = helper.const_f32(0.5); | |||
| auto eight = helper.const_f32(8); | |||
| auto minus_2 = helper.const_f32(-2); | |||
| auto exp_minus_2 = helper.const_f32(0.135335283236); // exp(-2) | |||
| auto sqrt_2pi = helper.const_f32(2.506628274631); // sqrt(2pi) | |||
| // conditions | |||
| auto case1 = helper.lt(x, exp_minus_2); // x < exp(-2) | |||
| @@ -1,216 +0,0 @@ | |||
| /** | |||
| * \file src/jit/impl/mlir/ir/ops.td | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #ifndef MGB_MLIR_OPS | |||
| #define MGB_MLIR_OPS | |||
| include "mlir/IR/OpBase.td" | |||
| include "mlir/Interfaces/SideEffectInterfaces.td" | |||
| include "./interfaces.td" | |||
| include "./predicates.td" | |||
| def Mgb_Dialect : Dialect { | |||
| let name = "mgb"; | |||
| let cppNamespace = "mgb::jit"; | |||
| } | |||
| class ElemwiseBuilderImpl { | |||
| code ElemwiseBuilderImpl_create = [{ | |||
| static Operation* create(OpBuilder* builder, Location loc, ValueRange operands) { | |||
| OperationState state(loc, getOperationName()); | |||
| state.addOperands(operands); | |||
| state.addTypes(getResultType(operands)); | |||
| return builder->createOperation(state); | |||
| } | |||
| }]; | |||
| } | |||
| class ElemwiseOp<string mnemonic, list<OpTrait> traits = [NoSideEffect]> : | |||
| Op<Mgb_Dialect, mnemonic, !listconcat(traits, [ElemwiseOpInterface, | |||
| GenericBuilderInterface])>, ElemwiseBuilderImpl; | |||
| class GenericOp<string mnemonic, list<OpTrait> traits = []> : | |||
| Op<Mgb_Dialect, mnemonic, traits>; | |||
| class ElemwiseUnaryOp<string mnemonic, list<OpTrait> traits = [NoSideEffect]> : | |||
| ElemwiseOp<mnemonic, traits> { | |||
| let arguments = (ins F32MemRef:$lhs); | |||
| let results = (outs F32MemRef); | |||
| let builders = [OpBuilder< | |||
| "Builder* builder, OperationState& result, ValueRange operands", [{ | |||
| result.addOperands(operands); | |||
| result.addTypes(getResultType(operands)); | |||
| }]>, OpBuilder < | |||
| "OpBuilder& builder, OperationState& result, Value lhs", [{ | |||
| result.addOperands(lhs); | |||
| result.addTypes(getResultType({lhs})); | |||
| }] | |||
| >]; | |||
| let extraClassDeclaration = [{ | |||
| static Type getResultType(ValueRange operands) { | |||
| return deduce_result_type(operands); | |||
| } | |||
| }] # ElemwiseBuilderImpl_create; | |||
| } | |||
| def ReluOp : ElemwiseUnaryOp<"relu", [NoSideEffect]>; | |||
| def AbsOp : ElemwiseUnaryOp<"abs", [NoSideEffect]>; | |||
| def NegOp : ElemwiseUnaryOp<"negate", [NoSideEffect]>; | |||
| def AcosOp : ElemwiseUnaryOp<"acos", [NoSideEffect]>; | |||
| def AsinOp : ElemwiseUnaryOp<"asin", [NoSideEffect]>; | |||
| def CeilOp : ElemwiseUnaryOp<"ceil", [NoSideEffect]>; | |||
| def CosOp : ElemwiseUnaryOp<"cos", [NoSideEffect]>; | |||
| def ExpOp : ElemwiseUnaryOp<"exp", [NoSideEffect]>; | |||
| def ExpM1Op : ElemwiseUnaryOp<"expm1", [NoSideEffect]>; | |||
| def FloorOp : ElemwiseUnaryOp<"floor", [NoSideEffect]>; | |||
| def LogOp : ElemwiseUnaryOp<"log", [NoSideEffect]>; | |||
| def Log1POp : ElemwiseUnaryOp<"log1p", [NoSideEffect]>; | |||
| def SigmoidOp: ElemwiseUnaryOp<"sigmoid", [NoSideEffect]>; | |||
| def SinOp : ElemwiseUnaryOp<"sin", [NoSideEffect]>; | |||
| def TanhOp : ElemwiseUnaryOp<"tanh", [NoSideEffect]>; | |||
| def FastTanhOp : ElemwiseUnaryOp<"fast_tanh", [NoSideEffect]>; | |||
| def HswishOp : ElemwiseUnaryOp<"hswish", [NoSideEffect]>; | |||
| def RoundOp : ElemwiseUnaryOp<"round", [NoSideEffect]>; | |||
| def ErfOp : ElemwiseUnaryOp<"erf", [NoSideEffect]>; | |||
| def ErfInvOp : ElemwiseUnaryOp<"erfinv", [NoSideEffect]>; | |||
| def ErfCOp : ElemwiseUnaryOp<"erfc", [NoSideEffect]>; | |||
| def ErfCInvOp : ElemwiseUnaryOp<"erfcinv", [NoSideEffect]>; | |||
| class ElemwiseBinaryOp<string mnemonic, list<OpTrait> traits = [NoSideEffect]> : | |||
| ElemwiseOp<mnemonic, traits> { | |||
| let arguments = (ins ElemwiseFloatAny:$lhs, ElemwiseFloatAny:$rhs); | |||
| let results = (outs F32MemRef); | |||
| let builders = [OpBuilder< | |||
| "Builder* builder, OperationState& result, ValueRange operands", [{ | |||
| result.addOperands(operands); | |||
| result.addTypes(getResultType(operands)); | |||
| }] | |||
| >, OpBuilder < | |||
| "OpBuilder& builder, OperationState& result, Value lhs, Value rhs", [{ | |||
| result.addOperands(lhs); | |||
| result.addOperands(rhs); | |||
| result.addTypes(getResultType({lhs, rhs})); | |||
| }] | |||
| >]; | |||
| let extraClassDeclaration = [{ | |||
| static Type getResultType(ValueRange operands) { | |||
| return deduce_result_type(operands); | |||
| } | |||
| }] # ElemwiseBuilderImpl_create; | |||
| } | |||
| def AbsGradOp : ElemwiseBinaryOp<"abs_grad", [NoSideEffect]>; | |||
| def AddOp : ElemwiseBinaryOp<"add", [Commutative, NoSideEffect]>; | |||
| def FloorDivOp : ElemwiseBinaryOp<"floor_div", [NoSideEffect]>; | |||
| def MaxOp : ElemwiseBinaryOp<"max", [Commutative, NoSideEffect]>; | |||
| def MinOp : ElemwiseBinaryOp<"min", [Commutative, NoSideEffect]>; | |||
| def ModOp : ElemwiseBinaryOp<"mod", [NoSideEffect]>; | |||
| def MulOp : ElemwiseBinaryOp<"mul", [Commutative, NoSideEffect]>; | |||
| def SubOp : ElemwiseBinaryOp<"sub", [NoSideEffect]>; | |||
| def SigmoidGradOp : ElemwiseBinaryOp<"sigmoid_grad", [NoSideEffect]>; | |||
| def SwishGt0Op : ElemwiseBinaryOp<"switch_gt0", [NoSideEffect]>; | |||
| def TanhGradOp : ElemwiseBinaryOp<"tanh_grad", [NoSideEffect]>; | |||
| def LtOp : ElemwiseBinaryOp<"lt", [NoSideEffect]>; | |||
| def LeqOp : ElemwiseBinaryOp<"leq", [NoSideEffect]>; | |||
| def EqOp : ElemwiseBinaryOp<"eq", [Commutative, NoSideEffect]>; | |||
| def FuseAddReluOp : ElemwiseBinaryOp<"fuse_add_relu", [NoSideEffect]>; | |||
| def TrueDivOp : ElemwiseBinaryOp<"true_div", [NoSideEffect]>; | |||
| def PowOp : ElemwiseBinaryOp<"pow", [NoSideEffect]>; | |||
| def LogSumExpOp : ElemwiseBinaryOp<"log_sum_exp", [Commutative, NoSideEffect]>; | |||
| def FuseAddTanhOp : ElemwiseBinaryOp<"fuse_add_tanh", [NoSideEffect]>; | |||
| def FastTanhGradOp : ElemwiseBinaryOp<"fast_tanh_grad", [NoSideEffect]>; | |||
| def FuseAddSigmoidOp : ElemwiseBinaryOp<"fuse_add_sigmoid", [NoSideEffect]>; | |||
| def HswishGradOp : ElemwiseBinaryOp<"hswish_grad", [NoSideEffect]>; | |||
| def FuseAddHswishOp : ElemwiseBinaryOp<"fuse_add_hswish", [NoSideEffect]>; | |||
| def Atan2Op : ElemwiseBinaryOp<"atan2", [NoSideEffect]>; | |||
| class ElemwiseTernaryOp<string mnemonic, list<OpTrait> traits = [NoSideEffect]> : | |||
| ElemwiseOp<mnemonic, traits> { | |||
| let arguments = (ins ElemwiseFloatAny:$x, ElemwiseFloatAny:$y, ElemwiseFloatAny:$z); | |||
| let results = (outs F32MemRef); | |||
| let builders = [OpBuilder< | |||
| "Builder* builder, OperationState& result, ValueRange operands", [{ | |||
| result.addOperands(operands); | |||
| result.addTypes(getResultType(operands)); | |||
| }] | |||
| >, OpBuilder < | |||
| "OpBuilder& builder, OperationState& result, Value x, Value y, Value z", [{ | |||
| result.addOperands(x); | |||
| result.addOperands(y); | |||
| result.addOperands(z); | |||
| result.addTypes(getResultType({x, y, z})); | |||
| }] | |||
| >]; | |||
| let extraClassDeclaration = [{ | |||
| static Type getResultType(ValueRange operands) { | |||
| return deduce_result_type(operands); | |||
| } | |||
| }] # ElemwiseBuilderImpl_create; | |||
| } | |||
| def CondLeqMovOp: ElemwiseTernaryOp<"cond_leq_mov", [NoSideEffect]>; | |||
| def FuseMulAdd3Op: ElemwiseTernaryOp<"fuse_mul_add3", [NoSideEffect]>; | |||
| def ReturnOp : GenericOp<"return", | |||
| [NoSideEffect, HasParent<"FuncOp">, Terminator]> { | |||
| let summary = "return operation"; | |||
| let description = [{ | |||
| The "return" operation represents a return operation within a function. | |||
| The operation takes an no tensor operand and produces no results. | |||
| }]; | |||
| // The return operation takes an optional input operand to return. This | |||
| // value must match the return type of the enclosing function. | |||
| let arguments = (ins); | |||
| // The return operation only emits the input in the format if it is present. | |||
| let assemblyFormat = "attr-dict"; | |||
| } | |||
| def ConstantScalarOp: GenericOp<"sconst", [NoSideEffect]> { | |||
| let summary = "scalar constant"; | |||
| let arguments = (ins AnyAttr:$value); | |||
| let results = (outs F32:$result); | |||
| let builders = [OpBuilder< | |||
| "Builder* builder, OperationState& result, float value", [{ | |||
| result.addAttribute("value", builder->getF32FloatAttr(value)); | |||
| result.addTypes(builder->getF32Type()); | |||
| }] | |||
| >]; | |||
| let extraClassDeclaration = [{ | |||
| Attribute getValue() { return getAttr("value"); } | |||
| FloatAttr getFloatAttr() { return getAttrOfType<FloatAttr>("value"); } | |||
| }]; | |||
| } | |||
| def AssignOp : GenericOp<"assign", []> { | |||
| let summary = "assign op"; | |||
| let description = [{ | |||
| assign rhs to lhs without results | |||
| }]; | |||
| let arguments = (ins F32MemRef:$lhs, F32MemRef:$rhs); | |||
| } | |||
| #endif | |||
| @@ -1,24 +0,0 @@ | |||
| /** | |||
| * \file src/jit/impl/mlir/ir/predicates.td | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #ifndef MGB_MLIR_PREDICATES | |||
| #define MGB_MLIR_PREDICATES | |||
| #ifndef OP_BASE | |||
| include "mlir/IR/OpBase.td" | |||
| #endif | |||
| def ElemwiseFloatAny : TypeConstraint< | |||
| CPred<"is_elemwise_float($_self)">, "elemwise-float">; | |||
| #endif | |||
| @@ -0,0 +1,115 @@ | |||
| /** | |||
| * \file src/jit/impl/mlir/ir/types.cpp | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "megbrain_build_config.h" | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #include "./types.h" | |||
| #include "megbrain/common.h" | |||
| #include "megbrain/exception.h" | |||
| #include "megbrain/jit/mlir/ir/utils.h" | |||
| namespace mgb { | |||
| namespace jit { | |||
| mlir::Type megdnn_dtype_to_mlir_type(megdnn::DType type, | |||
| mlir::MLIRContext* ctx) { | |||
| switch (type.enumv()) { | |||
| case megdnn::DTypeEnum::Float32: | |||
| return mlir::FloatType::getF32(ctx); | |||
| case megdnn::DTypeEnum::Uint8: | |||
| return mlir::IntegerType::get(8, ctx); | |||
| case megdnn::DTypeEnum::Int8: | |||
| return mlir::IntegerType::get(8, ctx); | |||
| case megdnn::DTypeEnum::Int16: | |||
| return mlir::IntegerType::get(16, ctx); | |||
| case megdnn::DTypeEnum::Int32: | |||
| return mlir::IntegerType::get(32, ctx); | |||
| case megdnn::DTypeEnum::IntB1: | |||
| return mlir::IntegerType::get(1, ctx); | |||
| case megdnn::DTypeEnum::IntB2: | |||
| return mlir::IntegerType::get(2, ctx); | |||
| case megdnn::DTypeEnum::IntB4: | |||
| return mlir::IntegerType::get(4, ctx); | |||
| case megdnn::DTypeEnum::Byte: | |||
| return mlir::IntegerType::get(8, ctx); | |||
| case megdnn::DTypeEnum::Float16: | |||
| return mlir::FloatType::getF16(ctx); | |||
| case megdnn::DTypeEnum::UintB4: | |||
| return mlir::IntegerType::get(4, ctx); | |||
| case megdnn::DTypeEnum::BFloat16: | |||
| return mlir::FloatType::getBF16(ctx); | |||
| case megdnn::DTypeEnum::Bool: | |||
| return mlir::IntegerType::get(1, ctx); | |||
| default: | |||
| mgb_throw(InternalError, "Unsupported MegDNN dtype: %s", | |||
| type.name()); | |||
| } | |||
| } | |||
| megdnn::DType mlir_type_to_megdnn_dtype(mlir::Type type) { | |||
| mlir::Type element_type = type; | |||
| if (auto cast = type.dyn_cast_or_null<mlir::MemRefType>()) { | |||
| element_type = cast.getElementType(); | |||
| } | |||
| megdnn::DTypeEnum enumv; | |||
| if (element_type.isF32()) { | |||
| enumv = megdnn::DTypeEnum::Float32; | |||
| } else if (element_type.isSignlessInteger(1)) { | |||
| enumv = megdnn::DTypeEnum::IntB1; | |||
| } else if (element_type.isSignlessInteger(2)) { | |||
| enumv = megdnn::DTypeEnum::IntB2; | |||
| } else if (element_type.isSignlessInteger(4)) { | |||
| enumv = megdnn::DTypeEnum::IntB4; | |||
| } else if (element_type.isSignlessInteger(8)) { | |||
| enumv = megdnn::DTypeEnum::Int8; | |||
| } else if (element_type.isSignlessInteger(16)) { | |||
| enumv = megdnn::DTypeEnum::Int16; | |||
| } else if (element_type.isSignlessInteger(32)) { | |||
| enumv = megdnn::DTypeEnum::Int32; | |||
| } else if (element_type.isF16()) { | |||
| enumv = megdnn::DTypeEnum::Float16; | |||
| } else if (element_type.isBF16()) { | |||
| enumv = megdnn::DTypeEnum::BFloat16; | |||
| } else if (element_type.isSignlessInteger(1)) { | |||
| enumv = megdnn::DTypeEnum::Bool; | |||
| } else { | |||
| mgb_throw(InternalError, "Unsupported MLIR Type: %s", | |||
| mlir_type_to_string(element_type).c_str()); | |||
| } | |||
| return megdnn::DType::from_enum(enumv); | |||
| } | |||
| bool is_signed_int_dtype(megdnn::DType type) { | |||
| auto enumv = type.enumv(); | |||
| return enumv == megdnn::DTypeEnum::Int8 or | |||
| enumv == megdnn::DTypeEnum::Int16 or | |||
| enumv == megdnn::DTypeEnum::Int32 or | |||
| enumv == megdnn::DTypeEnum::IntB1 or | |||
| enumv == megdnn::DTypeEnum::IntB2 or | |||
| enumv == megdnn::DTypeEnum::IntB4; | |||
| } | |||
| bool is_unsigned_int_dtype(megdnn::DType type) { | |||
| auto enumv = type.enumv(); | |||
| return enumv == megdnn::DTypeEnum::Uint8 or | |||
| enumv == megdnn::DTypeEnum::UintB4; | |||
| } | |||
| } // namespace jit | |||
| } // namespace mgb | |||
| #endif // MGB_JIT && MGB_JIT_MLIR | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -14,22 +14,33 @@ | |||
| #include "megbrain_build_config.h" | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #include "megdnn/dtype.h" | |||
| #include <mlir/IR/StandardTypes.h> | |||
| namespace mgb { | |||
| namespace jit { | |||
| inline bool is_elemwise_float(const mlir::Type& dt) { | |||
| if (auto cast = dt.dyn_cast_or_null<mlir::MemRefType>()) { | |||
| if (cast.getElementType().isF32()) { | |||
| return true; | |||
| } | |||
| } | |||
| if (dt.isa<mlir::FloatType>()) { | |||
| return true; | |||
| } | |||
| return false; | |||
| } | |||
| #define FOR_EACH_DNN_DTYPE(cb) \ | |||
| cb(Float32, dt_float32); \ | |||
| cb(Uint8, dt_uint8); \ | |||
| cb(Int8, dt_int8); \ | |||
| cb(Int16, dt_int16); \ | |||
| cb(Int32, dt_int32); \ | |||
| cb(Byte, dt_byte); \ | |||
| MEGDNN_INC_FLOAT16(cb(Float16, dt_float16)); \ | |||
| MEGDNN_INC_FLOAT16(cb(BFloat16, dt_bfloat16)); \ | |||
| cb(Bool, dt_bool); | |||
| mlir::Type megdnn_dtype_to_mlir_type(megdnn::DType type, | |||
| mlir::MLIRContext* ctx); | |||
| megdnn::DType mlir_type_to_megdnn_dtype(mlir::Type type); | |||
| bool is_signed_int_dtype(megdnn::DType type); | |||
| bool is_unsigned_int_dtype(megdnn::DType type); | |||
| } // namespace jit | |||
| } // namespace mgb | |||
| @@ -13,11 +13,14 @@ | |||
| #include "megbrain_build_config.h" | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #include "megbrain/jit/mlir/ir/utils.h" | |||
| #include "./types.h" | |||
| #include "megbrain/common.h" | |||
| #include "megbrain/exception.h" | |||
| #include "megbrain/jit/mlir/ir/utils.h" | |||
| #include "megdnn/oprs/general.h" | |||
| #include "megdnn/basic_types.h" | |||
| #include "megdnn/oprs/general.h" | |||
| #include <mlir/Dialect/Affine/IR/AffineOps.h> | |||
| #include <mlir/IR/Builders.h> | |||
| @@ -44,7 +47,7 @@ mlir::Value jit::insert_alloc_and_dealloc(mlir::MemRefType type, | |||
| return alloc; | |||
| } | |||
| mlir::Type jit::deduce_result_type(mlir::ValueRange operands) { | |||
| mlir::Type jit::deduce_elemwise_res_type(mlir::ValueRange operands) { | |||
| megdnn::TensorShapeArray srcs; | |||
| megdnn::TensorShape dst; | |||
| megdnn::DType dst_type; | |||
| @@ -59,8 +62,8 @@ mlir::Type jit::deduce_result_type(mlir::ValueRange operands) { | |||
| } | |||
| megdnn::Elemwise::deduce_shape(srcs, dst); | |||
| mlir::Builder builder(operands[0].getContext()); | |||
| return layout_to_mlir_type({dst, mlir_type_to_dtype(operands[0].getType())}, | |||
| builder); | |||
| return layout_to_mlir_type( | |||
| {dst, mlir_type_to_megdnn_dtype(operands[0].getType())}, builder); | |||
| } | |||
| megdnn::TensorLayout jit::mlir_type_to_layout(mlir::Type type) { | |||
| @@ -72,41 +75,21 @@ megdnn::TensorLayout jit::mlir_type_to_layout(mlir::Type type) { | |||
| for (size_t i = 0; i < ret.ndim; i++) { | |||
| ret.shape[i] = real_type.getDimSize(i); | |||
| } | |||
| ret.dtype = mlir_type_to_dtype(real_type.getElementType()); | |||
| ret.dtype = mlir_type_to_megdnn_dtype(real_type.getElementType()); | |||
| } | |||
| return ret; | |||
| } | |||
| megdnn::DType jit::mlir_type_to_dtype(mlir::Type type) { | |||
| mlir::Type element_type = type; | |||
| if (auto cast = type.dyn_cast_or_null<mlir::MemRefType>()) { | |||
| element_type = cast.getElementType(); | |||
| } | |||
| if (element_type.isF32()) { | |||
| return megdnn::dtype::Float32{}; | |||
| } else { | |||
| mgb_throw(InternalError, | |||
| "Unsupport mlir type for MemRefType, got: %s\n", | |||
| mlir_type_to_string(type).c_str()); | |||
| } | |||
| return {}; | |||
| } | |||
| mlir::MemRefType jit::layout_to_mlir_type(const megdnn::TensorLayout& layout, | |||
| mlir::Builder& builder) { | |||
| std::vector<int64_t> shape; | |||
| for (size_t i = 0; i < layout.ndim; i++) { | |||
| shape.push_back(layout[i]); | |||
| } | |||
| switch (layout.dtype.enumv()) { | |||
| case megdnn::DTypeEnum::Float32: | |||
| return mlir::MemRefType::get(shape, builder.getF32Type()); | |||
| default: | |||
| mgb_throw(InternalError, "No supported dtype: %s", | |||
| layout.dtype.name()); | |||
| } | |||
| mlir::Type type = megdnn_dtype_to_mlir_type(layout.dtype, builder.getContext()); | |||
| return mlir::MemRefType::get(shape, type); | |||
| } | |||
| #endif // MGB_JIT_MLIR | |||
| #endif // MGB_JIT && MGB_JIT_MLIR | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
| @@ -15,6 +15,7 @@ | |||
| #include "./mlir_gen.h" | |||
| #include "./ir/each_mode.h" | |||
| #include "./ir/types.h" | |||
| #include "megbrain/jit/mlir/ir/dialect.h" | |||
| #include "megbrain/jit/mlir/ir/utils.h" | |||
| @@ -116,9 +117,9 @@ private: | |||
| return nullptr; | |||
| } | |||
| jit::ReturnOp return_op; | |||
| dialect::ReturnOp return_op; | |||
| if (!return_op) { | |||
| m_builder.create<jit::ReturnOp>(m_builder.getUnknownLoc()); | |||
| m_builder.create<dialect::ReturnOp>(m_builder.getUnknownLoc()); | |||
| } | |||
| std::string op_content = mlir_type_to_string(func_op); | |||
| func_op.setName( | |||
| @@ -135,9 +136,7 @@ private: | |||
| cg::DepOprIter{[&](cg::OperatorNodeBase* opr) { | |||
| if (opr->same_type<JITPlaceholder>()) { | |||
| return; | |||
| } | |||
| if (opr->same_type<opr::ImmutableTensor>()) { | |||
| } else if (opr->same_type<opr::ImmutableTensor>()) { | |||
| auto imm = SymbolVar{opr->output(0)}.as_immutable_scalar(); | |||
| if (imm.valid()) { | |||
| auto dtype = imm->dtype(); | |||
| @@ -150,59 +149,53 @@ private: | |||
| "dtype, but got %s", | |||
| dtype.name()); | |||
| } | |||
| auto&& out = m_builder.create<jit::ConstantScalarOp>( | |||
| auto&& out = m_builder.create<dialect::ConstantScalarOp>( | |||
| m_builder.getUnknownLoc(), m_builder.getF32Type(), | |||
| m_builder.getF32FloatAttr(scalar_value)); | |||
| mgb_assert(mlir::succeeded( | |||
| declare(opr->output(0)->name(), out))); | |||
| } | |||
| } | |||
| if (opr->same_type<opr::Elemwise>()) { | |||
| auto&& out = gen_op(opr->cast_final<opr::Elemwise>()); | |||
| } else if (opr->same_type<opr::Elemwise>()) { | |||
| auto&& out = gen_elemwise(opr->cast_final<opr::Elemwise>()); | |||
| mgb_assert( | |||
| mlir::succeeded(declare(opr->output(0)->name(), out))); | |||
| return; | |||
| } else if (opr->same_type<opr::TypeCvt>()) { | |||
| auto&& out = gen_typecvt(opr->cast_final<opr::TypeCvt>()); | |||
| mgb_assert( | |||
| mlir::succeeded(declare(opr->output(0)->name(), out))); | |||
| } | |||
| }} | |||
| .add(internal_graph.output()); | |||
| m_builder.create<AssignOp>(m_builder.getUnknownLoc(), | |||
| get(internal_graph.output()), | |||
| get(args.outputs[0].from)); | |||
| m_builder.create<dialect::AssignOp>(m_builder.getUnknownLoc(), | |||
| get(internal_graph.output()), | |||
| get(args.outputs[0].from)); | |||
| return mlir::success(); | |||
| } | |||
| mlir::Value gen_op(const opr::Elemwise& opr) { | |||
| switch (opr.param().mode) { | |||
| #define cb(mlir_op, mgb_mode) \ | |||
| case opr::Elemwise::Mode::mgb_mode: \ | |||
| return m_builder.create<jit::mlir_op>(m_builder.getUnknownLoc(), \ | |||
| get(opr.input(0)), \ | |||
| get(opr.input(1))); \ | |||
| break; | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_BINARY(cb) | |||
| #undef cb | |||
| #define cb(mlir_op, mgb_mode) \ | |||
| case opr::Elemwise::Mode::mgb_mode: \ | |||
| return m_builder.create<jit::mlir_op>(m_builder.getUnknownLoc(), \ | |||
| get(opr.input(0))); \ | |||
| break; | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_UNARY(cb) | |||
| #undef cb | |||
| #define cb(mlir_op, mgb_mode) \ | |||
| case opr::Elemwise::Mode::mgb_mode: \ | |||
| return m_builder.create<jit::mlir_op>( \ | |||
| m_builder.getUnknownLoc(), get(opr.input(0)), \ | |||
| get(opr.input(1)), get(opr.input(2))); \ | |||
| break; | |||
| MLIR_MGB_FOREACH_ELEMWISE_MODE_TERNARY(cb) | |||
| #undef cb | |||
| default: | |||
| return nullptr; | |||
| mlir::Value gen_elemwise(const opr::Elemwise& opr) { | |||
| llvm::SmallVector<mlir::Value, 4> operands; | |||
| for (size_t i = 0; i < opr.input().size(); i++) { | |||
| operands.push_back(get(opr.input(i))); | |||
| } | |||
| return nullptr; | |||
| mlir::Type res_type = deduce_elemwise_res_type(operands); | |||
| return m_builder.create<dialect::Elemwise>( | |||
| m_builder.getUnknownLoc(), res_type, mlir::ValueRange(operands), | |||
| opr.param().mode); | |||
| } | |||
| mlir::Value gen_typecvt(const opr::TypeCvt& opr) { | |||
| auto shape = get(opr.input(0)) | |||
| .getType() | |||
| .dyn_cast_or_null<mlir::MemRefType>() | |||
| .getShape(); | |||
| auto res_type = mlir::MemRefType::get( | |||
| shape, | |||
| megdnn_dtype_to_mlir_type(opr.param(), m_builder.getContext())); | |||
| return m_builder.create<dialect::TypeCvt>( | |||
| m_builder.getUnknownLoc(), res_type, get(opr.input(0)), | |||
| opr.input(0)->dtype(), opr.param()); | |||
| } | |||
| mlir::Type get_type(const TensorLayout& layout) { | |||
| @@ -0,0 +1,6 @@ | |||
| # mgb_dialect | |||
| set(LLVM_TARGET_DEFINITIONS mgb_dialect.td) | |||
| tablegen(MLIR mgb_dialect.h.inc ${MGE_IR_INCLUDE_DIRS} "--gen-op-decls") | |||
| tablegen(MLIR mgb_dialect.cpp.inc ${MGE_IR_INCLUDE_DIRS} "--gen-op-defs") | |||
| add_custom_target(mgb_dialect DEPENDS mgb_dialect.h.inc mgb_dialect.cpp.inc) | |||
| add_dependencies(mgb_dialect param_defs_tblgen) | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * \file src/jit/impl/mlir/ir/dialect.h | |||
| * \file src/jit/include/megbrain/jit/mlir/ir/dialect.h | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| @@ -15,8 +15,7 @@ | |||
| #include "megbrain_build_config.h" | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #include "megbrain/jit/mlir/ir/interfaces.h" | |||
| #include "megbrain/jit/mlir/ir/utils.h" | |||
| #include "megdnn/opr_param_defs.h" | |||
| #include <mlir/IR/Dialect.h> | |||
| #include <mlir/IR/Function.h> | |||
| @@ -39,7 +38,7 @@ public: | |||
| #define GET_OP_CLASSES | |||
| using namespace mlir; | |||
| #include "megbrain/jit/mlir/ir/ops.h.inc" | |||
| #include "megbrain/jit/mlir/ir/mgb_dialect.h.inc" | |||
| #endif // MGB_JIT && MGB_JIT_MLIR | |||
| @@ -1,28 +0,0 @@ | |||
| /** | |||
| * \file src/jit/include/mlir/ir/interfaces.h | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #pragma once | |||
| #include "megbrain_build_config.h" | |||
| #if MGB_JIT_MLIR | |||
| #include <mlir/IR/OpDefinition.h> | |||
| #include <mlir/IR/Types.h> | |||
| namespace mlir { | |||
| /// Include the auto-generated declarations. | |||
| #include "megbrain/jit/mlir/ir/interfaces.h.inc" | |||
| } | |||
| #endif // MGB_JIT_MLIR | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * \file src/jit/impl/mlir/ir/passes.h | |||
| * \file src/jit/include/megbrain/jit/mlir/ir/passes.h | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| @@ -11,8 +11,8 @@ | |||
| */ | |||
| #pragma once | |||
| #include "megbrain_build_config.h" | |||
| #include "megbrain_build_config.h" | |||
| #if MGB_JIT && MGB_JIT_MLIR | |||
| #include <memory> | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * \file src/jit/include/megbrain/mlir/ir/utils.h | |||
| * \file src/jit/include/megbrain/jit/mlir/ir/utils.h | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| @@ -35,15 +35,19 @@ std::string mlir_type_to_string(T&& t) { | |||
| mlir::Value insert_alloc_and_dealloc(mlir::MemRefType type, mlir::Location loc, | |||
| mlir::PatternRewriter& rewriter); | |||
| mlir::Type deduce_result_type(mlir::ValueRange operands); | |||
| mlir::Type deduce_elemwise_res_type(mlir::ValueRange operands); | |||
| /** | |||
| * \brief convert mlir type to TensorShape | |||
| * \brief convert MLIR Type to TensorLayout | |||
| */ | |||
| megdnn::TensorLayout mlir_type_to_layout(mlir::Type type); | |||
| megdnn::DType mlir_type_to_dtype(mlir::Type type); | |||
| /** | |||
| * \brief convert TensorLayout to MLIR Type | |||
| */ | |||
| mlir::MemRefType layout_to_mlir_type(const megdnn::TensorLayout& layout, | |||
| mlir::Builder& builder); | |||
| } // namespace jit | |||
| } // namespace mgb | |||
| @@ -267,6 +267,8 @@ void run_mlir_mode(CompNode cn) { | |||
| } // anonymous namespace | |||
| /* ===================== TestJITHalideCodeGenCude ===================== */ | |||
| #if MGB_JIT_HALIDE | |||
| template <typename tag> | |||
| class TestJITHalideCodeGenCuda : public ::testing::Test {}; | |||
| @@ -277,6 +279,8 @@ TYPED_TEST(TestJITHalideCodeGenCuda, run) { | |||
| } | |||
| #endif | |||
| /* ===================== TestJITNvrtcCodeGen ===================== */ | |||
| template <typename tag> | |||
| class TestJITNvrtcCodeGen : public ::testing::Test {}; | |||
| TYPED_TEST_CASE(TestJITNvrtcCodeGen, test_types); | |||
| @@ -285,6 +289,8 @@ TYPED_TEST(TestJITNvrtcCodeGen, run) { | |||
| run<TypeParam>(Backend::NVRTC, CompNode::load("gpu0")); | |||
| } | |||
| /* ===================== TestJITMlirCodeGen ===================== */ | |||
| #if MGB_JIT_MLIR | |||
| TEST(TestJITMlirCodeGen, Basic) { | |||
| auto cn = CompNode::load("cpu0"); | |||
| @@ -299,7 +305,8 @@ TEST(TestJITMlirCodeGen, BasicGPU) { | |||
| run_mlir_broadcast(cn); | |||
| } | |||
| ///////////////////////// unary /////////////////////////////// | |||
| /* ===================== TestJITMlirUnaryElemwise ===================== */ | |||
| // clang-format off | |||
| #define FOREACH_UNARY_MODE(cb) \ | |||
| cb(RELU) \ | |||
| @@ -365,7 +372,8 @@ TYPED_TEST(TestJITMlirUnaryElemwise, runGpu) { | |||
| run_mlir_mode<TypeParam, 1>(cn); | |||
| } | |||
| ///////////////////////// binary /////////////////////////////// | |||
| /* ===================== TestJITMlirBinaryElemwise ===================== */ | |||
| // clang-format off | |||
| #define FOREACH_BINARY_MODE(cb) \ | |||
| cb(ADD) \ | |||
| @@ -422,7 +430,8 @@ TYPED_TEST(TestJITMlirBinaryElemwise, runGpu) { | |||
| run_mlir_mode<TypeParam, 2>(cn); | |||
| } | |||
| ///////////////////////// ternary /////////////////////////////// | |||
| /* ===================== TestJITMlirTenaryElemwise ===================== */ | |||
| // clang-format off | |||
| #define FOREACH_TERNARY_MODE(cb) \ | |||
| cb(COND_LEQ_MOV) \ | |||
| @@ -456,6 +465,81 @@ TYPED_TEST(TestJITMlirTernaryElemwise, runGpu) { | |||
| #undef SKIP_MODE | |||
| /* ===================== TestJITMlirTypeCvt ===================== */ | |||
| template <typename itype, typename otype> | |||
| void run_typecvt(CompNode cn) { | |||
| set_backend(Backend::MLIR); | |||
| auto graph = ComputingGraph::make(); | |||
| HostTensorGenerator<itype, RandomDistribution::UNIFORM> gen(-10, 10); | |||
| auto host_x = gen({23, 42}, cn); | |||
| auto x = opr::Host2DeviceCopy::make(*graph, host_x); | |||
| auto y = opr::TypeCvt::make(x, otype()); | |||
| auto ig_gen = std::make_unique<InternalGraphGenerator>(y.node()->owner_opr()); | |||
| for (auto i : get_rev_topo_order(y)) { | |||
| if (!i->template same_type<opr::Host2DeviceCopy>()) { | |||
| ig_gen->add_opr(i); | |||
| } | |||
| } | |||
| auto igraph = ig_gen->generate(); | |||
| auto y_jit = JITExecutor::make(igraph, ig_gen->orig_inps()); | |||
| HostTensorND host_y, host_y_jit; | |||
| auto func = graph->compile({make_callback_copy(y, host_y), | |||
| make_callback_copy(y_jit, host_y_jit)}); | |||
| func->execute(); | |||
| MGB_ASSERT_TENSOR_EQ(host_y, host_y_jit); | |||
| }; | |||
| #define add_typecvt_gtest(itype, otype) \ | |||
| TEST(TestJITMlirTypeCvt, itype##_to_##otype) { \ | |||
| run_typecvt<dtype::itype, dtype::otype>(CompNode::load("cpu0")); \ | |||
| } \ | |||
| TEST(TestJITMlirTypeCvt, itype##_to_##otype##_GPU) { \ | |||
| REQUIRE_GPU(1); \ | |||
| run_typecvt<dtype::itype, dtype::otype>(CompNode::load("gpu0")); \ | |||
| } | |||
| #if !MEGDNN_DISABLE_FLOAT16 | |||
| // TODO: the support for f16 and bf16 is currently not complete in mlir | |||
| // FPExtOp | |||
| // add_typecvt_gtest(Float16, Float32); | |||
| // add_typecvt_gtest(BFloat16, Float32); | |||
| // add_typecvt_gtest(Float16, BFloat16); | |||
| // FPTruncOp | |||
| // add_typecvt_gtest(Float32, Float16); | |||
| // add_typecvt_gtest(Float32, BFloat16); | |||
| // add_typecvt_gtest(Float16, BFloat16); | |||
| #endif | |||
| // FPToSIOp | |||
| add_typecvt_gtest(Float32, Int8); | |||
| add_typecvt_gtest(Float32, Int16); | |||
| add_typecvt_gtest(Float32, Int32); | |||
| // FPToUIOp | |||
| add_typecvt_gtest(Float32, Uint8); | |||
| // SIToFPOp | |||
| add_typecvt_gtest(Int8, Float32); | |||
| add_typecvt_gtest(Int16, Float32); | |||
| add_typecvt_gtest(Int32, Float32); | |||
| // UIToFPOp | |||
| add_typecvt_gtest(Uint8, Float32); | |||
| #undef add_typecvt_gtest | |||
| #endif // MGB_JIT_MLIR | |||
| #endif // MGB_JIT | |||
| @@ -2,7 +2,7 @@ | |||
| // RUN: mgb-opt --mgb-convert-to-affine --mgb-codegen-convert-affine-to-llvm --split-input-file -canonicalize -cse %s | |||
| func @add_dim1(%lhs: memref<2xf32>, %rhs: memref<2xf32>, %res: memref<2xf32>) -> () { | |||
| %0 = "mgb.add"(%lhs, %rhs) {name = "add.f"} : | |||
| %0 = "mgb.Elemwise"(%lhs, %rhs) {name = "add.f", mode = 16 : i32} : | |||
| (memref<2xf32>, memref<2xf32>) -> memref<2xf32> | |||
| "mgb.assign"(%0, %res) : (memref<2xf32>, memref<2xf32>) -> () | |||
| mgb.return | |||
| @@ -24,7 +24,7 @@ func @add_dim1(%lhs: memref<2xf32>, %rhs: memref<2xf32>, %res: memref<2xf32>) -> | |||
| // CHECK: } | |||
| func @add_dim4(%lhs: memref<4x3x64x64xf32>, %rhs: memref<4x3x64x64xf32>, %res: memref<4x3x64x64xf32>) -> () { | |||
| %0 = "mgb.add"(%lhs, %rhs) {name = "add.f"} : | |||
| %0 = "mgb.Elemwise"(%lhs, %rhs) {name = "add.f", mode = 16 : i32} : | |||
| (memref<4x3x64x64xf32>, memref<4x3x64x64xf32>) -> memref<4x3x64x64xf32> | |||
| "mgb.assign"(%0, %res) : (memref<4x3x64x64xf32>, memref<4x3x64x64xf32>) -> () | |||
| mgb.return | |||
| @@ -55,4 +55,4 @@ func @add_dim4(%lhs: memref<4x3x64x64xf32>, %rhs: memref<4x3x64x64xf32>, %res: m | |||
| // CHECK: } | |||
| // CHECK: dealloc %0 : memref<4x3x64x64xf32> | |||
| // CHECK: return | |||
| // CHECK: } | |||
| // CHECK: } | |||