| @@ -9,17 +9,7 @@ | |||
| # pylint: disable=redefined-builtin | |||
| from .elemwise import * | |||
| from .graph import add_update | |||
| from .loss import ( | |||
| binary_cross_entropy, | |||
| cross_entropy, | |||
| cross_entropy_with_softmax, | |||
| hinge_loss, | |||
| l1_loss, | |||
| nll_loss, | |||
| smooth_l1_loss, | |||
| square_loss, | |||
| triplet_margin_loss, | |||
| ) | |||
| from .loss import * | |||
| from .math import * | |||
| from .nn import * | |||
| from .quantized import conv_bias_activation | |||
| @@ -25,10 +25,6 @@ __all__ = [ | |||
| "asinh", | |||
| "acosh", | |||
| "atanh", | |||
| "bitwise_and", # TODO | |||
| "bitwise_not", # TODO | |||
| "bitwise_or", # TODO | |||
| "bitwise_xor", # TODO | |||
| "ceil", | |||
| "clamp", | |||
| "cos", | |||
| @@ -339,22 +335,6 @@ def right_shift(x, y): | |||
| return _elwise(x, y, mode="shl") | |||
| def bitwise_and(x, y): | |||
| raise NotImplementedError | |||
| def bitwise_not(x): | |||
| raise NotImplementedError | |||
| def bitwise_or(x, y): | |||
| raise NotImplementedError | |||
| def bitwise_xor(x, y): | |||
| raise NotImplementedError | |||
| # logical functions | |||
| @@ -15,6 +15,14 @@ from .nn import assert_equal, indexing_one_hot | |||
| from .tensor import where | |||
| from .utils import zero_grad | |||
| __all__ = [ | |||
| "l1_loss", | |||
| "square_loss", | |||
| "cross_entropy_with_softmax", | |||
| "binary_cross_entropy", | |||
| "hinge_loss", | |||
| ] | |||
| def l1_loss(pred: Tensor, label: Tensor) -> Tensor: | |||
| r""" | |||
| @@ -93,59 +101,6 @@ def square_loss(pred: Tensor, label: Tensor) -> Tensor: | |||
| return (diff ** 2).mean() | |||
| def cross_entropy( | |||
| inp: Tensor, target: Tensor, axis: int = 1, ignore_index: int = -1 | |||
| ) -> Tensor: | |||
| r""" | |||
| Returns the cross entropy loss in a classification problem. | |||
| .. math:: \textrm{CrossEntropy}(x, y) = - \sum_{i} y_i\log(x_i) | |||
| :param inp: The input tensor representing the predicted probability. | |||
| :param label: The input tensor representing the classification label. | |||
| :param axis: An axis along which cross_entropy will be applied. Default: 1 | |||
| :param ignore_index: Specifies a target value that is ignored and does not contribute to the input gradient. Default: -1 | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| data_shape = (1, 2) | |||
| label_shape = (1, ) | |||
| pred = tensor(np.array([0.5, 0.5], dtype=np.float32).reshape(data_shape)) | |||
| label = tensor(np.ones(label_shape, dtype=np.int32)) | |||
| loss = F.cross_entropy(pred, label) | |||
| print(loss.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [0.69] | |||
| """ | |||
| raise NotImplementedError | |||
| # n0 = inp.ndim | |||
| # n1 = target.ndim | |||
| # assert n0 == n1 + 1, ( | |||
| # "target ndim must be one less than input ndim; input_ndim={} " | |||
| # "target_ndim={}".format(n0, n1) | |||
| # ) | |||
| # if ignore_index != -1: | |||
| # mask = 1 - equal(target, ignore_index) | |||
| # target = target * mask | |||
| # loss = -log(indexing_one_hot(inp, target, axis)) * mask | |||
| # return loss.sum() / maximum(mask.sum(), 1.0) | |||
| # else: | |||
| # return -log(indexing_one_hot(inp, target, axis)).mean() | |||
| def cross_entropy_with_softmax( | |||
| pred: Tensor, label: Tensor, axis: int = 1, label_smooth: float = 0 | |||
| ) -> Tensor: | |||
| @@ -189,49 +144,6 @@ def cross_entropy_with_softmax( | |||
| return (log(down) - up).mean() | |||
| def triplet_margin_loss( | |||
| anchor: Tensor, positive: Tensor, negative: Tensor, margin: float = 1.0, p: int = 2 | |||
| ) -> Tensor: | |||
| r""" | |||
| Creates a criterion that measures the triplet loss given an input tensors. | |||
| .. math:: | |||
| L(a, p, n) = max\left\{d\left(a_{i},p_{i}\right)-d\left(a_{i}, n_{i}\right)+margin, 0\right\},\ | |||
| d\left(x_{i},y_{i}\right)=\left\|x_{i}-y_{i}\right\|_{p} | |||
| :param anchor: The input tensor representing the anchor samples. | |||
| :param positive: The input tensor representing the positive samples. | |||
| :param negative: The input tensor representing the negative samples. | |||
| :param margin: Default: 1.0 | |||
| :param p: The norm degree for pairwise distance. Default: 2.0 | |||
| """ | |||
| s0 = anchor.shapeof() | |||
| s1 = positive.shapeof() | |||
| s2 = negative.shapeof() | |||
| assert_equal(s0, s1) | |||
| assert_equal(s1, s2) | |||
| n0 = anchor.ndim | |||
| n1 = positive.ndim | |||
| n2 = negative.ndim | |||
| assert n0 == 2 and n1 == 2 and n2 == 2, ( | |||
| "anchor ndim, positive ndim, and negative ndim must be 2; " | |||
| "anchor_ndim={} positive_ndim={} negative_ndim={}".format(n0, n1, n2) | |||
| ) | |||
| assert p > 0, "a margin with a value greater than 0; p={}".format(p) | |||
| diff0 = abs(anchor - positive) | |||
| diff1 = abs(anchor - negative) | |||
| d1 = power(power(diff0, p).sum(axis=1, keepdims=True), 1 / p) | |||
| d2 = power(power(diff1, p).sum(axis=1, keepdims=True), 1 / p) | |||
| loss = maximum(d1 - d2 + margin, 0) | |||
| return loss.mean() | |||
| def binary_cross_entropy(pred: Tensor, label: Tensor) -> Tensor: | |||
| r"""Function that measures the Binary Cross Entropy between the target and the prediction. | |||
| @@ -244,59 +156,6 @@ def binary_cross_entropy(pred: Tensor, label: Tensor) -> Tensor: | |||
| return -1.0 * (label * log(pred) + (1.0 - label) * log(1 - pred)).mean() | |||
| def nll_loss( | |||
| pred: Tensor, label: Tensor, axis: int = 1, ignore_index: int = -1 | |||
| ) -> Tensor: | |||
| r""" | |||
| The negative log likelihood loss. | |||
| :param pred: The predicted result from model. | |||
| :param label: The ground truth to compare. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| data_shape = (2, 2) | |||
| label_shape = (2, ) | |||
| data = tensor( | |||
| np.array([[1, 0.5], [0.3, 1.2]], dtype=np.float32).reshape(data_shape), | |||
| ) | |||
| label = tensor( | |||
| np.ones(label_shape, dtype=np.int32) | |||
| ) | |||
| pred = F.log(F.softmax(data)) | |||
| loss1 = F.nll_loss(pred, label) | |||
| loss2 = F.cross_entropy_with_softmax(data, label) | |||
| print(loss1.numpy(), loss2.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [0.6576154] [0.6576154] | |||
| """ | |||
| raise NotImplementedError | |||
| # n0 = pred.ndim | |||
| # n1 = label.ndim | |||
| # assert n0 == n1 + 1, ( | |||
| # "target ndim must be one less than input ndim; input_ndim={} " | |||
| # "target_ndim={}".format(n0, n1) | |||
| # ) | |||
| # mask = 1.0 - equal(label, ignore_index) | |||
| # label = label * mask | |||
| # loss = indexing_one_hot(pred, label, axis) * mask | |||
| # return -1.0 * loss.sum() / maximum(mask.sum(), 1.0) | |||
| def hinge_loss(pred: Tensor, label: Tensor, norm: str = "L1") -> Tensor: | |||
| r""" | |||
| Caculate the hinge loss which is often used in SVMs. | |||
| @@ -337,53 +196,3 @@ def hinge_loss(pred: Tensor, label: Tensor, norm: str = "L1") -> Tensor: | |||
| return loss.sum(axis=1).mean() | |||
| else: | |||
| return (loss ** 2).sum(axis=1).mean() | |||
| def smooth_l1_loss(pred: Tensor, label: Tensor) -> Tensor: | |||
| r""" | |||
| Caculate the smooth l1 loss proposed in `Fast R-CNN paper by Ross Girshick`. | |||
| The smooth l1 loss can be described as: | |||
| .. math:: | |||
| \text{loss}(x, y) = \frac{1}{n} \sum_{i} l_{i} | |||
| where :math:`l_{i}` is given by: | |||
| .. math:: | |||
| l_{i} = | |||
| \begin{cases} | |||
| 0.5 (x_i - y_i)^2, & \text{if } |x_i - y_i| < 1 \\ | |||
| |x_i - y_i| - 0.5, & \text{otherwise } | |||
| \end{cases} | |||
| :param pred: The predicted result from model. | |||
| :param label: The ground truth to compare. | |||
| Examples: | |||
| .. testcode:: | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| pred = tensor([[0.5, -0.5, 0.1], [-0.6, 0.7, 0.8]]) | |||
| label = tensor([[0.4, 1.5, 1.2], [0., 0.1, 2.2]]) | |||
| loss = F.smooth_l1_loss(pred, label) | |||
| print(loss.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [0.5608334] | |||
| """ | |||
| raise NotImplementedError | |||
| # diff = abs(pred - label) | |||
| # l2_loss = 0.5 * (diff ** 2) | |||
| # l1_loss = diff - 0.5 | |||
| # mask = diff < 1 | |||
| # loss = where(mask, l2_loss, l1_loss) | |||
| # return loss.mean() | |||
| @@ -21,47 +21,26 @@ from .elemwise import clamp, exp, log, log1p | |||
| from .tensor import remove_axis, reshape | |||
| __all__ = [ | |||
| "all", # TODO | |||
| "all_close", # TODO | |||
| "any", # TODO | |||
| "argmax", | |||
| "argmin", | |||
| "argsort", | |||
| "isinf", | |||
| "isnan", # TODO | |||
| "isnan", | |||
| "max", | |||
| "mean", | |||
| "median", # TODO | |||
| "min", | |||
| "norm", | |||
| "normalize", | |||
| "prod", | |||
| "sign", # TODO | |||
| "sign", | |||
| "sort", | |||
| "std", | |||
| "sum", | |||
| "topk", | |||
| "unique", # TODO | |||
| "var", | |||
| ] | |||
| def all(inp): | |||
| raise NotImplementedError | |||
| def all_close(inp): | |||
| raise NotImplementedError | |||
| def any(inp): | |||
| raise NotImplementedError | |||
| def unique(inp): | |||
| raise NotImplementedError | |||
| def isnan(inp: Tensor) -> Tensor: | |||
| r"""Returns a new tensor representing if each element is NaN or not. | |||
| @@ -77,15 +56,14 @@ def isnan(inp: Tensor) -> Tensor: | |||
| x = tensor([1, float("nan"), 0]) | |||
| print(F.isnan(x)) | |||
| print(F.isnan(x).numpy()) | |||
| .. testoutput:: | |||
| Tensor([0 1 0], dtype=uint8) | |||
| [False True False] | |||
| """ | |||
| raise NotImplementedError | |||
| # return (inp != inp).astype("uint8") | |||
| return inp != inp | |||
| def isinf(inp: Tensor) -> Tensor: | |||
| @@ -103,18 +81,39 @@ def isinf(inp: Tensor) -> Tensor: | |||
| x = tensor([1, float("inf"), 0]) | |||
| print(F.isinf(x)) | |||
| print(F.isinf(x).numpy()) | |||
| .. testoutput:: | |||
| Tensor([0 1 0], dtype=uint8) | |||
| [False True False] | |||
| """ | |||
| return (abs(inp).astype("float32") == float("inf")).astype("uint8") | |||
| return abs(inp).astype("float32") == float("inf") | |||
| def sign(inp: Tensor): | |||
| raise NotImplementedError | |||
| r"""Returns sign of each element in the input tensor. | |||
| :param: inp | |||
| :return: a sign tensor. | |||
| Examples: | |||
| .. testcode:: | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| x = tensor([1, -1, 0]) | |||
| print(F.sign(x).numpy()) | |||
| .. testoutput:: | |||
| [ 1 -1 0] | |||
| """ | |||
| return (inp > 0).astype(inp.dtype) - (inp < 0).astype(inp.dtype) | |||
| def sum( | |||
| @@ -623,7 +623,7 @@ def batch_norm2d( | |||
| Default: True | |||
| """ | |||
| from .tensor import expand_dims, squeeze, broadcast | |||
| from .tensor import add_axis, remove_axis, broadcast | |||
| def full(value): | |||
| C = data.shape[1] | |||
| @@ -633,7 +633,7 @@ def batch_norm2d( | |||
| def expand_or_full(x, value): | |||
| if x is None: | |||
| return full(value) | |||
| return expand_dims(x, [0, 2, 3]) | |||
| return add_axis(x, [0, 2, 3]) | |||
| def make_full_if_none(x, value): | |||
| if x is None: | |||
| @@ -1229,14 +1229,14 @@ def interpolate( | |||
| return ret | |||
| def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor: | |||
| def dropout(inp: Tensor, drop_prob: float, training: bool = True) -> Tensor: | |||
| """ | |||
| Returns a new tensor where each of the elements are randomly set to zero | |||
| with probability P = ``drop_prob``. Optionally rescale the output tensor. | |||
| :param inp: The input tensor | |||
| :param drop_prob: The probability to drop (set to zero) a single element | |||
| :param rescale: The default behavior of ``dropout`` during training is to rescale the output, | |||
| :param training: The default behavior of ``dropout`` during training is to rescale the output, | |||
| then it can be replaced by an :class:`~.Identity` during inference, default to True. | |||
| :return: The output tensor | |||
| @@ -1266,7 +1266,7 @@ def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor: | |||
| rv = uniform(inp.shape) | |||
| mask = rv > drop_prob | |||
| inp *= mask.astype(inp.dtype) | |||
| if rescale: | |||
| if training: | |||
| inp *= 1 / (1 - drop_prob) | |||
| return inp | |||
| @@ -14,6 +14,7 @@ from typing import Iterable, List, Optional, Sequence, Tuple, Union | |||
| import numpy as np | |||
| from ..core._imperative_rt import CompNode | |||
| from ..core._wrap import device as as_device | |||
| from ..core.ops import builtin | |||
| from ..core.ops._internal import param_defs as P | |||
| from ..core.ops.special import Const | |||
| @@ -30,31 +31,32 @@ from ..tensor import Tensor | |||
| from .elemwise import ceil | |||
| __all__ = [ | |||
| "add_axis", # expand_dims | |||
| "add_axis", | |||
| "arange", | |||
| "broadcast", | |||
| "concat", | |||
| "cond_take", | |||
| "dimshuffle", # transpose, permute | |||
| "dimshuffle", | |||
| "expand_dims", | |||
| "eye", | |||
| "full", | |||
| "full_like", | |||
| "gather", | |||
| "eye", | |||
| "linspace", | |||
| "ones", | |||
| "ones_like", | |||
| "remove_axis", # squeeze | |||
| "param_pack_concat", | |||
| "param_pack_split", | |||
| "reshape", | |||
| "remove_axis", | |||
| "split", | |||
| "squeeze", | |||
| "stack", | |||
| "reshape", | |||
| "scatter", | |||
| "transpose", | |||
| "where", | |||
| "zeros", | |||
| "zeros_like", | |||
| "param_pack_split", | |||
| "param_pack_concat", | |||
| ] | |||
| @@ -97,6 +99,8 @@ def eye(n: int, *, dtype=None, device: Optional[CompNode] = None) -> Tensor: | |||
| def full(shape, value, dtype="float32", device=None): | |||
| if isinstance(shape, int): | |||
| shape = (shape,) | |||
| if device is None: | |||
| device = get_default_device() | |||
| (x,) = Const(value, dtype=dtype, device=device)( | |||
| @@ -196,16 +200,13 @@ def broadcast(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor: | |||
| return result | |||
| def concat( | |||
| inps: Iterable[Tensor], axis: int = 0, device: Optional[CompNode] = None, | |||
| ) -> Tensor: | |||
| def concat(inps: Iterable[Tensor], axis: int = 0, device=None) -> Tensor: | |||
| r""" | |||
| Concat some tensors | |||
| :param inps: Input tensors to concat | |||
| :param axis: the dimension over which the tensors are concatenated. Default: 0 | |||
| :param device: The comp node output on. Default: None | |||
| :param comp_graph: The graph in which output is. Default: None | |||
| :return: The output tensor | |||
| Examples: | |||
| @@ -235,7 +236,9 @@ def concat( | |||
| return inps[0] | |||
| dtype = dtype_promotion(inps) | |||
| device = get_device(inps) | |||
| if device is None: | |||
| device = get_device(inps) | |||
| device = as_device(device) | |||
| def convert(x): | |||
| return convert_single_value(x, inps, dtype=dtype) | |||
| @@ -245,12 +248,13 @@ def concat( | |||
| return result | |||
| def stack(inps, axis=0): | |||
| def stack(inps, axis=0, device=None): | |||
| """Concats a sequence of tensors along a new axis. | |||
| The input tensors must have the same shape. | |||
| :param inps: The input tensors. | |||
| :param axis: Which axis will be concatenated. | |||
| :param device: The comp node output on. Default: None | |||
| :return: The output concatenated tensor. | |||
| Examples: | |||
| @@ -283,7 +287,7 @@ def stack(inps, axis=0): | |||
| raise ValueError("All input tensors must have the same shape") | |||
| inps = [add_axis(inp, axis=axis) for inp in inps] | |||
| return concat(inps, axis=axis) | |||
| return concat(inps, axis=axis, device=device) | |||
| def split(inp, nsplits_or_sections, axis=0): | |||
| @@ -609,7 +613,10 @@ def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: | |||
| def cond_take(mask: Tensor, x: Tensor) -> Tensor: | |||
| r""" | |||
| Take elements from data if specific condition is satisfied on mask. This operator has two outputs: the first is the elements taken, and the second is the indices corresponding to those elements; they are both 1-dimensional. High-dimension input would first be flattened. | |||
| Take elements from data if specific condition is satisfied on mask. | |||
| This operator has two outputs: the first is the elements taken, | |||
| and the second is the indices corresponding to those elements; | |||
| they are both 1-dimensional. High-dimension input would first be flattened. | |||
| :param mask: condition param; must be the same shape with data | |||
| :param x: input tensor from which to take elements | |||
| @@ -692,6 +699,9 @@ def dimshuffle(inp: Tensor, pattern: Iterable[int]) -> Tensor: | |||
| return result | |||
| transpose = dimshuffle | |||
| def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor: | |||
| r""" | |||
| Reshape a tensor to given target shape; total number of logical elements must | |||
| @@ -748,9 +758,6 @@ def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor: | |||
| return x | |||
| transpose = dimshuffle | |||
| AxisAddRemove = builtin.AxisAddRemove | |||
| AxisDesc = AxisAddRemove.AxisDesc | |||
| @@ -803,12 +810,14 @@ def add_axis(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: | |||
| expand_dims = add_axis | |||
| def remove_axis(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: | |||
| def remove_axis( | |||
| inp: Tensor, axis: Optional[Union[int, Sequence[int]]] = None | |||
| ) -> Tensor: | |||
| r""" | |||
| Remove dimension of shape 1. | |||
| :param inp: Input tensor | |||
| :param axis: Place of axis to be removed | |||
| :param axis: Place of axis to be removed, if None, all axis=1 will be removed. Default: None | |||
| :return: The output tensor | |||
| Examples: | |||
| @@ -897,8 +906,8 @@ def linspace( | |||
| def arange( | |||
| start: Union[int, float, Tensor], | |||
| end: Union[int, float, Tensor], | |||
| start: Union[int, float, Tensor] = 0, | |||
| end: Optional[Union[int, float, Tensor]] = None, | |||
| step: Union[int, float, Tensor] = 1, | |||
| dtype="float32", | |||
| device: Optional[CompNode] = None, | |||
| @@ -919,7 +928,7 @@ def arange( | |||
| import numpy as np | |||
| import megengine.functional as F | |||
| a = F.arange(1, 5, 1) | |||
| a = F.arange(5) | |||
| print(a.numpy()) | |||
| .. testoutput:: | |||
| @@ -927,6 +936,9 @@ def arange( | |||
| [1. 2. 3. 4.] | |||
| """ | |||
| if end is None: | |||
| start, end = 0, start | |||
| if isinstance(start, Tensor): | |||
| start = start.astype("float32") | |||
| if isinstance(end, Tensor): | |||
| @@ -1,2 +1,10 @@ | |||
| # -*- coding: utf-8 -*- | |||
| # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| # | |||
| # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| from .sublinear_memory_config import SublinearMemoryConfig | |||
| from .tracing import exclude_from_trace, trace | |||
| @@ -6,7 +6,6 @@ | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| from ..device import get_device_count | |||
| @@ -1,3 +1,11 @@ | |||
| # -*- coding: utf-8 -*- | |||
| # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| # | |||
| # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| import collections | |||
| import contextlib | |||
| import functools | |||
| @@ -13,7 +13,7 @@ from typing import Optional, Tuple, Union | |||
| import numpy as np | |||
| from ..functional import full | |||
| from ..random import gaussian, uniform | |||
| from ..random import normal, uniform | |||
| from ..tensor import Tensor | |||
| @@ -50,7 +50,7 @@ def uniform_(tensor: Tensor, a: float = 0.0, b: float = 1.0) -> None: | |||
| :param a: Lower bound of the sampling interval | |||
| :param b: Upper bound of the sampling interval | |||
| """ | |||
| tensor._reset(uniform(tensor.shape, low=a, high=b).astype(tensor.dtype)) | |||
| tensor._reset(uniform(size=tensor.shape, low=a, high=b).astype(tensor.dtype)) | |||
| def normal_(tensor: Tensor, mean: float = 0.0, std: float = 1.0) -> None: | |||
| @@ -61,7 +61,7 @@ def normal_(tensor: Tensor, mean: float = 0.0, std: float = 1.0) -> None: | |||
| :param mean: The mean of the normal distribution | |||
| :param std: The standard deviation of the normal distribution | |||
| """ | |||
| tensor._reset(gaussian(tensor.shape, mean=mean, std=std).astype(tensor.dtype)) | |||
| tensor._reset(normal(size=tensor.shape, mean=mean, std=std).astype(tensor.dtype)) | |||
| def calculate_gain( | |||
| @@ -6,8 +6,8 @@ | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| from .distribution import gaussian, uniform | |||
| from .rng import manual_seed | |||
| from .distribution import normal, uniform | |||
| from .rng import seed | |||
| # pylint: disable=undefined-variable | |||
| del distribution, rng # type: ignore[name-defined] | |||
| @@ -15,13 +15,15 @@ from ..core.tensor import utils | |||
| from ..core.tensor.core import apply | |||
| from .rng import _random_seed_generator | |||
| __all__ = ["gaussian", "uniform"] | |||
| __all__ = ["normal", "uniform"] | |||
| def gaussian(shape: Iterable[int], mean: float = 0, std: float = 1,) -> Tensor: | |||
| def normal( | |||
| mean: float = 0, std: float = 1, size: Optional[Iterable[int]] = None | |||
| ) -> Tensor: | |||
| r"""Random variable with Gaussian distribution $N(\mu, \sigma)$ | |||
| :param shape: Output tensor shape | |||
| :param size: Output tensor size | |||
| :param mean: The mean or expectation of the distribution | |||
| :param std: The standard deviation of the distribution (variance = $\sigma ^ 2$) | |||
| :return: The output tensor | |||
| @@ -33,7 +35,7 @@ def gaussian(shape: Iterable[int], mean: float = 0, std: float = 1,) -> Tensor: | |||
| import megengine as mge | |||
| import megengine.random as rand | |||
| x = rand.gaussian((2, 2), mean=0, std=1) | |||
| x = rand.normal(mean=0, std=1, size=(2, 2)) | |||
| print(x.numpy()) | |||
| .. testoutput:: | |||
| @@ -43,17 +45,21 @@ def gaussian(shape: Iterable[int], mean: float = 0, std: float = 1,) -> Tensor: | |||
| [-1.4939808 -1.5824696 ]] | |||
| """ | |||
| if size is None: | |||
| size = (1,) | |||
| seed = _random_seed_generator().__next__() | |||
| op = GaussianRNG(seed=seed, mean=mean, std=std) | |||
| shape = Tensor(shape, dtype="int32") | |||
| (output,) = apply(op, shape) | |||
| size = Tensor(size, dtype="int32") | |||
| (output,) = apply(op, size) | |||
| return output | |||
| def uniform(shape: Iterable[int], low: float = 0, high: float = 1,) -> Tensor: | |||
| def uniform( | |||
| low: float = 0, high: float = 1, size: Optional[Iterable[int]] = None | |||
| ) -> Tensor: | |||
| r"""Random variable with uniform distribution $U(0, 1)$ | |||
| :param shape: Output tensor shape | |||
| :param size: Output tensor size | |||
| :param low: Lower range | |||
| :param high: Upper range | |||
| :return: The output tensor | |||
| @@ -65,7 +71,7 @@ def uniform(shape: Iterable[int], low: float = 0, high: float = 1,) -> Tensor: | |||
| import megengine as mge | |||
| import megengine.random as rand | |||
| x = rand.uniform((2, 2)) | |||
| x = rand.uniform(size=(2, 2)) | |||
| print(x.numpy()) | |||
| .. testoutput:: | |||
| @@ -77,9 +83,11 @@ def uniform(shape: Iterable[int], low: float = 0, high: float = 1,) -> Tensor: | |||
| """ | |||
| assert low < high, "Uniform is not defined when low >= high" | |||
| if size is None: | |||
| size = (1,) | |||
| seed = _random_seed_generator().__next__() | |||
| op = UniformRNG(seed=seed) | |||
| shape = Tensor(shape, dtype="int32") | |||
| (output,) = apply(op, shape) | |||
| size = Tensor(size, dtype="int32") | |||
| (output,) = apply(op, size) | |||
| return low + (high - low) * output | |||
| @@ -17,11 +17,11 @@ def _random_seed_generator(): | |||
| if _rng is None: | |||
| from ..distributed.group import get_rank | |||
| manual_seed(seed=int(time.time()) + get_rank()) | |||
| seed(seed=int(time.time()) + get_rank()) | |||
| while True: | |||
| yield _rng.random_raw() | |||
| def manual_seed(seed: int): | |||
| def seed(seed: int): | |||
| global _rng # pylint: disable=global-statement | |||
| _rng = MT19937(seed=seed) | |||
| @@ -55,14 +55,20 @@ def test_clamp(): | |||
| assertTensorClose(F.clamp(tensor(x) - 3, -6, 0).numpy(), np.clip(x - 3, -6, 0)) | |||
| # def test_isnan(): | |||
| # for case in [[1, float("nan"), 0]]: | |||
| # assertTensorClose(F.isnan(tensor(case)), np.isnan(case).astype("uint8")) | |||
| def test_isnan(): | |||
| for case in [[1, float("nan"), 0]]: | |||
| assertTensorClose(F.isnan(tensor(case)).numpy(), np.isnan(case)) | |||
| def test_isinf(): | |||
| for case in [[1, float("inf"), 0]]: | |||
| assertTensorClose(F.isinf(tensor(case)).numpy(), np.isinf(case).astype("uint8")) | |||
| assertTensorClose(F.isinf(tensor(case)).numpy(), np.isinf(case)) | |||
| def test_sign(): | |||
| for case in [[1, -1, 0]]: | |||
| x = tensor(case) | |||
| assertTensorClose(F.sign(x).numpy(), np.sign(case).astype(x.dtype)) | |||
| def test_cosh(): | |||
| @@ -110,6 +110,14 @@ def test_concat(): | |||
| opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y])) | |||
| def test_concat_device(): | |||
| data1 = tensor(np.random.random((3, 2, 2)).astype("float32"), device="cpu0") | |||
| data2 = tensor(np.random.random((2, 2, 2)).astype("float32"), device="cpu1") | |||
| out = F.concat([data1, data2], device="cpu0") | |||
| assert str(out.device).split(":")[0] == "cpu0" | |||
| def test_stack(): | |||
| data1 = np.random.random((3, 2, 2)).astype("float32") | |||
| data2 = np.random.random((3, 2, 2)).astype("float32") | |||