| @@ -6,6 +6,7 @@ | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| from .adagrad import Adagrad | |||
| from .adam import Adam | |||
| from .lr_scheduler import LRScheduler | |||
| from .multi_step_lr import MultiStepLR | |||
| @@ -0,0 +1,75 @@ | |||
| from typing import Iterable, Union | |||
| import numpy as np | |||
| from ..core import Buffer, Parameter | |||
| from ..functional import sqrt | |||
| from .internal import add_update_fastpath as add_update | |||
| from .optimizer import Optimizer | |||
| class Adagrad(Optimizer): | |||
| r"""Implements Adagrad algorithm. | |||
| It has been proposed in `"Adaptive Subgradient Methods for Online Learning | |||
| and Stochastic Optimization" <http://jmlr.org/papers/v12/duchi11a.html>`_. | |||
| :param params: iterable of parameters to optimize or dicts defining | |||
| parameter groups. | |||
| :param lr: coefficient that scale delta before it is applied | |||
| to the parameters (default: 1e-2). | |||
| :param lr_decay: learning rate decay (default: 0) | |||
| :param eps: term added to the denominator to improve | |||
| numerical stability (default: 1e-10). | |||
| :param weight_decay: weight decay (L2 penalty) (default: 0). | |||
| """ | |||
| def __init__( | |||
| self, | |||
| params: Union[Iterable[Parameter], dict], | |||
| lr: float = 1e-2, | |||
| lr_decay: float = 0.0, | |||
| eps: float = 1e-10, | |||
| weight_decay: float = 0.0, | |||
| ): | |||
| assert lr >= 0.0, "Invalid learning rate: {}".format(lr) | |||
| assert lr_decay >= 0, "Invalid learning rate decay: {}".format(lr_decay) | |||
| assert eps >= 0.0, "Invalid epsilon value: {}".format(eps) | |||
| assert weight_decay >= 0.0, "Invalid weight_decay value: {}".format( | |||
| weight_decay | |||
| ) | |||
| defaults = dict(lr=lr, lr_decay=lr_decay, eps=eps, weight_decay=weight_decay) | |||
| super().__init__(params, defaults) | |||
| def _create_state(self, param_group): | |||
| for param in param_group["params"]: | |||
| self._add_state(param, "square_avg") | |||
| self._add_state(param, "step", initializer=0.0) | |||
| def _updates(self, param_group): | |||
| lr = param_group["lr"] | |||
| lr_decay = param_group["lr_decay"] | |||
| weight_decay = param_group["weight_decay"] | |||
| eps = param_group["eps"] | |||
| for param in param_group["params"]: | |||
| if not isinstance(param.grad, Buffer): | |||
| raise TypeError( | |||
| "grad must be a Buffer, maybe you forget to call backward()?" | |||
| ) | |||
| if not param.requires_grad: | |||
| continue | |||
| step = self._state[param]["step"] | |||
| step = add_update(step, 1) | |||
| grad = param.grad | |||
| if weight_decay != 0.0: | |||
| grad = add_update(grad, param, beta=weight_decay) | |||
| square_avg = self._state[param]["square_avg"] | |||
| square_avg = add_update(square_avg, grad ** 2) | |||
| delta = grad / sqrt(square_avg + eps) | |||
| clr = lr / (1 + (step - 1) * lr_decay) | |||
| add_update(param, delta, beta=-clr) | |||
| @@ -187,3 +187,74 @@ def test_adam(): | |||
| for case in cases: | |||
| _test_optimizer("Adam", case, CheckValue) | |||
| _test_optimizer("Adam", case, CheckValue, update_lr=True) | |||
| def test_adam(): | |||
| class CheckValue: | |||
| def __init__(self, net, **kwarg): | |||
| self.m_slots = TensorDict() | |||
| self.v_slots = TensorDict() | |||
| for param in net.parameters(): | |||
| self.m_slots[param] = np.zeros(param.shape).astype(np.float32) | |||
| self.v_slots[param] = np.zeros(param.shape).astype(np.float32) | |||
| for k, v in kwarg.items(): | |||
| setattr(self, k, v) | |||
| def __call__(self, ori_params, new_params, step): | |||
| for param in new_params: | |||
| grad = param.grad.numpy() | |||
| m = self.m_slots[param] | |||
| v = self.v_slots[param] | |||
| m *= self.betas[0] | |||
| m += (1 - self.betas[0]) * grad | |||
| v *= self.betas[1] | |||
| v += (1 - self.betas[1]) * grad * grad | |||
| delta = (m / (1 - self.betas[0] ** step)) / ( | |||
| np.sqrt(v / (1 - self.betas[1] ** step)) + self.eps | |||
| ) | |||
| assertTensorClose(param.numpy(), ori_params[param] - self.lr * delta) | |||
| cases = [ | |||
| {"betas": (0.8, 0.9), "eps": 1e-04, "lr": 0.01}, | |||
| { | |||
| "betas": (0.8, 0.9), | |||
| "eps": 1e-04, | |||
| "lr": 0.01, | |||
| "weight_decay": 0.1, | |||
| }, # with weight_decay | |||
| ] | |||
| for case in cases: | |||
| _test_optimizer("Adam", case, CheckValue) | |||
| _test_optimizer("Adam", case, CheckValue, update_lr=True) | |||
| def test_adagrad(): | |||
| class CheckValue: | |||
| def __init__(self, net, **kwarg): | |||
| self.s_slots = TensorDict() | |||
| for param in net.parameters(): | |||
| self.s_slots[param] = np.zeros(param.shape).astype(np.float32) | |||
| for k, v in kwarg.items(): | |||
| setattr(self, k, v) | |||
| def __call__(self, ori_params, new_params, step): | |||
| for param in new_params: | |||
| grad = param.grad.numpy() | |||
| self.s_slots[param] += grad ** 2 | |||
| delta = grad / (self.s_slots[param] + self.eps) ** 0.5 | |||
| delta *= -(self.lr / (1 + (step - 1) * self.lr_decay)) | |||
| assertTensorClose(param.numpy(), ori_params[param] + delta) | |||
| cases = [ | |||
| {"lr": 0.01, "eps": 1e-06, "lr_decay": 0.01}, | |||
| {"lr": 0.01, "eps": 1e-06, "lr_decay": 0.0}, # without lr_decay | |||
| { | |||
| "lr": 0.01, | |||
| "eps": 1e-06, | |||
| "lr_decay": 0.01, | |||
| "weight_decay": 0.1, | |||
| }, # with weight_decay | |||
| ] | |||
| for case in cases: | |||
| _test_optimizer("Adagrad", case, CheckValue) | |||
| _test_optimizer("Adagrad", case, CheckValue, update_lr=True) | |||