GitOrigin-RevId: 51702c4e79
tags/v1.3.0
| @@ -9,7 +9,7 @@ ELEMWISE_IMPL := ../src/cuda/cond_take/kimpl \ | |||
| ../src/cuda/elemwise_multi_type/kimpl | |||
| CUDA_CONV_IMPL := ../src/cuda/conv_bias/int8/kimpl ../src/cuda/conv_bias/int8_imma/kimpl ../src/cuda/batch_conv_bias/int8/kimpl | |||
| CUDA_MATMUL_IMPL := ../src/cuda/matrix_mul/fp32_simt/kimpl | |||
| CUDA_MATMUL_IMPL := ../src/cuda/matrix_mul/fp32_simt/kimpl ../src/cuda/matrix_mul/fp32_simt_gemv/kimpl | |||
| all: ${PARAM_DEFS} ${ELEMWISE_IMPL} ${CUDA_CONV_IMPL} $(CUDA_MATMUL_IMPL) | |||
| @@ -51,4 +51,7 @@ all: ${PARAM_DEFS} ${ELEMWISE_IMPL} ${CUDA_CONV_IMPL} $(CUDA_MATMUL_IMPL) | |||
| ../src/cuda/matrix_mul/fp32_simt/kimpl: gen_cutlass_matmul_kern_impls.py | |||
| ./$^ $@ | |||
| ../src/cuda/matrix_mul/fp32_simt_gemv/kimpl: gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| ./$^ $@ | |||
| .PHONY: all | |||
| @@ -33,6 +33,7 @@ MatrixMulForwardImpl::AlgoPack::AlgoPack() { | |||
| #if !MEGDNN_DISABLE_FLOAT16 | |||
| all_algos.push_back(&bfloat16); | |||
| #endif | |||
| #if CUDA_VERSION >= 9020 | |||
| fill_cutlass_algos(); | |||
| for (auto&& algo : simt_float32) { | |||
| all_algos.push_back(&algo); | |||
| @@ -40,12 +41,17 @@ MatrixMulForwardImpl::AlgoPack::AlgoPack() { | |||
| for (auto&& algo : simt_float32_split_k) { | |||
| all_algos.push_back(&algo); | |||
| } | |||
| for (auto&& algo : simt_float32_gemv_batched_strided) { | |||
| all_algos.push_back(&algo); | |||
| } | |||
| #endif | |||
| for (auto&& algo : all_algos) { | |||
| m_all_algos_map.emplace(algo->info().desc, algo); | |||
| } | |||
| } | |||
| #if CUDA_VERSION >= 9020 | |||
| void MatrixMulForwardImpl::AlgoPack::fill_cutlass_algos() { | |||
| using AlgoParam = AlgoFloat32SIMT::AlgoParam; | |||
| simt_float32.emplace_back(AlgoParam{64, 256, 8, 32, 64, 8}); | |||
| @@ -82,7 +88,11 @@ void MatrixMulForwardImpl::AlgoPack::fill_cutlass_algos() { | |||
| simt_float32_split_k.emplace_back(AlgoParam{16, 32, 8, 16, 32, 8}); | |||
| simt_float32_split_k.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8}); | |||
| simt_float32_split_k.emplace_back(AlgoParam{16, 128, 8, 16, 64, 8}); | |||
| simt_float32_gemv_batched_strided.emplace_back(128); | |||
| simt_float32_gemv_batched_strided.emplace_back(64); | |||
| simt_float32_gemv_batched_strided.emplace_back(32); | |||
| } | |||
| #endif | |||
| MatrixMulForwardImpl::AlgoPack MatrixMulForwardImpl::sm_algo_pack; | |||
| @@ -42,8 +42,11 @@ public: | |||
| CUDA_CUBLASLT, | |||
| CUDA_NAIVE, | |||
| CUDA_BFLOAT16, | |||
| #if CUDA_VERSION >= 9020 | |||
| CUDA_FLOAT32_SIMT, | |||
| CUDA_FLOAT32_SIMT_SPLIT_K, | |||
| CUDA_FLOAT32_SIMT_GEMV_BATCHED_STRIDED, | |||
| #endif | |||
| }; | |||
| using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>; | |||
| @@ -167,6 +170,7 @@ private: | |||
| }; | |||
| #endif | |||
| #if CUDA_VERSION >= 9020 | |||
| class MatrixMulForwardImpl::AlgoFloat32SIMT final : public AlgoBase { | |||
| public: | |||
| struct AlgoParam { | |||
| @@ -224,6 +228,32 @@ private: | |||
| std::string m_name; | |||
| }; | |||
| class MatrixMulForwardImpl::AlgoFloat32SIMTGemvBatchedStrided final | |||
| : public AlgoBase { | |||
| public: | |||
| AlgoFloat32SIMTGemvBatchedStrided(int threadblock_n) | |||
| : m_threadblock_n{threadblock_n}, | |||
| m_name{ssprintf("CUTLASS_FLOAT32_SIMT_GEMV_BATCHED_STRIDED_%d", | |||
| m_threadblock_n)} {} | |||
| bool is_available(const SizeArgs& args) const override; | |||
| size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
| const char* name() const override { return m_name.c_str(); } | |||
| void exec(const ExecArgs& args) const override; | |||
| bool is_reproducible() const override { return true; } | |||
| MEGDNN_DECL_ALGO_TYPE(CUDA_FLOAT32_SIMT_GEMV_BATCHED_STRIDED) | |||
| std::string param() const override { | |||
| std::string ret; | |||
| serialize_write_pod(m_threadblock_n, ret); | |||
| return ret; | |||
| } | |||
| private: | |||
| int m_threadblock_n; | |||
| std::string m_name; | |||
| }; | |||
| #endif | |||
| class MatrixMulForwardImpl::AlgoPack : NonCopyableObj { | |||
| private: | |||
| AlgoBase::Mapper m_all_algos_map; | |||
| @@ -241,8 +271,12 @@ public: | |||
| #if !MEGDNN_DISABLE_FLOAT16 | |||
| AlgoBFloat16 bfloat16; | |||
| #endif | |||
| #if CUDA_VERSION >= 9020 | |||
| std::vector<AlgoFloat32SIMT> simt_float32; | |||
| std::vector<AlgoFloat32SIMTSplitK> simt_float32_split_k; | |||
| std::vector<AlgoFloat32SIMTGemvBatchedStrided> | |||
| simt_float32_gemv_batched_strided; | |||
| #endif | |||
| std::vector<AlgoBase*> all_algos; | |||
| const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; } | |||
| @@ -15,20 +15,17 @@ | |||
| #include "src/cuda/matrix_mul/cutlass_matrix_mul_wrapper.cuh" | |||
| #include "src/cuda/utils.h" | |||
| #if CUDA_VERSION >= 9020 | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| using namespace cutlass_wrapper; | |||
| bool MatrixMulForwardImpl::AlgoFloat32SIMT::is_available( | |||
| const SizeArgs& args) const { | |||
| #if CUDA_VERSION >= 9200 | |||
| return args.opr->param().format == param::MatrixMul::Format::DEFAULT && | |||
| args.layout_a.dtype == dtype::Float32() && | |||
| args.layout_b.dtype == dtype::Float32() && | |||
| args.layout_c.dtype == dtype::Float32(); | |||
| #else | |||
| return false; | |||
| #endif | |||
| } | |||
| size_t MatrixMulForwardImpl::AlgoFloat32SIMT::get_workspace_in_bytes( | |||
| @@ -69,5 +66,6 @@ void MatrixMulForwardImpl::AlgoFloat32SIMT::exec(const ExecArgs& args) const { | |||
| m_algo_param.warp_k}, | |||
| stream); | |||
| } | |||
| #endif | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -0,0 +1,58 @@ | |||
| /** | |||
| * \file dnn/src/cuda/matrix_mul/cutlass_float32_simt_gemv_batched_strided.cpp | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "src/cuda/handle.h" | |||
| #include "src/cuda/matrix_mul/algos.h" | |||
| #include "src/cuda/matrix_mul/cutlass_matrix_mul_wrapper.cuh" | |||
| #include "src/cuda/utils.h" | |||
| #if CUDA_VERSION >= 9020 | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| using namespace cutlass_wrapper; | |||
| bool MatrixMulForwardImpl::AlgoFloat32SIMTGemvBatchedStrided::is_available( | |||
| const SizeArgs& args) const { | |||
| auto&& param = args.opr->param(); | |||
| bool ta = param.transposeA, tb = param.transposeB; | |||
| return args.opr->param().format == param::MatrixMul::Format::DEFAULT && | |||
| args.layout_a.dtype == dtype::Float32() && | |||
| args.layout_b.dtype == dtype::Float32() && | |||
| args.layout_c.dtype == dtype::Float32() && ((!ta) && (!tb)); | |||
| } | |||
| size_t | |||
| MatrixMulForwardImpl::AlgoFloat32SIMTGemvBatchedStrided::get_workspace_in_bytes( | |||
| const SizeArgs& /* args */) const { | |||
| return 0; | |||
| } | |||
| void MatrixMulForwardImpl::AlgoFloat32SIMTGemvBatchedStrided::exec( | |||
| const ExecArgs& args) const { | |||
| size_t lda = args.tensor_a.layout.stride[0], | |||
| ldb = args.tensor_b.layout.stride[0], | |||
| ldc = args.tensor_c.layout.stride[0]; | |||
| auto&& param = args.opr->param(); | |||
| int m = args.tensor_c.layout.shape[0], n = args.tensor_c.layout.shape[1], | |||
| k = args.tensor_a.layout.shape[param.transposeA ? 0 : 1]; | |||
| // m is always 1 in gemv batched strided case | |||
| BatchedGemmCoord problem_size{1, n, k, m}; | |||
| auto&& stream = cuda_stream(args.opr->handle()); | |||
| return cutlass_matrix_mul_float32_simt_gemv_batched_strided( | |||
| args.tensor_a.ptr<dt_float32>(), lda, lda, | |||
| args.tensor_b.ptr<dt_float32>(), ldb, 0, | |||
| args.tensor_c.ptr<dt_float32>(), ldc, ldc, problem_size, | |||
| m_threadblock_n, stream); | |||
| } | |||
| #endif | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -15,6 +15,7 @@ | |||
| #include "src/cuda/matrix_mul/cutlass_matrix_mul_wrapper.cuh" | |||
| #include "src/cuda/utils.h" | |||
| #if CUDA_VERSION >= 9020 | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| using namespace cutlass_wrapper; | |||
| @@ -22,12 +23,12 @@ using namespace cutlass_wrapper; | |||
| bool MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::is_available( | |||
| const SizeArgs& args) const { | |||
| auto&& param = args.opr->param(); | |||
| int m = args.layout_c.shape[0], n = args.layout_c.shape[1], | |||
| int n = args.layout_c.shape[1], | |||
| k = args.layout_a.shape[param.transposeA ? 0 : 1]; | |||
| return args.opr->param().format == param::MatrixMul::Format::DEFAULT && | |||
| args.layout_a.dtype == dtype::Float32() && | |||
| args.layout_b.dtype == dtype::Float32() && | |||
| args.layout_c.dtype == dtype::Float32() && k > std::max(m, n); | |||
| args.layout_c.dtype == dtype::Float32() && k > n; | |||
| } | |||
| size_t MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::get_workspace_in_bytes( | |||
| @@ -38,7 +39,7 @@ size_t MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::get_workspace_in_bytes( | |||
| int m = args.layout_c.shape[0], n = args.layout_c.shape[1], | |||
| k = args.layout_a.shape[param.transposeA ? 0 : 1]; | |||
| GemmCoord problem_size{m, n, k}; | |||
| int split_k_slices = k / std::max(m, n); | |||
| int split_k_slices = k / n; | |||
| return cutlass_matrix_mul_float32_simt_get_workspace_size( | |||
| param.transposeA, lda, param.transposeB, ldb, ldc, problem_size, | |||
| 1.f, 0.f, | |||
| @@ -58,7 +59,7 @@ void MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::exec( | |||
| int m = args.tensor_c.layout.shape[0], n = args.tensor_c.layout.shape[1], | |||
| k = args.tensor_a.layout.shape[param.transposeA ? 0 : 1]; | |||
| GemmCoord problem_size{m, n, k}; | |||
| int split_k_slices = k / std::max(m, n); | |||
| int split_k_slices = k / n; | |||
| auto&& stream = cuda_stream(args.opr->handle()); | |||
| int* workspace = reinterpret_cast<int*>(args.workspace.raw_ptr); | |||
| return cutlass_matrix_mul_float32_simt( | |||
| @@ -72,5 +73,6 @@ void MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::exec( | |||
| m_algo_param.warp_k}, | |||
| stream, split_k_slices); | |||
| } | |||
| #endif | |||
| // vim: syntax=cpp.doxygen | |||
| @@ -10,16 +10,16 @@ | |||
| * implied. | |||
| */ | |||
| // ignore warning of cutlass | |||
| #include "cuda.h" | |||
| #if __CUDACC_VER_MAJOR__ > 9 || \ | |||
| (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "cuda.h" | |||
| #if __CUDACC_VER_MAJOR__ > 9 || \ | |||
| (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| #include "cutlass/gemm/device/gemm.h" | |||
| #include "cutlass/gemm/device/gemm_splitk_parallel.h" | |||
| #endif | |||
| #include "cutlass/gemm/kernel/default_gemv.h" | |||
| #include "src/common/opr_param_defs_enumv.cuh" | |||
| #include "src/cuda/matrix_mul/cutlass_matrix_mul_wrapper.cuh" | |||
| #pragma GCC diagnostic pop | |||
| @@ -54,18 +54,6 @@ using namespace cutlass_wrapper; | |||
| threadblock_shape.m(), threadblock_shape.n(), \ | |||
| threadblock_shape.k(), warp_shape.m(), warp_shape.n(), \ | |||
| warp_shape.k()); | |||
| #if __CUDACC_VER_MAJOR__ < 9 || \ | |||
| (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ <= 2) | |||
| void megdnn::cuda::cutlass_wrapper::cutlass_matrix_mul_float32_simt( | |||
| const float* /* d_A */, bool /* transpose_A */, size_t /* lda */, | |||
| const float* /* d_B */, bool /* transpose_B */, size_t /* ldb */, | |||
| float* /* d_C */, size_t /* ldc */, int* /* workspace */, | |||
| GemmCoord const& /* problem_size */, float /* alpha */, | |||
| float /* beta */, const GemmCoord& /* threadblock_shape */, | |||
| const GemmCoord& /* warp_shape */, cudaStream_t /* stream */, | |||
| int /* split_k_slices */) {} | |||
| #else | |||
| void megdnn::cuda::cutlass_wrapper::cutlass_matrix_mul_float32_simt( | |||
| const float* d_A, bool transpose_A, size_t lda, const float* d_B, | |||
| bool transpose_B, size_t ldb, float* d_C, size_t ldc, int* workspace, | |||
| @@ -162,20 +150,7 @@ void megdnn::cuda::cutlass_wrapper::cutlass_matrix_mul_float32_simt( | |||
| #undef cb | |||
| } | |||
| } | |||
| #endif | |||
| #if __CUDACC_VER_MAJOR__ < 9 || \ | |||
| (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ <= 2) | |||
| size_t megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_matrix_mul_float32_simt_get_workspace_size( | |||
| bool /* transpose_A */, size_t /* lda */, | |||
| bool /* transpose_B */, size_t /* ldb */, size_t /* ldc */, | |||
| GemmCoord const& /* problem_size */, float /* alpha */, | |||
| float /* beta */, const GemmCoord& /* threadblock_shape */, | |||
| const GemmCoord& /* warp_shape */, int /* split_k_slices */) { | |||
| return 0; | |||
| } | |||
| #else | |||
| size_t megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_matrix_mul_float32_simt_get_workspace_size( | |||
| bool transpose_A, size_t lda, bool transpose_B, size_t ldb, | |||
| @@ -294,7 +269,86 @@ size_t megdnn::cuda::cutlass_wrapper:: | |||
| #undef cb | |||
| } | |||
| } | |||
| #endif | |||
| #undef DISPATCH | |||
| /* ============ cutlass kernel wrapper for f32 vector-matrix mul batched strided | |||
| * =========== | |||
| */ | |||
| #define DISPATCH(cb) \ | |||
| cb(128, 4, 4); \ | |||
| cb(128, 4, 2); \ | |||
| cb(128, 4, 1); \ | |||
| cb(128, 2, 4); \ | |||
| cb(128, 1, 4); \ | |||
| cb(128, 2, 2); \ | |||
| cb(128, 1, 2); \ | |||
| cb(128, 2, 1); \ | |||
| cb(128, 1, 1); \ | |||
| cb(64, 4, 4); \ | |||
| cb(64, 4, 2); \ | |||
| cb(64, 4, 1); \ | |||
| cb(64, 2, 4); \ | |||
| cb(64, 1, 4); \ | |||
| cb(64, 2, 2); \ | |||
| cb(64, 1, 2); \ | |||
| cb(64, 2, 1); \ | |||
| cb(64, 1, 1); \ | |||
| cb(32, 4, 4); \ | |||
| cb(32, 4, 2); \ | |||
| cb(32, 4, 1); \ | |||
| cb(32, 2, 4); \ | |||
| cb(32, 1, 4); \ | |||
| cb(32, 2, 2); \ | |||
| cb(32, 1, 2); \ | |||
| cb(32, 2, 1); \ | |||
| cb(32, 1, 1); \ | |||
| megdnn_assert(false, \ | |||
| "unsupported gemv batched strided A=%dX%dX%d, B=%dX%dX%d", \ | |||
| problem_size.batch(), problem_size.m(), problem_size.k(), \ | |||
| problem_size.batch(), problem_size.k(), problem_size.n()); | |||
| void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_matrix_mul_float32_simt_gemv_batched_strided( | |||
| const float* d_A, size_t lda, size_t batch_stride_a, | |||
| const float* d_B, size_t ldb, size_t batch_stride_b, float* d_C, | |||
| size_t ldc, size_t batch_stride_c, | |||
| BatchedGemmCoord const& problem_size, int threadblock_n, | |||
| cudaStream_t stream) { | |||
| int LDG_K, LDG_N; | |||
| if (lda % 4 == 0) | |||
| LDG_K = 4; | |||
| else if (lda % 2 == 0) | |||
| LDG_K = 2; | |||
| else | |||
| LDG_K = 1; | |||
| if (ldb % 4 == 0) | |||
| LDG_N = 4; | |||
| else if (ldb % 2 == 0) | |||
| LDG_N = 2; | |||
| else | |||
| LDG_N = 1; | |||
| #define cb(threadblock_n_, LDG_K_, LDG_N_) \ | |||
| if (threadblock_n == threadblock_n_ && LDG_K == LDG_K_ && \ | |||
| LDG_N == LDG_N_) { \ | |||
| using ThreadBlockShape = \ | |||
| cutlass::gemm::GemmShape<1, threadblock_n_, \ | |||
| (256 * LDG_K_) / \ | |||
| (threadblock_n_ / LDG_N_)>; \ | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, LDG_N_, LDG_K_>; \ | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< \ | |||
| ThreadBlockShape, ThreadShape, float, \ | |||
| cutlass::layout::RowMajor, float, cutlass::layout::RowMajor, \ | |||
| float, cutlass::layout::RowMajor>; \ | |||
| return cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( \ | |||
| problem_size, d_A, lda, batch_stride_a, d_B, ldb, \ | |||
| batch_stride_b, d_C, ldc, batch_stride_c, stream); \ | |||
| } | |||
| DISPATCH(cb) | |||
| #undef cb | |||
| } | |||
| #undef DISPATCH | |||
| #endif | |||
| // vim: syntax=cuda.doxygen | |||
| @@ -13,11 +13,13 @@ | |||
| #include "cutlass/gemm/gemm.h" | |||
| #include "src/cuda/utils.cuh" | |||
| #if CUDA_VERSION >= 9020 | |||
| namespace megdnn { | |||
| namespace cuda { | |||
| namespace cutlass_wrapper { | |||
| using GemmCoord = cutlass::gemm::GemmCoord; | |||
| using BatchedGemmCoord = cutlass::gemm::BatchedGemmCoord; | |||
| template <typename Gemm> | |||
| void cutlass_matrix_mul_wrapper( | |||
| @@ -38,10 +40,26 @@ void cutlass_matrix_mul_float32_simt( | |||
| size_t cutlass_matrix_mul_float32_simt_get_workspace_size( | |||
| bool transpose_A, size_t lda, bool transpose_B, size_t ldb, size_t ldc, | |||
| GemmCoord const& problem_size, float alpha, float beta, | |||
| const GemmCoord& threadblock_shape, const GemmCoord& warp_shape, int split_k_slices = 1); | |||
| const GemmCoord& threadblock_shape, const GemmCoord& warp_shape, | |||
| int split_k_slices = 1); | |||
| template <typename GemvKernel> | |||
| void cutlass_vector_matrix_mul_batched_strided_wrapper( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, | |||
| size_t batch_stride_a, const typename GemvKernel::ElementB* d_B, | |||
| size_t ldb, size_t batch_stride_b, typename GemvKernel::ElementCD* d_C, | |||
| size_t ldc, size_t batch_stride_c, cudaStream_t stream); | |||
| void cutlass_matrix_mul_float32_simt_gemv_batched_strided( | |||
| const float* d_A, size_t lda, size_t batch_stride_a, const float* d_B, | |||
| size_t ldb, size_t batch_stride_b, float* d_C, size_t ldc, | |||
| size_t batch_stride_c, BatchedGemmCoord const& problem_size, | |||
| int threadblock_n, cudaStream_t stream); | |||
| } // namespace cutlass_wrapper | |||
| } // namespace cuda | |||
| } // namespace megdnn | |||
| #endif | |||
| // vim: syntax=cuda.doxygen | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 128, 16>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 2, 4>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 128, 16>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 4, 2>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 128, 2>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 1, 1>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 128, 32>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 4, 4>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 128, 4>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 1, 2>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 128, 4>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 2, 1>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 128, 8>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 128, 8>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 2, 2>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 128, 8>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 4, 1>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 32, 128>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 4, 4>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 32, 16>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 1, 2>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 32, 16>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 2, 1>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 32, 32>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 32, 32>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 2, 2>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 32, 32>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 4, 1>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 32, 64>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 2, 4>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 32, 64>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 4, 2>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 32, 8>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 1, 1>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 64, 16>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 64, 16>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 2, 2>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 64, 16>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 4, 1>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 64, 32>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 2, 4>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 64, 32>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 4, 2>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 64, 4>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 1, 1>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 64, 64>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 4, 4>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 64, 8>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 1, 2>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,26 @@ | |||
| #if __CUDACC_VER_MAJOR__ > 9 || (__CUDACC_VER_MAJOR__ == 9 && __CUDACC_VER_MINOR__ >= 2) | |||
| // generated by gen_cutlass_gemv_batched_strided_kern_impls.py | |||
| // ignore warning of cutlass | |||
| #pragma GCC diagnostic push | |||
| #pragma GCC diagnostic ignored "-Wunused-parameter" | |||
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
| #include "src/cuda/matrix_mul/fp32_simt_gemv/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl" | |||
| using ThreadBlockShape = cutlass::gemm::GemmShape<1, 64, 8>; | |||
| using ThreadShape = cutlass::gemm::GemmShape<1, 2, 1>; | |||
| using GemvKernel = cutlass::gemm::kernel::DefaultGemv< | |||
| ThreadBlockShape, | |||
| ThreadShape, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor, | |||
| float, cutlass::layout::RowMajor>; | |||
| template void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper<GemvKernel>( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, size_t batch_stride_a, | |||
| const typename GemvKernel::ElementB* d_B, size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, size_t batch_stride_c, | |||
| cudaStream_t stream); | |||
| #pragma GCC diagnostic pop | |||
| #endif | |||
| @@ -0,0 +1,70 @@ | |||
| /** | |||
| * \file | |||
| * dnn/src/cuda/matrix_mul/matrix_mul_float_simt_gemv_batched_strided_cutlass_wrapper.cuinl | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "cutlass/gemm/kernel/default_gemv.h" | |||
| #include "cutlass/gemm/kernel/gemv_batched_strided.h" | |||
| #include "src/cuda/matrix_mul/cutlass_matrix_mul_wrapper.cuh" | |||
| #include "src/cuda/query_blocksize.cuh" | |||
| using namespace megdnn; | |||
| using namespace cuda; | |||
| using namespace cutlass_wrapper; | |||
| template <typename GemvKernel> | |||
| void megdnn::cuda::cutlass_wrapper:: | |||
| cutlass_vector_matrix_mul_batched_strided_wrapper( | |||
| BatchedGemmCoord const& problem_size, | |||
| const typename GemvKernel::ElementA* d_A, size_t lda, | |||
| size_t batch_stride_a, const typename GemvKernel::ElementB* d_B, | |||
| size_t ldb, size_t batch_stride_b, | |||
| typename GemvKernel::ElementCD* d_C, size_t ldc, | |||
| size_t batch_stride_c, cudaStream_t stream) { | |||
| typename GemvKernel::IteratorA::TensorRef tensor_a{ | |||
| const_cast<typename GemvKernel::ElementA*>(d_A), | |||
| typename GemvKernel::LayoutA{static_cast<int>(lda)}}; | |||
| typename GemvKernel::IteratorB::TensorRef tensor_b{ | |||
| const_cast<typename GemvKernel::ElementB*>(d_B), | |||
| typename GemvKernel::LayoutB{static_cast<int>(ldb)}}; | |||
| typename GemvKernel::IteratorCD::TensorRef tensor_c{ | |||
| d_C, typename GemvKernel::LayoutCD{static_cast<int>(ldc)}}; | |||
| static int constexpr kThreadsPerN = GemvKernel::Core::kThreadsPerN; | |||
| static int constexpr kThreadsPerK = GemvKernel::Core::kThreadsPerK; | |||
| void (*kern)(BatchedGemmCoord, typename GemvKernel::IteratorA::TensorRef, | |||
| typename GemvKernel::IteratorA::TensorRef::LongIndex, | |||
| typename GemvKernel::IteratorB::TensorRef, | |||
| typename GemvKernel::IteratorB::TensorRef::LongIndex, | |||
| typename GemvKernel::IteratorCD::TensorRef, | |||
| typename GemvKernel::IteratorCD::TensorRef::LongIndex); | |||
| kern = cutlass::gemm::kernel::GemvBatchedStrided<GemvKernel>; | |||
| // int nr_threads = static_cast<int>( | |||
| // query_blocksize_for_kernel(reinterpret_cast<const void*>(kern))); | |||
| // nr_threads = std::max(nr_threads, kThreadsPerN); | |||
| // megdnn_assert(nr_threads % kThreadsPerN == 0); | |||
| // int batch = nr_threads / kThreadsPerN; | |||
| // batch = std::min(batch, problem_size.batch()); | |||
| auto tile_size = BatchedGemmCoord(GemvKernel::ThreadBlockShape::kM, | |||
| GemvKernel::ThreadBlockShape::kN, | |||
| GemvKernel::ThreadBlockShape::kK, 1); | |||
| typename GemvKernel::ThreadBlockSwizzle swizzler; | |||
| auto tiled_shape = swizzler.get_tiled_shape(problem_size, tile_size); | |||
| dim3 grid = swizzler.get_grid_shape(tiled_shape); | |||
| dim3 block(kThreadsPerN, kThreadsPerK, 1); | |||
| int smem_size = | |||
| int(sizeof(typename GemvKernel::ThreadBlockGemv::SharedStorage)); | |||
| megdnn_assert(smem_size < (48 << 10)); | |||
| kern<<<grid, block, smem_size, stream>>>( | |||
| problem_size, tensor_a, batch_stride_a, tensor_b, batch_stride_b, | |||
| tensor_c, batch_stride_c); | |||
| after_kernel_launch(); | |||
| } | |||
| // vim: syntax=cuda.doxygen | |||
| @@ -41,8 +41,11 @@ public: | |||
| #if !MEGDNN_DISABLE_FLOAT16 | |||
| class AlgoBFloat16; | |||
| #endif | |||
| #if CUDA_VERSION >= 9020 | |||
| class AlgoFloat32SIMT; | |||
| class AlgoFloat32SIMTSplitK; | |||
| class AlgoFloat32SIMTGemvBatchedStrided; | |||
| #endif | |||
| class AlgoPack; | |||
| static const AlgoPack& algo_pack() { | |||
| @@ -90,7 +90,7 @@ void test_multibatchsize( | |||
| if (std::regex_match( | |||
| i.name.c_str(), | |||
| std::regex("(" + std::string(algo) + ")(.*)"))) { | |||
| opr_reference->execution_policy().algo = i; | |||
| opr_reference->execution_policy().algo = i.desc; | |||
| break; | |||
| } | |||
| } | |||
| @@ -119,7 +119,7 @@ void test_multibatchsize( | |||
| if (std::regex_match( | |||
| i.name.c_str(), | |||
| std::regex("(" + std::string(algo) + ")(.*)"))) { | |||
| opr_reference->execution_policy().algo = i; | |||
| opr_reference->execution_policy().algo = i.desc; | |||
| break; | |||
| } | |||
| } | |||
| @@ -292,6 +292,30 @@ TEST_F(CUDA, CUTLASS_GEMM_SPLIT_K_MULTI_BATCHSIZE) { | |||
| [](const matrix_mul::TestArg& arg) { return arg.k <= arg.n; }); | |||
| } | |||
| TEST_F(CUDA, CUTLASS_GEMV_BATCHED_STRIDED_128_MULTI_BATCHSIZE) { | |||
| auto args = matrix_mul::get_matmul_args_no_mask(); | |||
| test_multibatchsize(handle_cuda(), dtype::Float32(), dtype::Float32(), | |||
| dtype::Float32(), | |||
| "CUTLASS_FLOAT32_SIMT_GEMV_BATCHED_STRIDED_128", args, | |||
| param::MatrixMul::Format::DEFAULT); | |||
| } | |||
| TEST_F(CUDA, CUTLASS_GEMV_BATCHED_STRIDED_64_MULTI_BATCHSIZE) { | |||
| auto args = matrix_mul::get_matmul_args_no_mask(); | |||
| test_multibatchsize(handle_cuda(), dtype::Float32(), dtype::Float32(), | |||
| dtype::Float32(), | |||
| "CUTLASS_FLOAT32_SIMT_GEMV_BATCHED_STRIDED_64", args, | |||
| param::MatrixMul::Format::DEFAULT); | |||
| } | |||
| TEST_F(CUDA, CUTLASS_GEMV_BATCHED_STRIDED_32_MULTI_BATCHSIZE) { | |||
| auto args = matrix_mul::get_matmul_args_no_mask(); | |||
| test_multibatchsize(handle_cuda(), dtype::Float32(), dtype::Float32(), | |||
| dtype::Float32(), | |||
| "CUTLASS_FLOAT32_SIMT_GEMV_BATCHED_STRIDED_32", args, | |||
| param::MatrixMul::Format::DEFAULT); | |||
| } | |||
| #define MEGDNN_FOREACH_CUTLASS_KERNEL(cb) \ | |||
| cb(1, 64, 256, 8, 32, 64, 8); \ | |||
| cb(2, 256, 64, 8, 64, 32, 8); \ | |||