GitOrigin-RevId: f3954728d1
tags/v1.5.0
| @@ -7,9 +7,14 @@ | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| import json | |||
| from contextlib import contextmanager | |||
| import os | |||
| import re | |||
| from contextlib import ContextDecorator, contextmanager | |||
| from functools import wraps | |||
| from typing import List | |||
| from weakref import WeakSet | |||
| from .. import _atexit | |||
| from ..core._imperative_rt.core2 import ( | |||
| pop_scope, | |||
| push_scope, | |||
| @@ -17,9 +22,13 @@ from ..core._imperative_rt.core2 import ( | |||
| stop_profile, | |||
| sync, | |||
| ) | |||
| from ..logger import get_logger | |||
| _running_profiler = None | |||
| _living_profilers = WeakSet() | |||
| class Profiler: | |||
| class Profiler(ContextDecorator): | |||
| r""" | |||
| Profile graph execution in imperative mode. | |||
| @@ -35,9 +44,10 @@ class Profiler: | |||
| from megengine.utils.profiler import Profiler | |||
| # With Learnable Parameters | |||
| profiler = Profiler() | |||
| for iter in range(0, 10): | |||
| # Only profile record of last iter would be saved | |||
| with Profiler("profile"): | |||
| with profiler: | |||
| # your code here | |||
| # Then open the profile file in chrome timeline window | |||
| @@ -45,46 +55,105 @@ class Profiler: | |||
| CHROME_TIMELINE = "chrome_timeline.json" | |||
| COMMAND = 1 << 0 | |||
| OPERATOR = 1 << 1 | |||
| TENSOR_LIFETIME = 1 << 2 | |||
| TENSOR_PROP = 1 << 3 | |||
| SYNC = 1 << 4 | |||
| SCOPE = 1 << 5 | |||
| ALL = (1 << 6) - 1 | |||
| valid_options = {"sample_rate": 0, "profile_device": 1, "num_tensor_watch": 10} | |||
| valid_formats = {"chrome_timeline.json", "memory_flow.svg"} | |||
| def __init__( | |||
| self, | |||
| path: str = "profile", | |||
| format: str = CHROME_TIMELINE, | |||
| *, | |||
| topic=OPERATOR | SCOPE, | |||
| align_time=True, | |||
| show_operator_name=True | |||
| format: str = "chrome_timeline.json", | |||
| formats: List[str] = None, | |||
| **kwargs | |||
| ) -> None: | |||
| self._path = path | |||
| self._format = format | |||
| self._options = { | |||
| "topic": int(topic), | |||
| "align_time": int(align_time), | |||
| "show_operator_name": int(show_operator_name), | |||
| } | |||
| if not formats: | |||
| formats = [format] | |||
| def __enter__(self): | |||
| assert not isinstance(formats, str), "formats excepts list, got str" | |||
| for format in formats: | |||
| assert format in Profiler.valid_formats, "unsupported format {}".format( | |||
| format | |||
| ) | |||
| self._path = path | |||
| self._formats = formats | |||
| self._options = {} | |||
| for opt, optval in Profiler.valid_options.items(): | |||
| self._options[opt] = int(kwargs.pop(opt, optval)) | |||
| self._pid = "<PID>" | |||
| @property | |||
| def path(self): | |||
| if len(self._formats) == 0: | |||
| format = "<FORMAT>" | |||
| elif len(self._formats) == 1: | |||
| format = self._formats[0] | |||
| else: | |||
| format = "{" + ",".join(self._formats) + "}" | |||
| return self.format_path(self._path, self._pid, format) | |||
| @property | |||
| def directory(self): | |||
| return self._path | |||
| @property | |||
| def formats(self): | |||
| return list(self._formats) | |||
| def start(self): | |||
| global _running_profiler | |||
| assert _running_profiler is None | |||
| _running_profiler = self | |||
| self._pid = os.getpid() | |||
| start_profile(self._options) | |||
| return self | |||
| def __exit__(self, val, tp, trace): | |||
| stop_profile(self._path, self._format) | |||
| # dump is async, so it's necessary to sync interpreter | |||
| def stop(self): | |||
| global _running_profiler | |||
| assert _running_profiler is self | |||
| _running_profiler = None | |||
| sync() | |||
| self._dump_callback = stop_profile() | |||
| self._pid = os.getpid() | |||
| _living_profilers.add(self) | |||
| def dump(self): | |||
| if self._dump_callback is not None: | |||
| if not os.path.exists(self._path): | |||
| os.makedirs(self._path) | |||
| if not os.path.isdir(self._path): | |||
| get_logger().warning( | |||
| "{} is not a directory, cannot write profiling results".format( | |||
| self._path | |||
| ) | |||
| ) | |||
| return | |||
| for format in self._formats: | |||
| path = self.format_path(self._path, self._pid, format) | |||
| get_logger().info("process {} generating {}".format(self._pid, format)) | |||
| self._dump_callback(path, format) | |||
| get_logger().info("profiling results written to {}".format(path)) | |||
| self._dump_callback = None | |||
| _living_profilers.remove(self) | |||
| def format_path(self, path, pid, format): | |||
| return os.path.join(path, "{}.{}".format(pid, format)) | |||
| def __enter__(self): | |||
| self.start() | |||
| def __exit__(self, val, tp, trace): | |||
| self.stop() | |||
| def __call__(self, func): | |||
| def wrapper(*args, **kwargs): | |||
| with self: | |||
| return func(*args, **kwargs) | |||
| func = super().__call__(func) | |||
| func.__profiler__ = self | |||
| return func | |||
| return wrapper | |||
| def __del__(self): | |||
| self.dump() | |||
| @contextmanager | |||
| @@ -94,16 +163,77 @@ def scope(name): | |||
| pop_scope(name) | |||
| profile = Profiler | |||
| def profile(*args, **kwargs): | |||
| if len(args) == 1 and len(kwargs) == 0 and callable(args[0]): | |||
| return Profiler()(args[0]) | |||
| return Profiler(*args, **kwargs) | |||
| def merge_trace_events(directory: str): | |||
| names = filter( | |||
| lambda x: re.match(r"\d+\.chrome_timeline\.json", x), os.listdir(directory) | |||
| ) | |||
| def load_trace_events(name): | |||
| with open(os.path.join(directory, name), "r", encoding="utf-8") as f: | |||
| return json.load(f) | |||
| def find_metadata(content): | |||
| if isinstance(content, dict): | |||
| assert "traceEvents" in content | |||
| content = content["traceEvents"] | |||
| if len(content) == 0: | |||
| return None | |||
| assert content[0]["name"] == "Metadata" | |||
| return content[0]["args"] | |||
| contents = list(map(load_trace_events, names)) | |||
| metadata_list = list(map(find_metadata, contents)) | |||
| min_local_time = min( | |||
| map(lambda x: x["localTime"], filter(lambda x: x is not None, metadata_list)) | |||
| ) | |||
| events = [] | |||
| for content, metadata in zip(contents, metadata_list): | |||
| local_events = content["traceEvents"] | |||
| if len(local_events) == 0: | |||
| continue | |||
| local_time = metadata["localTime"] | |||
| time_shift = local_time - min_local_time | |||
| for event in local_events: | |||
| if "ts" in event: | |||
| event["ts"] = int(event["ts"] + time_shift) | |||
| events.extend(filter(lambda x: x["name"] != "Metadata", local_events)) | |||
| result = { | |||
| "traceEvents": events, | |||
| } | |||
| path = os.path.join(directory, "merge.chrome_timeline.json") | |||
| with open(path, "w") as f: | |||
| json.dump(result, f, ensure_ascii=False, separators=(",", ":")) | |||
| get_logger().info("profiling results written to {}".format(path)) | |||
| def is_profiling(): | |||
| return _running_profiler is not None | |||
| def _stop_current_profiler(): | |||
| global _running_profiler | |||
| if _running_profiler is not None: | |||
| _running_profiler.stop() | |||
| living_profilers = [*_living_profilers] | |||
| for profiler in living_profilers: | |||
| profiler.dump() | |||
| def merge_trace_events(sources: List[str], target: str): | |||
| names = list(map(lambda x: x + ".chrome_timeline.json", sources)) | |||
| result = [] | |||
| for name in names: | |||
| with open(name, "r", encoding="utf-8") as f: | |||
| content = json.load(f) | |||
| for entry in content: | |||
| result.append(entry) | |||
| with open(target + ".chrome_timeline.json", "w") as f: | |||
| json.dump(result, f, ensure_ascii=False, indent=4) | |||
| _atexit(_stop_current_profiler) | |||
| @@ -13,6 +13,7 @@ | |||
| #include "megbrain/common.h" | |||
| #include "megbrain/imperative/ops/utility.h" | |||
| #include "megbrain/imperative/ops/backward_graph.h" | |||
| #include "megbrain/imperative/profiler.h" | |||
| #include "megbrain/opr/io.h" | |||
| #include "./tensor.h" | |||
| @@ -927,9 +928,23 @@ void init_tensor(py::module m) { | |||
| m.def("pop_scope", | |||
| [](std::string name) { interpreter_for_py->pop_scope(name); }); | |||
| m.def("start_profile", | |||
| [](std::unordered_map<std::string, int> option) { return interpreter_for_py->start_profile(option); }); | |||
| [](imperative::Profiler::options_t options) { | |||
| interpreter_for_py->sync(); | |||
| imperative::Profiler::load_options(std::move(options)); | |||
| imperative::Profiler::start_profile(); | |||
| interpreter_for_py->start_profile(); | |||
| }); | |||
| m.def("stop_profile", | |||
| [](std::string basename, std::string format) { interpreter_for_py->stop_profile(basename, format); }); | |||
| []() -> std::function<void(std::string, std::string)> { | |||
| interpreter_for_py->stop_profile(); | |||
| interpreter_for_py->sync(); | |||
| imperative::Profiler::stop_profile(); | |||
| auto results = imperative::Profiler::collect(); | |||
| auto options = imperative::Profiler::get_options(); | |||
| return [results=std::move(results), options=std::move(options)](std::string basename, std::string format){ | |||
| imperative::Profiler::dump_profile(basename, format, results, options); | |||
| }; | |||
| }); | |||
| m.def("sync", | |||
| []() { | |||
| interpreter_for_py->sync(); | |||
| @@ -8,6 +8,7 @@ | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied | |||
| import json | |||
| import os | |||
| import tempfile | |||
| import pytest | |||
| @@ -28,15 +29,18 @@ class Simple(Module): | |||
| def test_profiler(): | |||
| profile_prefix = "pytest_profile" | |||
| tempdir = tempfile.NamedTemporaryFile() | |||
| profile_prefix = tempdir.name | |||
| profile_format = "chrome_timeline.json" | |||
| profile_path = "{}.{}".format(profile_prefix, profile_format) | |||
| with Profiler(profile_prefix, format=profile_format): | |||
| with scope("my_scope"): | |||
| oup = Simple()(tensor([1.23], dtype="float32")) | |||
| profile_path = os.path.join( | |||
| profile_prefix, "{}.{}".format(os.getpid(), profile_format) | |||
| ) | |||
| with option("enable_host_compute", 0): | |||
| with Profiler(profile_prefix, format=profile_format): | |||
| with scope("my_scope"): | |||
| oup = Simple()(tensor([1.23], dtype="float32")) | |||
| with open(profile_path, "r") as f: | |||
| events = json.load(f) | |||
| os.remove(profile_path) | |||
| prev_ts = {} | |||
| scope_count = 0 | |||
| for event in events: | |||
| @@ -13,11 +13,14 @@ | |||
| #include <string> | |||
| #include <variant> | |||
| #include <unordered_set> | |||
| #include "megbrain/tensor.h" | |||
| #include "megbrain/imperative/op_def.h" | |||
| #include "megbrain/imperative/utils/to_string.h" | |||
| #include "./tensor_info.h" | |||
| namespace mgb::imperative { | |||
| namespace interpreter::intl { | |||
| @@ -43,7 +46,7 @@ struct Put { | |||
| }; | |||
| struct ApplyOp { | |||
| uint64_t id; | |||
| uint64_t id; //used by profiler to identify unique apply | |||
| std::shared_ptr<OpDef> op; | |||
| SmallVector<TensorInfo*> inputs; | |||
| SmallVector<TensorInfo*> outputs; | |||
| @@ -143,7 +146,7 @@ struct SetOption { | |||
| }; | |||
| struct StartProfile { | |||
| InterpreterProfiler* profiler; | |||
| std::unordered_set<TensorInfo*> capture_tensors; | |||
| template <typename TFunctor> | |||
| void get_props(TFunctor&& functor) const {} | |||
| @@ -154,14 +157,10 @@ struct StartProfile { | |||
| }; | |||
| struct StopProfile { | |||
| std::string basename; | |||
| std::string format; | |||
| std::unordered_set<TensorInfo*> escape_tensors; | |||
| template <typename TFunctor> | |||
| void get_props(TFunctor&& functor) const { | |||
| functor("basename", basename); | |||
| functor("format", format); | |||
| } | |||
| void get_props(TFunctor&& functor) const {} | |||
| const char* get_name() const { | |||
| return "StopProfile"; | |||
| @@ -1,75 +0,0 @@ | |||
| /** | |||
| * \file imperative/src/impl/interpreter/events.h | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| */ | |||
| #pragma once | |||
| #include "./commands.h" | |||
| #include "./tensor_info.h" | |||
| namespace mgb::imperative::interpreter::intl { | |||
| #define DEF_EVENT(X, ...) struct X##Event __VA_ARGS__; | |||
| #define DEF_DUR_EVENT(X, ...) struct X##Event __VA_ARGS__; struct X##FinishEvent __VA_ARGS__; | |||
| DEF_EVENT(Command, { | |||
| IdentifiedCommand icmd; | |||
| }); | |||
| DEF_EVENT(CommandEnqueue, :CommandEvent {}); | |||
| DEF_EVENT(CommandExecute, :CommandEvent {}); | |||
| DEF_EVENT(CommandFinish, :CommandEvent {}); | |||
| DEF_DUR_EVENT(OpExecute, { | |||
| uint64_t id; | |||
| std::shared_ptr<OpDef> op; | |||
| SmallVector<uint64_t> inputs; | |||
| SmallVector<uint64_t> outputs; | |||
| }); | |||
| DEF_DUR_EVENT(KernelExecute, { | |||
| uint64_t id; | |||
| std::shared_ptr<OpDef> op; | |||
| SmallVector<uint64_t> inputs; | |||
| SmallVector<uint64_t> outputs; | |||
| }); | |||
| DEF_EVENT(TensorDeclare, { | |||
| uint64_t tensor_id; | |||
| }); | |||
| DEF_EVENT(TensorProduce, { | |||
| uint64_t tensor_id; | |||
| TensorLayout layout; | |||
| CompNode device; | |||
| }); | |||
| DEF_EVENT(TensorErase, { | |||
| uint64_t tensor_id; | |||
| }); | |||
| DEF_EVENT(TensorGetProp, { | |||
| uint64_t tensor_id; | |||
| TensorInfo::Prop prop; | |||
| std::string prop_desc; | |||
| }); | |||
| DEF_DUR_EVENT(TensorWaitProp, { | |||
| uint64_t tensor_id; | |||
| TensorInfo::Prop prop; | |||
| std::string prop_desc; | |||
| }); | |||
| DEF_EVENT(TensorNotifyProp, { | |||
| uint64_t tensor_id; | |||
| TensorInfo::Prop prop; | |||
| std::string prop_desc; | |||
| }); | |||
| DEF_DUR_EVENT(Sync, {}); | |||
| DEF_DUR_EVENT(Scope, { | |||
| std::string name; | |||
| }); | |||
| DEF_DUR_EVENT(DeviceScope, { | |||
| std::string name; | |||
| }); | |||
| } | |||
| @@ -20,19 +20,17 @@ | |||
| #include "megbrain/imperative/ops/opr_attr.h" | |||
| #include "megbrain/imperative/utils/to_string.h" | |||
| #include "../event_pool.h" | |||
| #include "../op_trait.h" | |||
| using namespace mgb; | |||
| using namespace imperative; | |||
| using namespace interpreter; | |||
| using namespace interpreter::intl; | |||
| #define RECORD_EVENT(type, ...) \ | |||
| if (state.profiler->is_profiling()) { \ | |||
| state.profiler->record_host<type>(type{__VA_ARGS__}); \ | |||
| } \ | |||
| #define RECORD_DEVICE_EVENT(type, device, ...) \ | |||
| if (state.profiler->is_profiling()) { \ | |||
| state.profiler->record_device<type>((device), type{__VA_ARGS__}); \ | |||
| if (Profiler::is_profiling()) { \ | |||
| Profiler::record<type>(type{__VA_ARGS__}); \ | |||
| } \ | |||
| @@ -46,6 +44,10 @@ namespace { | |||
| }; | |||
| } | |||
| namespace mgb { | |||
| using namespace profiler; | |||
| } | |||
| std::thread::id ChannelImpl::get_worker_tid() { | |||
| return m_worker_state.tid; | |||
| } | |||
| @@ -60,6 +62,7 @@ ChannelImpl::WorkerState& ChannelImpl::get_worker_state() { | |||
| return m_worker_state; | |||
| } | |||
| // Do not use m_xxx_state directly | |||
| #define m_channel_state | |||
| #define m_worker_state | |||
| @@ -74,10 +77,16 @@ Interpreter& Interpreter::inst() { | |||
| Handle ChannelImpl::put(const HostTensorND& value, bool no_cache) { | |||
| mgb_assert(check_available(), "Channel already closed"); | |||
| auto& state = get_channel_state(); | |||
| state.scopes.push("Put"); | |||
| auto info = put_impl(value, no_cache); | |||
| state.scopes.pop("Put"); | |||
| return info; | |||
| } | |||
| TensorInfo* ChannelImpl::put_impl(const HostTensorND& value, bool no_cache) { | |||
| auto info = alloc(); | |||
| info->desc.layout = value.layout(); | |||
| info->desc.comp_node = value.comp_node(); | |||
| info->desc.value = value.proxy_to_default_cpu(); | |||
| init(info, {value.layout(), value.comp_node(), value.proxy_to_default_cpu()}); | |||
| info->h_value = value; | |||
| m_buffer.enqueue(Put{info, value, no_cache}); | |||
| if (m_async_level == 0) { | |||
| @@ -90,11 +99,15 @@ Handle ChannelImpl::put(const HostTensorND& value, bool no_cache) { | |||
| Handle ChannelImpl::put(const DeviceTensorND& data) { | |||
| auto& state = get_channel_state(); | |||
| mgb_assert(check_available(), "Channel already closed"); | |||
| state.scopes.push("Put"); | |||
| auto info = alloc(); | |||
| info->desc.layout = data.layout(); | |||
| info->desc.comp_node = data.comp_node(); | |||
| RECORD_EVENT(TensorCommandEvent, info->id, TensorCommandEvent::Put); | |||
| init(info, {data.layout(), data.comp_node()}); | |||
| info->ptr = Tensor::make(data); | |||
| RECORD_EVENT(TensorProduceEvent, info->id, info->desc.layout, info->desc.comp_node); | |||
| RECORD_EVENT(TensorProduceEvent, info->id, info->desc.layout, info->desc.comp_node, data.raw_ptr()); | |||
| info->status = TensorInfo::Produced; | |||
| RECORD_EVENT(TensorCommandFinishEvent, info->id, TensorCommandFinishEvent::Put); | |||
| state.scopes.pop("Put"); | |||
| return info; | |||
| } | |||
| @@ -148,7 +161,7 @@ void ChannelImpl::dispatch_default_cpu( | |||
| SmallVector<Handle>* outputs) { | |||
| auto& state = get_channel_state(); | |||
| auto [output_descs, validated] = OpDef::infer_output_attrs_fallible(*op, input_descs); | |||
| MGB_MARK_USED_VAR(validated); | |||
| RECORD_EVENT(ShapeInferEvent, validated); | |||
| SmallVector<DeviceTensorND> input_tensornds; | |||
| input_tensornds.reserve(input_descs.size()); | |||
| @@ -166,6 +179,7 @@ void ChannelImpl::dispatch_default_cpu( | |||
| if (info->ptr && info->ptr->try_get_value()) { | |||
| input_tensornds.emplace_back(info->ptr->get_value().proxy_to_default_cpu()); | |||
| } else { | |||
| // It's OK for SwapOut. We assign h_value before drop ptr | |||
| mgb_assert(!info->h_value.empty(), "inp->h_value is empty!"); | |||
| input_tensornds.emplace_back(info->h_value.proxy_to_default_cpu()); | |||
| } | |||
| @@ -182,8 +196,7 @@ void ChannelImpl::dispatch_default_cpu( | |||
| output_tensornds.emplace_back(HostTensorND(output_cn, desc.layout).proxy_to_default_cpu()); | |||
| } | |||
| auto apply_id = ++m_last_id; | |||
| RECORD_EVENT(OpExecuteEvent, apply_id, op, tinfo_to_tid(input_infos), {}); | |||
| uint64_t op_id = Profiler::next_id(); | |||
| OpDef::apply_on_device_tensornd(*op, input_tensornds, &output_tensornds); | |||
| @@ -193,14 +206,20 @@ void ChannelImpl::dispatch_default_cpu( | |||
| HostTensorND host_tensornd = HostTensorND::make_proxy(tensornd) | |||
| .proxy_to_comp_node(output_cn); | |||
| // use `put` for consistency | |||
| auto info = reinterpret_cast<TensorInfo*>(put(host_tensornd, false)); | |||
| auto info = reinterpret_cast<TensorInfo*>(put_impl(host_tensornd, false)); | |||
| mgb_assert(info->desc.layout.ndim != 0); | |||
| output_infos.push_back(info); | |||
| outputs->push_back(info); | |||
| } | |||
| RECORD_EVENT(OpExecuteFinishEvent, apply_id, op, | |||
| tinfo_to_tid(input_infos), tinfo_to_tid(output_infos)); | |||
| auto op_info_getter = [op]{ | |||
| std::unordered_map<std::string, std::string> op_info; | |||
| auto props = OpDef::props(*op); | |||
| for (auto&& [key, value]: props) { | |||
| op_info[key] = value; | |||
| } | |||
| return op_info; | |||
| }; | |||
| RECORD_EVENT(OpDispatchEvent, op_id, op->trait()->name, op_info_getter, tinfo_to_tid(input_infos), tinfo_to_tid(output_infos)); | |||
| } | |||
| void ChannelImpl::dispatch_kernel( | |||
| @@ -209,15 +228,22 @@ void ChannelImpl::dispatch_kernel( | |||
| const SmallVector<LogicalTensorDesc>& input_descs, | |||
| SmallVector<Handle>* outputs) { | |||
| auto& state = get_channel_state(); | |||
| auto& options = state.options; | |||
| auto name = op->trait()->make_name(*op); | |||
| state.scopes.push(name); | |||
| auto [output_descs, validated] = OpDef::infer_output_attrs_fallible(*op, input_descs); | |||
| RECORD_EVENT(ShapeInferEvent, validated); | |||
| ApplyOp cmd{++m_last_id, std::move(op)}; | |||
| ApplyOp cmd{Profiler::next_id(), std::move(op)}; | |||
| cmd.inputs = std::move(input_infos); | |||
| cmd.outputs.reserve(output_descs.size()); | |||
| outputs->reserve(output_descs.size()); | |||
| for (auto&& desc : output_descs) { | |||
| for (int i = 0; i < output_descs.size(); ++i) { | |||
| auto&& desc = output_descs[i]; | |||
| auto info = alloc(); | |||
| info->desc = desc; | |||
| init(info, desc); | |||
| // make sure desc's value is consistent with h_value | |||
| if (!info->desc.value.empty()) { | |||
| info->h_value = HostTensorND::make_proxy(desc.value) | |||
| @@ -226,10 +252,19 @@ void ChannelImpl::dispatch_kernel( | |||
| cmd.outputs.push_back(info); | |||
| outputs->push_back(info); | |||
| } | |||
| auto op_info_getter = [op=cmd.op]{ | |||
| std::unordered_map<std::string, std::string> op_info; | |||
| auto props = OpDef::props(*op); | |||
| for (auto&& [key, value]: props) { | |||
| op_info[key] = value; | |||
| } | |||
| return op_info; | |||
| }; | |||
| RECORD_EVENT(OpDispatchEvent, cmd.id, cmd.op->trait()->name, op_info_getter, tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||
| m_buffer.enqueue(std::move(cmd)); | |||
| if (!validated && state.options.async_level == 1) { | |||
| if (!validated && options.async_level == 1) { | |||
| sync(); | |||
| } else if (state.options.async_level == 0) { | |||
| } else if (options.async_level == 0) { | |||
| sync(); | |||
| // check device error | |||
| for (auto&& oup : *outputs) { | |||
| @@ -237,6 +272,7 @@ void ChannelImpl::dispatch_kernel( | |||
| info->ptr->comp_node().sync(); | |||
| } | |||
| } | |||
| state.scopes.pop(name); | |||
| } | |||
| SmallVector<Handle> ChannelImpl::apply_op( | |||
| @@ -282,31 +318,12 @@ SmallVector<Handle> ChannelImpl::apply_op( | |||
| HostTensorND ChannelImpl::get_value(Handle handle) { | |||
| mgb_assert(check_available(), "Channel already closed"); | |||
| auto& state = get_channel_state(); | |||
| // TODO: maybe get_value should be done on host. i.e. delete GetValue | |||
| mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | |||
| "invalid handle: %p", handle); | |||
| auto info = reinterpret_cast<TensorInfo*>(handle); | |||
| mgb_assert(!m_waitee); | |||
| // donnot use info->value_fetched, it's unsafe | |||
| mgb_assert(!info->invalid, "Invalid tensor, unable to get_value!"); | |||
| std::unique_lock<decltype(m_mutex)> lock(m_mutex); | |||
| TensorPtr tensor_ptr = info->ptr; | |||
| auto value_fetched = [&]() { | |||
| return tensor_ptr && tensor_ptr->value_fetched(); | |||
| }; | |||
| if (!value_fetched()) { | |||
| m_waitee = info; | |||
| m_buffer.enqueue(GetValue{info}); | |||
| RECORD_EVENT(TensorWaitPropEvent, info->id, TensorInfo::HostValue); | |||
| m_cv.wait(lock, [&]() { | |||
| check_worker_exc_unsafe(); | |||
| tensor_ptr = info->ptr; | |||
| return value_fetched(); | |||
| }); | |||
| RECORD_EVENT(TensorWaitPropFinishEvent, info->id, TensorInfo::HostValue); | |||
| m_waitee = nullptr; | |||
| } | |||
| return tensor_ptr->get_value(); | |||
| return wait_tensor(info, TensorProp::HostValue)->get_value(); | |||
| } | |||
| TensorShape ChannelImpl::get_shape(Handle handle) { | |||
| @@ -318,18 +335,7 @@ TensorShape ChannelImpl::get_shape(Handle handle) { | |||
| if (info->desc.layout.ndim != 0) { | |||
| return info->desc.layout; | |||
| } | |||
| std::unique_lock<decltype(m_mutex)> lock(m_mutex); | |||
| mgb_assert(!m_waitee); | |||
| m_waitee = info; | |||
| m_buffer.flush(); | |||
| RECORD_EVENT(TensorWaitPropEvent, info->id, TensorInfo::Shape); | |||
| m_cv.wait(lock, [&]() { | |||
| check_worker_exc_unsafe(); | |||
| return static_cast<bool>(info->ptr); | |||
| }); | |||
| RECORD_EVENT(TensorWaitPropFinishEvent, info->id, TensorInfo::Shape); | |||
| m_waitee = nullptr; | |||
| TensorShape ret = info->ptr->layout(); | |||
| TensorShape ret = wait_tensor(info, TensorProp::Shape)->layout(); | |||
| mgb_assert(ret.ndim != 0); | |||
| return ret; | |||
| } | |||
| @@ -340,7 +346,7 @@ DType ChannelImpl::get_dtype(Handle handle) { | |||
| mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | |||
| "invalid handle: %p", handle); | |||
| auto info = reinterpret_cast<TensorInfo*>(handle); | |||
| RECORD_EVENT(TensorGetPropEvent, info->id, TensorInfo::DType); | |||
| RECORD_EVENT(TensorGetPropEvent, info->id, TensorProp::DType); | |||
| auto ret = info->desc.layout.dtype; | |||
| mgb_assert(ret.valid()); | |||
| return ret; | |||
| @@ -352,7 +358,7 @@ CompNode ChannelImpl::get_device(Handle handle) { | |||
| mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | |||
| "invalid handle: %p", handle); | |||
| auto info = reinterpret_cast<TensorInfo*>(handle); | |||
| RECORD_EVENT(TensorGetPropEvent, info->id, TensorInfo::Device); | |||
| RECORD_EVENT(TensorGetPropEvent, info->id, TensorProp::Device); | |||
| auto ret = info->desc.comp_node; | |||
| mgb_assert(ret.valid()); | |||
| return ret; | |||
| @@ -364,28 +370,14 @@ DeviceTensorND ChannelImpl::get_dev_tensor(Handle handle) { | |||
| mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | |||
| "invalid handle: %p", handle); | |||
| auto info = reinterpret_cast<TensorInfo*>(handle); | |||
| std::unique_lock<decltype(m_mutex)> lock(m_mutex); | |||
| mgb_assert(!m_waitee); | |||
| m_waitee = info; | |||
| m_buffer.flush(); | |||
| RECORD_EVENT(TensorWaitPropEvent, info->id, TensorInfo::DevValue); | |||
| m_cv.wait(lock, [&]() { | |||
| check_worker_exc_unsafe(); | |||
| return static_cast<bool>(info->ptr); | |||
| }); | |||
| RECORD_EVENT(TensorWaitPropFinishEvent, info->id, TensorInfo::DevValue); | |||
| m_waitee = nullptr; | |||
| return info->ptr->dev_tensor(); | |||
| return wait_tensor(info, TensorProp::DevValue)->dev_tensor(); | |||
| } | |||
| void ChannelImpl::sync() { | |||
| mgb_assert(check_available(), "Channel already closed"); | |||
| auto& state = get_channel_state(); | |||
| m_buffer.flush(); | |||
| RECORD_EVENT(SyncEvent); | |||
| m_worker.wait_all_task_finish(); | |||
| CompNode::sync_all(); | |||
| RECORD_EVENT(SyncFinishEvent); | |||
| MGB_LOCK_GUARD(m_mutex); | |||
| check_worker_exc_unsafe(); | |||
| } | |||
| @@ -419,14 +411,24 @@ void ChannelImpl::set_option(std::string name, size_t value) { | |||
| TensorInfo* ChannelImpl::alloc() { | |||
| auto& state = get_channel_state(); | |||
| MGB_LOCK_GUARD(m_mutex); | |||
| auto info = m_pool.alloc(); | |||
| m_valid_handle.insert(info); | |||
| info->id = m_last_id++; | |||
| RECORD_EVENT(TensorDeclareEvent, info->id); | |||
| auto info = [this]{ | |||
| MGB_LOCK_GUARD(m_mutex); | |||
| return m_pool.alloc(); | |||
| }(); | |||
| info->id = Profiler::next_id(); | |||
| if (Profiler::is_profiling()) { | |||
| info->name = state.scopes.next_tensor_name(); | |||
| } | |||
| return info; | |||
| } | |||
| void ChannelImpl::init(TensorInfo* info, LogicalTensorDesc desc) { | |||
| m_valid_handle.insert(info); | |||
| RECORD_EVENT(TensorDeclareEvent, info->id, info->name); | |||
| info->status = TensorInfo::Allocated; | |||
| info->desc = std::move(desc); | |||
| } | |||
| void ChannelImpl::do_drop(TensorInfo* ptr, bool user=false) { | |||
| if (!ptr->producer) { | |||
| @@ -439,6 +441,7 @@ void ChannelImpl::do_drop(TensorInfo* ptr, bool user=false) { | |||
| return; | |||
| } | |||
| ptr->evict_type = EvictType::DROP; | |||
| ptr->status = TensorInfo::Dropped; | |||
| release_tensor(ptr); | |||
| } | |||
| @@ -460,7 +463,8 @@ void ChannelImpl::free(TensorInfo* ptr) { | |||
| } | |||
| void ChannelImpl::recursive_free(TensorInfo* ptr) { | |||
| SmallVector<TensorInfo*> inps(0); | |||
| RECORD_EVENT(TensorCommandEvent, ptr->id, TensorCommandEvent::RecFree); | |||
| SmallVector<TensorInfo*> inps; | |||
| if (ptr->producer) { | |||
| for (auto i : ptr->producer->inputs) { | |||
| if (i && --i->ref_cnt == 0) { | |||
| @@ -474,17 +478,23 @@ void ChannelImpl::recursive_free(TensorInfo* ptr) { | |||
| recursive_free(i); | |||
| } | |||
| } | |||
| RECORD_EVENT(TensorCommandFinishEvent, ptr->id, TensorCommandFinishEvent::RecFree); | |||
| } | |||
| void ChannelImpl::real_free(TensorInfo* ptr) { | |||
| auto& state = get_worker_state(); | |||
| MGB_LOCK_GUARD(m_mutex); | |||
| RECORD_EVENT(TensorEraseEvent, ptr->id); | |||
| if (ptr->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) { | |||
| m_dtr.erase_candidate(ptr); | |||
| } | |||
| detach_users(ptr); | |||
| ptr->detach_producer(); | |||
| bool has_value = ptr->ptr != nullptr; | |||
| if (has_value) { | |||
| RECORD_EVENT(TensorReleaseEvent, ptr->id); | |||
| } | |||
| RECORD_EVENT(TensorEraseEvent, ptr->id, ptr->ptr_use_count); | |||
| ptr->status = TensorInfo::Deleted; | |||
| m_pool.free(ptr); | |||
| } | |||
| @@ -496,46 +506,48 @@ ChannelImpl::~ChannelImpl() { | |||
| void ChannelImpl::produce_tensor(TensorInfo* dest, TensorPtr ptr, bool notice=true) { | |||
| auto& state = get_worker_state(); | |||
| auto lock = std::unique_lock<std::mutex>(m_mutex, std::defer_lock); | |||
| std::unique_lock<std::mutex> lock{m_mutex, std::defer_lock}; | |||
| if (notice) { | |||
| lock.lock(); | |||
| } | |||
| m_dtr.update_used_time(dest); | |||
| if (notice) { | |||
| RECORD_EVENT(TensorProduceEvent, dest->id, ptr->layout(), ptr->comp_node()); | |||
| } | |||
| dest->value_fetched = ptr->value_fetched(); | |||
| RECORD_EVENT(TensorProduceEvent, dest->id, ptr->layout(), ptr->comp_node(), ptr->dev_tensor().raw_ptr()); | |||
| // update tensor desc for static infer | |||
| dest->desc.layout = ptr->layout(); | |||
| dest->desc.comp_node = ptr->comp_node(); | |||
| dest->memory = ptr->blob()->size(); | |||
| dest->ptr = std::move(ptr); | |||
| dest->evict_type = EvictType::NONE; | |||
| dest->status = TensorInfo::Produced; | |||
| if (notice && dest->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) { | |||
| m_dtr.insert_candidate(dest); | |||
| } | |||
| if (notice && m_waitee == dest) { | |||
| m_cv.notify_all(); | |||
| if (notice) { | |||
| notify_tensor_unsafe(dest); | |||
| } | |||
| } | |||
| void ChannelImpl::release_tensor(TensorInfo* dest) { | |||
| RECORD_EVENT(TensorReleaseEvent, dest->id); | |||
| MGB_LOCK_GUARD(m_mutex); | |||
| dest->ptr.reset(); | |||
| } | |||
| void ChannelImpl::regenerate(TensorInfo* dest) { | |||
| RECORD_EVENT(TensorCommandEvent, dest->id, TensorCommandEvent::ReGen); | |||
| if (dest->evict_type == EvictType::DROP) { | |||
| recompute(dest->producer); | |||
| } else if (dest->evict_type == EvictType::SWAP) { | |||
| produce_tensor(dest, Tensor::make(dest->h_value)); | |||
| } | |||
| RECORD_EVENT(TensorCommandFinishEvent, dest->id, TensorCommandFinishEvent::ReGen); | |||
| } | |||
| void ChannelImpl::do_apply_op(const ApplyOp& cmd) { | |||
| using namespace ranges; | |||
| using namespace ranges::views; | |||
| auto& state = get_worker_state(); | |||
| bool profiling_device = Profiler::is_profiling() && Profiler::get_option("profile_device", 0); | |||
| uint64_t apply_id = cmd.id; | |||
| SmallVector<TensorPtr> tensor_inputs; | |||
| if (state.options.enable_dtr_auto_drop) { | |||
| @@ -545,33 +557,50 @@ void ChannelImpl::do_apply_op(const ApplyOp& cmd) { | |||
| if (!i->ptr && i->evict_type != EvictType::NONE) { | |||
| regenerate(i); | |||
| } | |||
| // inputs.push_back(i->ptr); | |||
| m_dtr.update_used_time(i); | |||
| } | |||
| tensor_inputs.reserve(cmd.inputs.size()); | |||
| // refcnt == 1, owners: [TensorInfo::ptr] | |||
| for (auto i : cmd.inputs) { | |||
| mgb_assert(i->ptr, "Invalid input tensor ptr!"); | |||
| // refcnt ++, owners: [i->ptr, tensor_inputs] | |||
| tensor_inputs.push_back(i->ptr); | |||
| } | |||
| RECORD_EVENT(OpExecuteEvent, apply_id); | |||
| // Begin profiling operator | |||
| SmallVector<CompNode> devices; | |||
| if (state.profiler->is_profiling()) { | |||
| SmallVector<std::pair<CompNode, uint64_t>> kernels; | |||
| if (profiling_device) { | |||
| // Collecting devices | |||
| SmallVector<CompNode> devices; | |||
| for (auto&& i : concat(cmd.inputs, cmd.outputs)) { | |||
| if (i != nullptr && count(devices, i->desc.comp_node) == 0) { | |||
| devices.push_back(i->desc.comp_node); | |||
| kernels.push_back({i->desc.comp_node, Profiler::next_id()}); | |||
| } | |||
| } | |||
| } | |||
| for (auto* input: cmd.inputs) { | |||
| auto input_id = input->id; | |||
| RECORD_EVENT(OpInputEvent, input_id); | |||
| RECORD_EVENT(TensorUsageEvent, input_id); | |||
| RECORD_EVENT(OpInputFinishEvent, input_id); | |||
| } | |||
| // Fused by command buffer. @see: CommandBuffer::fuse_del | |||
| // Now if dest is inplacable, it's refcnt would be decreased to 1 and owned by tensor_inputs after Del. | |||
| // Note for exprs like 'y = x op x', inplace is unsupported yet but Del would be also fused. | |||
| for (auto* del : cmd.dels) { | |||
| // refcnt --, owners: [tensor_inputs] | |||
| // if it's decreased to 1, would be detected at @see: proxy_graph_detail::apply_on_physical_tensor | |||
| uint64_t del_id = del->id; | |||
| RECORD_EVENT(OpDelEvent, del_id); | |||
| free(del); | |||
| RECORD_EVENT(OpDelFinishEvent, del_id); | |||
| } | |||
| RECORD_EVENT(OpExecuteEvent, apply_id, cmd.op, | |||
| tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||
| for (auto&& device: devices) { | |||
| sync_device_scope(device); | |||
| RECORD_DEVICE_EVENT(KernelExecuteEvent, device, apply_id, cmd.op, | |||
| tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||
| // Before wait | |||
| //TODO: split operator wait and execute so that OpWait could be corrected recorded. | |||
| // Before execute | |||
| for (auto&& [device, kernel_id]: kernels) { | |||
| RECORD_EVENT(KernelExecuteEvent, apply_id, kernel_id, Timer::record_event(device)); | |||
| } | |||
| if (state.options.enable_dtr_auto_drop && state.options.dtr_eviction_threshold > 0) { | |||
| auto_evict(); | |||
| @@ -579,20 +608,26 @@ void ChannelImpl::do_apply_op(const ApplyOp& cmd) { | |||
| // Apply op | |||
| // Here std::move is REQUIRED for removing duplicated references. | |||
| auto tensor_outputs = OpDef::apply_on_physical_tensor( | |||
| *cmd.op, tensor_inputs); | |||
| *cmd.op, std::move(tensor_inputs)); | |||
| // After execute | |||
| for (auto&& device : devices) { | |||
| RECORD_DEVICE_EVENT(KernelExecuteFinishEvent, device, apply_id, cmd.op, | |||
| tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||
| for (auto&& [device, kernel_id]: kernels) { | |||
| RECORD_EVENT(KernelExecuteFinishEvent, apply_id, kernel_id, Timer::record_event(device)); | |||
| } | |||
| RECORD_EVENT(OpExecuteFinishEvent, apply_id, cmd.op, | |||
| tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||
| // End profiling operator | |||
| mgb_assert(tensor_outputs.size() == cmd.outputs.size()); | |||
| for (size_t i = 0; i < tensor_outputs.size(); ++i) { | |||
| auto output = cmd.outputs[i]; | |||
| if (output != nullptr && output->ptr == nullptr) { | |||
| if (output == nullptr) { | |||
| RECORD_EVENT(OpOutputEvent, 0); | |||
| RECORD_EVENT(OpOutputFinishEvent, 0); | |||
| } else if (output->ptr != nullptr) { | |||
| RECORD_EVENT(OpOutputEvent, output->id); | |||
| RECORD_EVENT(OpOutputFinishEvent, output->id); | |||
| } else { | |||
| RECORD_EVENT(OpOutputEvent, output->id); | |||
| produce_tensor(output, tensor_outputs[i]); | |||
| RECORD_EVENT(OpOutputFinishEvent, output->id); | |||
| sample_on_device(output->desc.comp_node, false); | |||
| } | |||
| } | |||
| @@ -612,6 +647,8 @@ void ChannelImpl::do_apply_op(const ApplyOp& cmd) { | |||
| } | |||
| m_dtr.unpin(cmd.inputs); | |||
| } | |||
| RECORD_EVENT(OpExecuteFinishEvent, apply_id); | |||
| // End profiling operator | |||
| } | |||
| void ChannelImpl::recompute(TensorInfo::ComputePath* path) { | |||
| @@ -637,6 +674,7 @@ void ChannelImpl::auto_evict() { | |||
| } | |||
| size_t current_memory = m_dtr.comp_node.get_used_memory(); | |||
| while (current_memory > state.options.dtr_eviction_threshold) { | |||
| sample_on_device(m_dtr.comp_node, false); | |||
| auto best = m_dtr.find_best_tensor(); | |||
| if (!best) { | |||
| if (!m_dtr.warn_printed) { | |||
| @@ -656,6 +694,7 @@ void ChannelImpl::auto_evict() { | |||
| if (best->evict_type == EvictType::DROP) { | |||
| m_dtr.update_dsu_after_evict(best); | |||
| } | |||
| sample_on_device(m_dtr.comp_node, false); | |||
| } | |||
| } | |||
| @@ -665,6 +704,10 @@ void ChannelImpl::detach_users(TensorInfo* dest) { | |||
| SmallVector<TensorInfo*> outputs = user->outputs; | |||
| SmallVector<TensorInfo*> inputs = user->inputs; | |||
| for (auto* output: outputs) { | |||
| // When a `ComputePath` is detach from it's input, | |||
| // there is no need to reserve it, | |||
| // so we detach all output of this path | |||
| // to decrease it's `ref_cnt` to zero. | |||
| if (output == nullptr) { | |||
| continue; | |||
| } | |||
| @@ -674,63 +717,79 @@ void ChannelImpl::detach_users(TensorInfo* dest) { | |||
| input->ref_cnt --; | |||
| } | |||
| } | |||
| // now user is dead | |||
| } | |||
| mgb_assert(dest->users.size() == 0); | |||
| //dest->users.clear(); | |||
| mgb_assert(dest->users.empty(), "ComputePath leaking"); | |||
| } | |||
| bool ChannelImpl::check_available() { | |||
| return !m_closed; | |||
| } | |||
| void ChannelImpl::sync_device_scope(CompNode device) { | |||
| auto& state = get_worker_state(); | |||
| auto& prev = state.device_scope_map[device]; | |||
| auto& current = state.scopes; | |||
| auto push_scope = [&](std::string name) { | |||
| RECORD_DEVICE_EVENT(DeviceScopeEvent, device, name); | |||
| }; | |||
| auto pop_scope = [&](std::string name) { | |||
| RECORD_DEVICE_EVENT(DeviceScopeFinishEvent, device, name); | |||
| }; | |||
| size_t similarity = 0; | |||
| for (size_t i = 0; i < prev.size() && i < current.size(); i++) { | |||
| if (prev[i] == current[i]) { | |||
| similarity++; | |||
| TensorPtr ChannelImpl::wait_tensor(TensorInfo* info, TensorProp prop) { | |||
| m_buffer.flush(); | |||
| std::unique_lock<decltype(m_mutex)> lock(m_mutex); | |||
| mgb_assert(!m_waitee, "duplicate waitee"); | |||
| m_waitee = info; | |||
| m_waitee_id = Profiler::next_id(); | |||
| RECORD_EVENT(TensorWaitPropEvent, info->id, m_waitee_id, prop); | |||
| bool require_host = prop == TensorProp::HostValue; | |||
| bool value_fetching = false; | |||
| m_cv.wait(lock, [&]() { | |||
| check_worker_exc_unsafe(); | |||
| if (require_host) { | |||
| if (info->ptr && info->ptr->value_fetched()) { | |||
| return true; | |||
| } | |||
| if (!value_fetching) { | |||
| m_buffer.enqueue(GetValue{info}); | |||
| value_fetching = true; | |||
| } | |||
| return false; | |||
| } else { | |||
| break; | |||
| return static_cast<bool>(info->ptr); | |||
| } | |||
| }); | |||
| RECORD_EVENT(TensorWaitPropFinishEvent, info->id, m_waitee_id, prop, m_waitee == nullptr); | |||
| if (m_waitee != nullptr) { | |||
| mgb_assert(m_waitee == info, "waitee mismatch"); | |||
| m_waitee = nullptr; | |||
| } | |||
| while (prev.size() > similarity) { | |||
| pop_scope(prev.back()); | |||
| prev.pop_back(); | |||
| return info->ptr; | |||
| } | |||
| void ChannelImpl::notify_tensor_unsafe(TensorInfo* info) { | |||
| if (info == m_waitee) { | |||
| m_waitee = nullptr; | |||
| RECORD_EVENT(TensorNotifyPropEvent, info->id); | |||
| m_cv.notify_all(); | |||
| } | |||
| while (prev.size() < current.size()) { | |||
| prev.push_back(current[prev.size()]); | |||
| push_scope(prev.back()); | |||
| } | |||
| std::unordered_set<TensorInfo*> ChannelImpl::collect_valid_tensors() { | |||
| std::unordered_set<TensorInfo*> valid_tensors; | |||
| for (auto* handle: m_valid_handle) { | |||
| auto* info = reinterpret_cast<TensorInfo*>(handle); | |||
| valid_tensors.insert(info); | |||
| //TODO: valid_tensors.insert({info, info->status}); | |||
| } | |||
| return valid_tensors; | |||
| } | |||
| void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
| using namespace ranges; | |||
| using namespace ranges::views; | |||
| auto& state = get_worker_state(); | |||
| RECORD_EVENT(CommandExecuteEvent, icmd); | |||
| bool finished = false; | |||
| auto do_finish_command = [&]{ | |||
| if (finished) { | |||
| return; | |||
| } | |||
| RECORD_EVENT(CommandFinishEvent, icmd); | |||
| finished = true; | |||
| }; | |||
| auto& options = state.options; | |||
| //TODO: remove std::visit for support osx 10.12 | |||
| auto cmd_visitor = [&](const auto& cmd) { | |||
| using T = std::decay_t<decltype(cmd)>; | |||
| if constexpr (std::is_same_v<T, Put>) { | |||
| RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::Put); | |||
| auto value = cmd.no_cache ? std::make_shared<Tensor>(cmd.value) : Tensor::make(cmd.value); | |||
| produce_tensor(cmd.dest, std::move(value)); | |||
| RECORD_EVENT(TensorCommandFinishEvent, cmd.dest->id, TensorCommandFinishEvent::Put); | |||
| sample_on_device(cmd.dest->desc.comp_node, false); | |||
| } else if constexpr (std::is_same_v<T, ApplyOp>) { | |||
| do_apply_op(cmd); | |||
| for (size_t i = 0; i < cmd.outputs.size(); ++i) { | |||
| @@ -739,7 +798,7 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
| continue; | |||
| } | |||
| if (state.options.enable_dtr_auto_drop) { | |||
| cmd.outputs[i]->dsu_ptr = std::make_shared<DsuNode>(output->compute_time); | |||
| output->dsu_ptr = std::make_shared<DsuNode>(output->compute_time); | |||
| } | |||
| } | |||
| if (state.options.enable_drop && state.options.record_computing_path) { | |||
| @@ -765,6 +824,7 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
| bool cross_cn = any_of(concat(cmd.inputs, cmd.outputs), is_cross_cn); | |||
| bool inplace = any_of(cartesian_product(cmd.inputs, cmd.outputs), is_inplace); | |||
| if (!inplace && !cross_cn && !m_dtr.is_bad_op(get_name(*cmd.op))) { | |||
| TensorInfo::ComputePath::make(cmd.id, cmd.op, cmd.inputs, cmd.outputs); | |||
| size_t detach_cnt = 0; | |||
| @@ -780,7 +840,12 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
| } | |||
| } | |||
| } else if constexpr (std::is_same_v<T, Del>) { | |||
| RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::Del); | |||
| CompNode device = cmd.dest->desc.comp_node; | |||
| uint64_t tensor_id = cmd.dest->id; | |||
| free(cmd.dest); | |||
| RECORD_EVENT(TensorCommandFinishEvent, tensor_id, TensorCommandFinishEvent::Del); | |||
| sample_on_device(device, false); | |||
| } else if constexpr (std::is_same_v<T, GetValue>) { | |||
| if (!cmd.dest->ptr && cmd.dest->evict_type != EvictType::NONE) { | |||
| regenerate(cmd.dest); | |||
| @@ -788,50 +853,62 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
| mgb_assert(cmd.dest->ptr, "Invalid tensor ptr!"); | |||
| cmd.dest->ptr->fetch_value(); | |||
| MGB_LOCK_GUARD(m_mutex); | |||
| cmd.dest->value_fetched = true; | |||
| if (m_waitee == cmd.dest) { | |||
| m_cv.notify_all(); | |||
| } | |||
| notify_tensor_unsafe(cmd.dest); | |||
| } else if constexpr (std::is_same_v<T, SwapIn>) { | |||
| RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::SwapIn); | |||
| produce_tensor(cmd.dest, Tensor::make(cmd.dest->h_value)); | |||
| RECORD_EVENT(TensorCommandFinishEvent, cmd.dest->id, TensorCommandFinishEvent::SwapIn); | |||
| sample_on_device(cmd.dest->desc.comp_node, false); | |||
| } else if constexpr (std::is_same_v<T, SwapOut>) { | |||
| RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::SwapOut); | |||
| cmd.dest->h_value = cmd.dest->ptr->get_value(); | |||
| if (cmd.dest->evict_type == EvictType::NONE) { | |||
| release_tensor(cmd.dest); | |||
| cmd.dest->evict_type = EvictType::SWAP; | |||
| cmd.dest->status = TensorInfo::Swapped; | |||
| release_tensor(cmd.dest); | |||
| } | |||
| RECORD_EVENT(TensorCommandFinishEvent, cmd.dest->id, TensorCommandFinishEvent::SwapOut); | |||
| sample_on_device(cmd.dest->desc.comp_node, false); | |||
| } else if constexpr (std::is_same_v<T, Drop>) { | |||
| RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::Drop); | |||
| do_drop(cmd.dest, true); | |||
| RECORD_EVENT(TensorCommandFinishEvent, cmd.dest->id, TensorCommandFinishEvent::Drop); | |||
| } else if constexpr (std::is_same_v<T, SetOption>) { | |||
| state.options.set_option(cmd.key, cmd.value); | |||
| options.set_option(cmd.key, cmd.value); | |||
| } else if constexpr (std::is_same_v<T, StartProfile>) { | |||
| RECORD_EVENT(StartProfileEvent); | |||
| CompNode::sync_all(); | |||
| state.profiler.reset(cmd.profiler); | |||
| for (auto* info: cmd.capture_tensors) { | |||
| RECORD_EVENT(TensorDeclareEvent, info->id, info->name); | |||
| if (info->status == TensorInfo::Produced) { | |||
| // TODO: handle swap/drop | |||
| RECORD_EVENT(TensorProduceEvent, info->id, info->desc.layout, info->desc.comp_node, info->ptr->dev_tensor().raw_ptr()); | |||
| } | |||
| } | |||
| CompNode::foreach([&](CompNode device){ | |||
| if (Profiler::get_option("sample_rate", 0)) { | |||
| sample_on_device(device, true); | |||
| } | |||
| }); | |||
| RECORD_EVENT(StartProfileFinishEvent); | |||
| } else if constexpr (std::is_same_v<T, StopProfile>) { | |||
| for (auto&& [device, scopes]: state.device_scope_map) { | |||
| MGB_MARK_USED_VAR(scopes); | |||
| sync_device_scope(device); | |||
| RECORD_EVENT(StopProfileEvent); | |||
| for (auto* info: cmd.escape_tensors) { | |||
| bool has_value = info->status == TensorInfo::Produced; | |||
| if (has_value) { | |||
| RECORD_EVENT(TensorReleaseEvent, info->id); | |||
| } | |||
| RECORD_EVENT(TensorEraseEvent, info->id); | |||
| } | |||
| do_finish_command(); | |||
| auto profiler = std::make_unique<InterpreterProfiler>(); | |||
| std::swap(profiler, state.profiler); | |||
| auto records = profiler->stop(); | |||
| auto worker_tid = get_worker_tid(); | |||
| auto host_map = [worker_tid](std::thread::id tid) { | |||
| if (tid == worker_tid) { | |||
| return "worker"; | |||
| } else { | |||
| return "unknown"; | |||
| CompNode::foreach([&](CompNode device){ | |||
| if (Profiler::get_option("sample_rate", 0)) { | |||
| sample_on_device(device, true); | |||
| } | |||
| }; | |||
| }); | |||
| RECORD_EVENT(StopProfileFinishEvent); | |||
| } else if constexpr (std::is_same_v<T, PushScope>) { | |||
| state.scopes.push_back(cmd.scope_name); | |||
| do_finish_command(); | |||
| RECORD_EVENT(ScopeEvent, cmd.scope_name); | |||
| } else if constexpr (std::is_same_v<T, PopScope>) { | |||
| mgb_assert(state.scopes.back() == cmd.scope_name, "scope name mismatch"); | |||
| state.scopes.pop_back(); | |||
| do_finish_command(); | |||
| RECORD_EVENT(ScopeFinishEvent, cmd.scope_name); | |||
| } else { | |||
| static_assert(!std::is_same_v<T, T>); | |||
| @@ -839,7 +916,7 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
| }; | |||
| std::visit([&](const auto& cmd){ | |||
| using T = std::decay_t<decltype(cmd)>; | |||
| if (!state.options.catch_worker_execption) { | |||
| if (!options.catch_worker_execption) { | |||
| cmd_visitor(cmd); | |||
| return; | |||
| } | |||
| @@ -855,10 +932,12 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
| cmd.dest->invalid = true; | |||
| } | |||
| m_worker_exc = std::current_exception(); | |||
| m_cv.notify_all(); | |||
| RECORD_EVENT(WorkerExceptionEvent); | |||
| if (m_waitee) { | |||
| notify_tensor_unsafe(m_waitee); | |||
| } | |||
| } | |||
| }, icmd.second); | |||
| do_finish_command(); | |||
| } | |||
| void ChannelImpl::check_worker_exc_unsafe() { | |||
| @@ -888,17 +967,17 @@ void ChannelImpl::CommandBuffer::flush() { | |||
| void ChannelImpl::CommandBuffer::flush(Handle pos) { | |||
| auto& state = m_owner->get_channel_state(); | |||
| for (auto iter = m_commands.begin(); iter != pos; ++iter) { | |||
| // mgb_log_debug("%s Flushed", to_string(*iter).c_str()); | |||
| IdentifiedCommand icmd{++m_owner->m_last_id, std::move(*iter)}; | |||
| RECORD_EVENT(CommandEnqueueEvent, icmd); | |||
| m_owner->m_worker.add_task(std::move(icmd)); | |||
| if (Profiler::is_profiling()) { | |||
| mgb_log_debug("%s Flushed", to_string(*iter).c_str()); | |||
| } | |||
| m_owner->m_worker.add_task(IdentifiedCommand{Profiler::next_id(), std::move(*iter)}); | |||
| } | |||
| m_commands.erase(m_commands.begin(), pos); | |||
| } | |||
| auto ChannelImpl::CommandBuffer::flush_pos_for(const Command& cmd) -> Handle { | |||
| auto& state = m_owner->get_channel_state(); | |||
| return std::visit([&, this](const auto& cmd) { | |||
| return std::visit([this, &state](const auto& cmd) { | |||
| using T = std::decay_t<decltype(cmd)>; | |||
| if constexpr (std::is_same_v<T, ApplyOp>) { | |||
| auto* op_type = cmd.op->dyn_typeinfo(); | |||
| @@ -986,46 +1065,37 @@ auto ChannelImpl::CommandBuffer::find_produce(TensorInfo* dest, Range range) | |||
| }); | |||
| } | |||
| void ChannelImpl::start_profile(std::unordered_map<std::string, int> option) { | |||
| void ChannelImpl::start_profile() { | |||
| mgb_assert(check_available(), "Channel already closed"); | |||
| auto& state = get_channel_state(); | |||
| auto profiler_option = InterpreterProfiler::Option::from_dict(option); | |||
| auto profiler = std::make_unique<InterpreterProfiler>(); | |||
| profiler->set_option(profiler_option); | |||
| profiler->start(InterpreterProfiler::topic_to_mask(profiler_option.topic)); | |||
| std::swap(profiler, state.profiler); | |||
| m_buffer.enqueue(StartProfile{state.profiler.get()}); | |||
| auto capture_tensors = collect_valid_tensors(); | |||
| if (capture_tensors.size() > 0) { | |||
| m_buffer.enqueue(StartProfile{std::move(capture_tensors)}); | |||
| } | |||
| } | |||
| void ChannelImpl::stop_profile(std::string basename, std::string format) { | |||
| void ChannelImpl::stop_profile() { | |||
| mgb_assert(check_available(), "Channel already closed"); | |||
| auto& state = get_channel_state(); | |||
| m_buffer.flush(); | |||
| auto profiler = std::make_unique<InterpreterProfiler>(); | |||
| std::swap(profiler, state.profiler); | |||
| profiler.release(); | |||
| m_buffer.enqueue(StopProfile{basename, format}); | |||
| auto escape_tensors = collect_valid_tensors(); | |||
| if (escape_tensors.size() > 0) { | |||
| m_buffer.enqueue(StopProfile{std::move(escape_tensors)}); | |||
| } | |||
| } | |||
| void ChannelImpl::push_scope(std::string name) { | |||
| mgb_assert(check_available(), "Channel already closed"); | |||
| auto& state = get_channel_state(); | |||
| state.scopes.push(name); | |||
| RECORD_EVENT(ScopeEvent, name); | |||
| if (state.profiler->is_profiling()) { | |||
| state.scopes.push_back(name); | |||
| m_buffer.enqueue(PushScope{name}); | |||
| } | |||
| m_buffer.enqueue(PushScope{name}); | |||
| } | |||
| void ChannelImpl::pop_scope(std::string name) { | |||
| mgb_assert(check_available(), "Channel already closed"); | |||
| auto& state = get_channel_state(); | |||
| state.scopes.pop(name); | |||
| RECORD_EVENT(ScopeFinishEvent, name); | |||
| if (state.profiler->is_profiling()) { | |||
| mgb_assert((!state.scopes.empty()) && state.scopes.back() == name, "scope name mismatch"); | |||
| state.scopes.pop_back(); | |||
| m_buffer.enqueue(PopScope{name}); | |||
| } | |||
| m_buffer.enqueue(PopScope{name}); | |||
| } | |||
| void ChannelImpl::assert_in_channel() { | |||
| @@ -1036,6 +1106,19 @@ void ChannelImpl::assert_in_worker() { | |||
| mgb_assert(get_worker_tid() == std::this_thread::get_id(), "this method can only be called in worker thread"); | |||
| } | |||
| void ChannelImpl::sample_on_device(CompNode device, bool force) { | |||
| if (!force) { | |||
| thread_local int last_sample_id = 0; | |||
| int sample_rate = Profiler::is_profiling() ? Profiler::get_option("sample_rate", 0) : 0; | |||
| if (!sample_rate || ((++last_sample_id) % sample_rate != 0)) { | |||
| return; | |||
| } | |||
| } | |||
| RECORD_EVENT(SampleDeviceEvent, device); | |||
| auto [total, free] = device.get_mem_status_bytes(); | |||
| RECORD_EVENT(SampleDeviceFinishEvent, device, total, free); | |||
| } | |||
| void ChannelImpl::DynamicSublinear::pin(const SmallVector<TensorInfo*>& vec) { | |||
| for (auto i : vec) { | |||
| i->pin(); | |||
| @@ -24,10 +24,10 @@ | |||
| #include "megbrain/imperative/profiler.h" | |||
| #include "./commands.h" | |||
| #include "./events.h" | |||
| #include "./tensor_info.h" | |||
| #include "./option_manager.h" | |||
| #include "./profiler.h" | |||
| #include "../profiler/events.h" | |||
| namespace mgb::imperative::interpreter::intl { | |||
| @@ -37,7 +37,6 @@ struct InterpreterImpl : Interpreter { | |||
| std::unique_ptr<Channel> create_channel() override; | |||
| }; | |||
| struct ChannelImpl : Interpreter::Channel { | |||
| ChannelImpl(); | |||
| ~ChannelImpl() override; | |||
| @@ -67,19 +66,27 @@ struct ChannelImpl : Interpreter::Channel { | |||
| size_t get_option(std::string name) override; | |||
| void set_option(std::string name, size_t value) override; | |||
| void start_profile(std::unordered_map<std::string, int> option) override; | |||
| void stop_profile(std::string basename, std::string format) override; | |||
| void start_profile() override; | |||
| void stop_profile() override; | |||
| void push_scope(std::string) override; | |||
| void pop_scope(std::string) override; | |||
| private: | |||
| struct WorkQueue; | |||
| struct State; | |||
| TensorInfo* alloc(); | |||
| void init(TensorInfo*, LogicalTensorDesc desc); | |||
| void free(TensorInfo*); | |||
| void real_free(TensorInfo*); | |||
| void recursive_free(TensorInfo*); | |||
| void do_drop(TensorInfo*, bool); | |||
| void detach_users(TensorInfo*); | |||
| TensorInfo* put_impl(const HostTensorND& value, bool no_cache); | |||
| TensorPtr wait_tensor(TensorInfo* info, profiler::TensorProp prop); | |||
| void notify_tensor_unsafe(TensorInfo* info); | |||
| void process_one_task(IdentifiedCommand&); | |||
| void check_worker_exc_unsafe(); | |||
| @@ -105,24 +112,31 @@ private: | |||
| bool check_available(); | |||
| void push_scope(std::string, State&); | |||
| void pop_scope(std::string, State&); | |||
| void assert_in_channel(); | |||
| void assert_in_worker(); | |||
| std::thread::id get_worker_tid(); | |||
| void sync_device_scope(CompNode device); | |||
| template <typename TCommand> | |||
| void enqueue_command(TCommand&& cmd) { | |||
| m_buffer.enqueue(Command{std::forward<TCommand>(cmd)}); | |||
| } | |||
| void sample_on_device(CompNode device, bool force); | |||
| // valid => status != Deleted | |||
| std::unordered_set<TensorInfo*> collect_valid_tensors(); | |||
| std::mutex m_mutex; | |||
| std::condition_variable m_cv; | |||
| MemPool<TensorInfo> m_pool; | |||
| std::unordered_set<Handle> m_valid_handle; | |||
| TensorInfo* m_waitee = nullptr; | |||
| uint64_t m_waitee_id = 0; | |||
| std::exception_ptr m_worker_exc; | |||
| std::atomic_uint64_t m_last_id = 0; | |||
| std::function<void(std::string, std::string)> m_profile_dump_callback; | |||
| bool m_closed = false; | |||
| @@ -191,27 +205,98 @@ private: | |||
| //! level 0: both sync. | |||
| int m_async_level = 2; | |||
| struct State { | |||
| OptionManager options; | |||
| std::vector<std::string> scopes; | |||
| std::unique_ptr<InterpreterProfiler> profiler; | |||
| struct Scope { | |||
| std::string name; | |||
| std::unordered_map<std::string, std::unique_ptr<Scope>> children; | |||
| size_t version = 0; | |||
| size_t parent_version = 0; | |||
| size_t tensor_count = 0; | |||
| Scope* active_child = nullptr; | |||
| Scope* parent = nullptr; | |||
| Scope* enter(std::string name) { | |||
| auto& child = children[name]; | |||
| if (!child) { | |||
| child = std::make_unique<Scope>(); | |||
| child->name = name; | |||
| child->parent = this; | |||
| } | |||
| if (version != child->parent_version) { | |||
| child->version = 0; | |||
| child->parent_version = version; | |||
| } else { | |||
| child->version++; | |||
| } | |||
| child->tensor_count = 0; | |||
| return active_child = child.get(); | |||
| } | |||
| State() { | |||
| profiler = std::make_unique<InterpreterProfiler>(); | |||
| Scope* exit(std::string name) { | |||
| mgb_assert(this->name == name, "scope name mismatch"); | |||
| parent->active_child = nullptr; | |||
| return parent; | |||
| } | |||
| }; | |||
| struct ChannelState: State {}; | |||
| class ScopeManager { | |||
| private: | |||
| Scope m_root; | |||
| Scope* m_current_scope = &m_root; | |||
| public: | |||
| class ScopeGuard{ | |||
| private: | |||
| ScopeManager* m_manager; | |||
| std::string m_name; | |||
| public: | |||
| ScopeGuard(ScopeManager* manager, std::string name): m_manager{manager}, m_name{name} { | |||
| m_manager->push(m_name); | |||
| } | |||
| ~ScopeGuard() { | |||
| m_manager->pop(m_name); | |||
| } | |||
| }; | |||
| void push(std::string name) { | |||
| m_current_scope = m_current_scope->enter(name); | |||
| } | |||
| void pop(std::string name) { | |||
| m_current_scope = m_current_scope->exit(name); | |||
| } | |||
| std::string next_tensor_name() { | |||
| std::string builder; | |||
| Scope* scope = &m_root; | |||
| while (true) { | |||
| builder.append(scope->name); | |||
| if (scope->version != 0) { | |||
| builder.append(ssprintf("(%ld)", scope->version)); | |||
| } | |||
| if (scope != &m_root) { | |||
| builder.append("."); | |||
| } | |||
| if (scope->active_child == nullptr) { | |||
| builder.append(ssprintf(":%%%ld", scope->tensor_count++)); | |||
| break; | |||
| } else { | |||
| scope = scope->active_child; | |||
| } | |||
| } | |||
| return builder; | |||
| } | |||
| }; | |||
| struct WorkerState: State { | |||
| struct State { | |||
| std::thread::id tid; | |||
| CompNode::UnorderedMap<std::vector<std::string>> device_scope_map; | |||
| OptionManager options; | |||
| }; | |||
| struct ChannelState: State { | |||
| ScopeManager scopes; | |||
| }; | |||
| struct WorkerState: State {}; | |||
| ChannelState m_channel_state; | |||
| WorkerState m_worker_state; | |||
| /*! | |||
| * \brief A framework of dynamic sublienar memory optimization | |||
| * | |||
| @@ -327,7 +412,6 @@ private: | |||
| // assert thread id when call get_xxx_state to avoid misuse | |||
| ChannelState& get_channel_state(); | |||
| WorkerState& get_worker_state(); | |||
| }; | |||
| } // namespace mgb::imperative::interpreter::intl | |||
| @@ -1,93 +0,0 @@ | |||
| /** | |||
| * \file imperative/src/impl/interpreter/profiler.h | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| */ | |||
| #pragma once | |||
| #include "megbrain/imperative/profiler.h" | |||
| #include "./commands.h" | |||
| #include "./events.h" | |||
| #include "./option_manager.h" | |||
| namespace mgb::imperative::interpreter::intl { | |||
| class InterpreterProfiler: public Profiler< | |||
| CommandEnqueueEvent, CommandExecuteEvent, CommandFinishEvent, | |||
| OpExecuteEvent, OpExecuteFinishEvent, | |||
| KernelExecuteEvent, KernelExecuteFinishEvent, | |||
| TensorDeclareEvent, TensorProduceEvent, TensorEraseEvent, | |||
| TensorGetPropEvent, TensorWaitPropEvent, TensorNotifyPropEvent, TensorWaitPropFinishEvent, | |||
| SyncEvent, SyncFinishEvent, | |||
| ScopeEvent, ScopeFinishEvent, | |||
| DeviceScopeEvent, DeviceScopeFinishEvent> { | |||
| public: | |||
| enum Topic { | |||
| Command = 0b000001, | |||
| Operator = 0b000010, | |||
| TensorLifetime = 0b000100, | |||
| TensorProp = 0b001000, | |||
| Sync = 0b010000, | |||
| Scope = 0b100000, | |||
| }; | |||
| struct Option { | |||
| Topic topic; | |||
| bool align_time; | |||
| bool show_operator_name; | |||
| static Option from_dict(std::unordered_map<std::string, int> dict) { | |||
| Option option; | |||
| option.topic = Topic(dict.at("topic")); | |||
| option.align_time = bool(dict.at("align_time")); | |||
| option.show_operator_name = bool(dict.at("show_operator_name")); | |||
| return option; | |||
| } | |||
| }; | |||
| Option get_option() const { | |||
| return m_option; | |||
| } | |||
| void set_option(const Option& option) { | |||
| m_option = option; | |||
| } | |||
| static Mask topic_to_mask(Topic topic) { | |||
| Mask result; | |||
| if (topic & Command) { | |||
| result |= mask_of<CommandEnqueueEvent, CommandExecuteEvent, CommandFinishEvent>(); | |||
| } | |||
| if (topic & Operator) { | |||
| result |= mask_of<OpExecuteEvent, OpExecuteFinishEvent>(); | |||
| result |= mask_of<KernelExecuteEvent, KernelExecuteFinishEvent>(); | |||
| } | |||
| if (topic & TensorLifetime) { | |||
| result |= mask_of<TensorDeclareEvent, TensorProduceEvent, TensorEraseEvent>(); | |||
| } | |||
| if (topic & TensorProp) { | |||
| result |= mask_of<TensorGetPropEvent, TensorWaitPropEvent, TensorNotifyPropEvent, TensorWaitPropFinishEvent>(); | |||
| } | |||
| if (topic & Sync) { | |||
| result |= mask_of<SyncEvent, SyncFinishEvent>(); | |||
| } | |||
| if (topic & Scope) { | |||
| result |= mask_of<ScopeEvent, ScopeFinishEvent>(); | |||
| result |= mask_of<DeviceScopeEvent, DeviceScopeFinishEvent>(); | |||
| } | |||
| return result; | |||
| } | |||
| private: | |||
| Option m_option; | |||
| }; | |||
| } | |||
| @@ -27,19 +27,19 @@ enum EvictType { | |||
| /*! | |||
| * \brief an identifier to specify a component of evicted tensors | |||
| * | |||
| * | |||
| * Each component tracks the sum of the compute costs of its elements, with the | |||
| * union of two components having the sum of each constituent cost. | |||
| */ | |||
| struct DsuNode { | |||
| DsuNode(double _t): t(_t) {} | |||
| std::shared_ptr<DsuNode> parent; | |||
| bool is_root() { | |||
| return !bool(parent); | |||
| } | |||
| double t; | |||
| }; | |||
| @@ -47,25 +47,33 @@ struct TensorInfo; | |||
| using TensorInfoPtr = std::shared_ptr<TensorInfo>; | |||
| struct TensorInfo { | |||
| enum Prop { | |||
| Device, Shape, DType, DevValue, HostValue | |||
| enum Status { | |||
| InvalidStatus, Allocated, Produced, Swapped, Dropped, Deleted, | |||
| }; | |||
| uint64_t id; | |||
| uint64_t id = -1; | |||
| std::string name; | |||
| // Most attrs of TensorInfo, except `ptr` and `h_value`, | |||
| // were visited read and written in main thread. | |||
| // Lock interpreter when visiting `ptr`. | |||
| TensorPtr ptr; | |||
| LogicalTensorDesc desc; | |||
| double compute_time; | |||
| size_t memory; | |||
| double last_used_time; | |||
| // FIXME: broken by drop | |||
| bool value_fetched = false; | |||
| bool invalid = false; | |||
| bool allow_delete = false; | |||
| EvictType evict_type = NONE; | |||
| // Status should be only modified in worker thread | |||
| Status status = InvalidStatus; | |||
| // Used by HostCompute and Memory Swap. | |||
| // HostCompute and Swap does not happen in one thread. | |||
| // Maybe a barrier is needed. | |||
| HostTensorND h_value; | |||
| // reserved for auto drop | |||
| @@ -74,6 +82,10 @@ struct TensorInfo { | |||
| size_t ref_cnt = 0; | |||
| std::shared_ptr<DsuNode> dsu_ptr; | |||
| // Not reference count, inc when used as input | |||
| size_t ptr_use_count = 0; | |||
| // Used by `Drop` action | |||
| struct ComputePath { | |||
| uint64_t id; | |||
| std::shared_ptr<OpDef> op; | |||
| @@ -111,7 +123,7 @@ struct TensorInfo { | |||
| return path; | |||
| } | |||
| }* producer = nullptr; | |||
| double eval_func(double cost, double free_mem, double cur_time, | |||
| double param_cost, double param_mem, double param_time, double param_recompute_times) { | |||
| return pow(cost + 1e-3, param_cost) * pow(param_recompute_times, (double)recompute_times) | |||
| @@ -126,20 +138,24 @@ struct TensorInfo { | |||
| --pinned; | |||
| } | |||
| void detach_producer() { | |||
| // returns true if producer is deleted | |||
| bool detach_producer() { | |||
| if (!producer) { | |||
| return; | |||
| return false; | |||
| } | |||
| auto output = std::find(producer->outputs.begin(), producer->outputs.end(), this); | |||
| mgb_assert(output != producer->outputs.end()); | |||
| *output = nullptr; | |||
| bool deleted = false; | |||
| if (producer->ref_cnt() == 0) { | |||
| for (auto* input: producer->unique_inputs) { | |||
| input->users.erase(std::find(input->users.begin(), input->users.end(), producer)); | |||
| } | |||
| delete producer; | |||
| deleted = true; | |||
| } | |||
| producer = nullptr; | |||
| return deleted; | |||
| } | |||
| bool size_exceeds_thd(size_t thd) { | |||
| @@ -150,26 +166,4 @@ struct TensorInfo { | |||
| }; | |||
| } | |||
| template <> | |||
| struct ToStringTrait<interpreter::intl::TensorInfo::Prop>{ | |||
| using TensorInfo = interpreter::intl::TensorInfo; | |||
| std::string operator()(TensorInfo::Prop prop) const { | |||
| switch(prop) { | |||
| case TensorInfo::DType: | |||
| return "dtype"; | |||
| case TensorInfo::DevValue: | |||
| return "dev_value"; | |||
| case TensorInfo::Device: | |||
| return "device"; | |||
| case TensorInfo::HostValue: | |||
| return "host_value"; | |||
| case TensorInfo::Shape: | |||
| return "shape"; | |||
| default: | |||
| return "unknown"; | |||
| } | |||
| } | |||
| }; | |||
| } | |||
| @@ -22,47 +22,58 @@ | |||
| #include "./event_pool.h" | |||
| #include "./op_trait.h" | |||
| #include "./profiler/formats.h" | |||
| namespace mgb { | |||
| namespace imperative { | |||
| namespace { | |||
| DeviceTimer::SharedEvent alloc_recorded_event(CompNode device) { | |||
| auto event = EventPool::with_timer().alloc_shared(device); | |||
| event->record(); | |||
| return event; | |||
| uint64_t Timer::get_nsecs() { | |||
| using namespace std::chrono; | |||
| auto finish = steady_clock::now(); | |||
| auto duration = duration_cast<nanoseconds>(finish - m_start); | |||
| return duration.count(); | |||
| } | |||
| } // namespace | |||
| DeviceTimer::SharedEvent DeviceTimer::get_device_time(CompNode device) { | |||
| return alloc_recorded_event(device); | |||
| uint64_t Timer::get_started_at() { | |||
| return m_started_at; | |||
| } | |||
| SmallVector<DeviceTimer::SharedEvent> DeviceTimer::get_all(SmallVector<CompNode> device_list) { | |||
| SmallVector<DeviceTimer::SharedEvent> results; | |||
| for (auto&& device: device_list) { | |||
| results.push_back(alloc_recorded_event(device)); | |||
| } | |||
| return results; | |||
| void Timer::reset() { | |||
| using namespace std::chrono; | |||
| m_start = steady_clock::now(); | |||
| auto now_ns = duration_cast<nanoseconds>(std::chrono::system_clock::now().time_since_epoch()); | |||
| m_started_at = now_ns.count(); | |||
| } | |||
| double HostTimer::get_msecs() { | |||
| using namespace std::chrono; | |||
| auto finish = steady_clock::now(); | |||
| auto duration = duration_cast<microseconds>(finish - m_start); | |||
| return (double)duration.count() / 1e3; | |||
| std::shared_ptr<CompNode::Event> Timer::record_event(CompNode device) { | |||
| auto event = EventPool::with_timer().alloc_shared(device); | |||
| event->record(); | |||
| return event; | |||
| } | |||
| double HostTimer::get_started_at() { | |||
| return m_started_at; | |||
| Profiler::options_t Profiler::sm_profile_options; | |||
| std::mutex Profiler::sm_mutex; | |||
| std::unordered_map<std::thread::id, Profiler*> Profiler::sm_profilers; | |||
| Timer Profiler::sm_timer; | |||
| std::atomic_uint64_t Profiler::sm_last_id = 0; | |||
| bool Profiler::sm_profiling = false; | |||
| thread_local std::unique_ptr<Profiler> Profiler::tm_profiler = std::make_unique<Profiler>(); | |||
| std::atomic_size_t Profiler::sm_preferred_capacity; | |||
| auto Profiler::get_thread_dict() -> thread_dict_t { | |||
| MGB_LOCK_GUARD(sm_mutex); | |||
| thread_dict_t thread_dict; | |||
| for (auto&& [tid, profiler]: sm_profilers) { | |||
| thread_dict[tid] = profiler->m_thread_name; | |||
| } | |||
| return thread_dict; | |||
| } | |||
| void HostTimer::reset() { | |||
| using namespace std::chrono; | |||
| m_start = steady_clock::now(); | |||
| auto now_us = duration_cast<microseconds>(std::chrono::system_clock::now().time_since_epoch()); | |||
| m_started_at = (double)(now_us.count()) / 1e3; | |||
| void Profiler::dump_profile(std::string basename, std::string format, results_t results, options_t options) { | |||
| auto thread_dict = get_thread_dict(); | |||
| { | |||
| mgb_log_error("unsupported profiling format %s", format.c_str()); | |||
| } | |||
| } | |||
| } // namespace imperative | |||
| @@ -1,145 +0,0 @@ | |||
| #include <string> | |||
| #include <memory> | |||
| #include "megbrain/utils/json.h" | |||
| namespace mgb { | |||
| namespace imperative { | |||
| class ChromeTraceEvent { | |||
| public: | |||
| ChromeTraceEvent& name(std::string name) { | |||
| m_name = std::move(name); | |||
| return *this; | |||
| } | |||
| ChromeTraceEvent& tid(uint64_t tid) { | |||
| m_tid = std::move(tid); | |||
| return *this; | |||
| } | |||
| ChromeTraceEvent& cat(std::string cat) { | |||
| m_cat = std::move(cat); | |||
| return *this; | |||
| } | |||
| ChromeTraceEvent& pid(uint64_t pid) { | |||
| m_pid = pid; | |||
| return *this; | |||
| } | |||
| ChromeTraceEvent& id(uint64_t id) { | |||
| m_id = id; | |||
| return *this; | |||
| } | |||
| ChromeTraceEvent& idx(uint64_t idx) { | |||
| m_idx = idx; | |||
| return *this; | |||
| } | |||
| ChromeTraceEvent& ts(double ts) { | |||
| m_ts = ts; | |||
| return *this; | |||
| } | |||
| ChromeTraceEvent& dur(double dur) { | |||
| m_dur = dur; | |||
| return *this; | |||
| } | |||
| ChromeTraceEvent& ph(char ph) { | |||
| m_ph = ph; | |||
| return *this; | |||
| } | |||
| ChromeTraceEvent& bp(char bp) { | |||
| m_bp = bp; | |||
| return *this; | |||
| } | |||
| ChromeTraceEvent& args(std::shared_ptr<json::Object> args) { | |||
| m_args = std::move(args); | |||
| return *this; | |||
| } | |||
| ChromeTraceEvent& arg(std::string key, std::string value) { | |||
| if (!m_args) { | |||
| m_args = json::Object::make(); | |||
| } | |||
| (*m_args)[key] = json::String::make(value); | |||
| return *this; | |||
| } | |||
| ChromeTraceEvent& arg(std::string key, double value) { | |||
| if (!m_args) { | |||
| m_args = json::Object::make(); | |||
| } | |||
| (*m_args)[key] = json::Number::make(value); | |||
| return *this; | |||
| } | |||
| ChromeTraceEvent& arg(std::string key, std::shared_ptr<json::Value> value) { | |||
| if (!m_args) { | |||
| m_args = json::Object::make(); | |||
| } | |||
| (*m_args)[key] = value; | |||
| return *this; | |||
| } | |||
| std::shared_ptr<json::Object> to_json() const { | |||
| auto result = json::Object::make(); | |||
| auto prop_str = [&](auto key, auto value) { | |||
| if (value.empty()) { | |||
| return; | |||
| } | |||
| (*result)[key] = json::String::make(value); | |||
| }; | |||
| auto prop_num = [&](auto key, auto value) { | |||
| if (!value) { | |||
| return; | |||
| } | |||
| (*result)[key] = json::Number::make(value.value()); | |||
| }; | |||
| auto prop_char = [&](auto key, auto value) { | |||
| if (!value) { | |||
| return; | |||
| } | |||
| (*result)[key] = json::String::make(std::string{} + value.value()); | |||
| }; | |||
| prop_str("name", m_name); | |||
| prop_num("tid", m_tid); | |||
| prop_str("cat", m_cat); | |||
| prop_num("pid", m_pid); | |||
| prop_num("id", m_id); | |||
| prop_num("idx", m_idx); | |||
| prop_num("ts", m_ts); | |||
| prop_num("dur", m_dur); | |||
| prop_char("ph", m_ph); | |||
| prop_char("bp", m_bp); | |||
| if (m_args) { | |||
| (*result)["args"] = m_args; | |||
| } | |||
| return result; | |||
| } | |||
| private: | |||
| std::string m_name; | |||
| std::string m_cat; | |||
| std::optional<uint64_t> m_tid; | |||
| std::optional<uint64_t> m_pid; | |||
| std::optional<uint64_t> m_id; | |||
| std::optional<uint64_t> m_idx; | |||
| std::optional<double> m_ts; | |||
| std::optional<double> m_dur; | |||
| std::optional<char> m_ph; | |||
| std::optional<char> m_bp; | |||
| std::shared_ptr<json::Object> m_args; | |||
| }; | |||
| class ChromeTraceEventList { | |||
| public: | |||
| ChromeTraceEvent& new_event() { | |||
| m_content.emplace_back(); | |||
| return m_content.back(); | |||
| } | |||
| std::shared_ptr<json::Array> to_json() const { | |||
| auto result = json::Array::make(); | |||
| for (auto&& event: m_content) { | |||
| result->add(event.to_json()); | |||
| } | |||
| return result; | |||
| } | |||
| private: | |||
| std::vector<ChromeTraceEvent> m_content; | |||
| }; | |||
| } // namespace imperative | |||
| } // namespace mgb | |||
| @@ -0,0 +1,186 @@ | |||
| /** | |||
| * \file imperative/src/impl/interpreter/events.h | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| */ | |||
| #pragma once | |||
| #include "megbrain/utils/small_vector.h" | |||
| #include "../op_trait.h" | |||
| namespace mgb::imperative::profiler { | |||
| enum class TensorProp { | |||
| InvalidProp, Device, Shape, DType, DevValue, HostValue, | |||
| }; | |||
| using OpParams = std::unordered_map<std::string, std::string>; | |||
| } | |||
| namespace mgb::imperative { | |||
| template <> | |||
| struct ToStringTrait<profiler::TensorProp>{ | |||
| using TensorProp = profiler::TensorProp; | |||
| std::string operator()(TensorProp prop) const { | |||
| switch(prop) { | |||
| case TensorProp::DType: | |||
| return "dtype"; | |||
| case TensorProp::DevValue: | |||
| return "dev_value"; | |||
| case TensorProp::Device: | |||
| return "device"; | |||
| case TensorProp::HostValue: | |||
| return "host_value"; | |||
| case TensorProp::Shape: | |||
| return "shape"; | |||
| default: | |||
| return "unknown"; | |||
| } | |||
| } | |||
| }; | |||
| } | |||
| namespace mgb::imperative::profiler { | |||
| #define DEF_EVENT(X, ...) struct X##Event __VA_ARGS__; | |||
| #define DEF_DUR_EVENT(X, ...) struct X##Event __VA_ARGS__; struct X##FinishEvent __VA_ARGS__; | |||
| DEF_EVENT(OpDispatch, { | |||
| uint64_t op_id; | |||
| std::string op_name; | |||
| std::function<OpParams()> op_params; | |||
| SmallVector<uint64_t> inputs; | |||
| SmallVector<uint64_t> outputs; | |||
| }); | |||
| DEF_DUR_EVENT(OpInput, { | |||
| uint64_t tensor_id; | |||
| TensorShape shape; | |||
| }); | |||
| DEF_DUR_EVENT(OpDel, { | |||
| uint64_t tensor_id; | |||
| TensorShape shape; | |||
| }); | |||
| DEF_DUR_EVENT(OpOutput, { | |||
| uint64_t tensor_id; | |||
| TensorShape shape; | |||
| }); | |||
| DEF_DUR_EVENT(OpExecute, { | |||
| uint64_t op_id; | |||
| }); | |||
| DEF_DUR_EVENT(OpPostExecute, { | |||
| uint64_t op_id; | |||
| }); | |||
| DEF_DUR_EVENT(KernelExecute, { | |||
| uint64_t op_id; | |||
| uint64_t kernel_id; | |||
| std::shared_ptr<CompNode::Event> event; | |||
| }); | |||
| DEF_EVENT(TensorDeclare, { | |||
| uint64_t tensor_id; | |||
| std::string name; | |||
| }); | |||
| DEF_EVENT(TensorProduce, { | |||
| uint64_t tensor_id; | |||
| TensorLayout layout; | |||
| CompNode device; | |||
| void* ptr; | |||
| }); | |||
| DEF_EVENT(TensorUsage, { | |||
| uint64_t tensor_id; | |||
| }); | |||
| DEF_EVENT(TensorRelease, { | |||
| uint64_t tensor_id; | |||
| }); | |||
| DEF_EVENT(TensorErase, { | |||
| uint64_t tensor_id; | |||
| size_t use_count; | |||
| }); | |||
| DEF_EVENT(TensorGetProp, { | |||
| uint64_t tensor_id; | |||
| TensorProp prop; | |||
| }); | |||
| DEF_EVENT(TensorNotifyProp, { | |||
| uint64_t tensor_id; | |||
| uint64_t wait_id; | |||
| TensorProp prop; | |||
| }); | |||
| DEF_EVENT(TensorWaitProp, { | |||
| uint64_t tensor_id; | |||
| uint64_t wait_id; | |||
| TensorProp prop; | |||
| }); | |||
| DEF_EVENT(TensorWaitPropFinish, { | |||
| uint64_t tensor_id; | |||
| uint64_t wait_id; | |||
| TensorProp prop; | |||
| bool notified; | |||
| }); | |||
| DEF_DUR_EVENT(SampleDevice, { | |||
| CompNode device; | |||
| size_t total_memory; | |||
| size_t free_memory; | |||
| }); | |||
| DEF_EVENT(WorkerException, {}); | |||
| DEF_EVENT(ShapeInfer, { | |||
| bool success; | |||
| }); | |||
| DEF_DUR_EVENT(Scope, { | |||
| std::string name; | |||
| }); | |||
| DEF_DUR_EVENT(DeviceScope, { | |||
| std::string name; | |||
| std::shared_ptr<CompNode::Event> event; | |||
| }); | |||
| DEF_DUR_EVENT(Sync, {}); | |||
| DEF_DUR_EVENT(StartProfile, { | |||
| size_t capture_count; | |||
| }); | |||
| DEF_DUR_EVENT(StopProfile, { | |||
| size_t escape_count; | |||
| }); | |||
| DEF_DUR_EVENT(TensorCommand, { | |||
| enum Kind { | |||
| Put, Del, SwapIn, SwapOut, Drop, ReGen, RecFree, GetValue | |||
| }; | |||
| uint64_t tensor_id; | |||
| Kind kind; | |||
| }); | |||
| #undef DEF_EVENT | |||
| #undef DEF_DUR_EVENT | |||
| } | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * \file imperative/src/impl/interpreter/profiler.cpp | |||
| * \file imperative/src/impl/interpreter/profiler.h | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| @@ -9,22 +9,12 @@ | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| */ | |||
| #include "./profiler.h" | |||
| #pragma once | |||
| #include <sstream> | |||
| #include <cinttypes> | |||
| #include <unordered_set> | |||
| #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) | |||
| #include <unistd.h> | |||
| #elif defined(_WIN32) | |||
| #include <process.h> | |||
| #else | |||
| #error Unsupported platform | |||
| #endif | |||
| #include "../op_trait.h" | |||
| namespace mgb::imperative::interpreter::intl { | |||
| #include "megbrain/imperative/profiler.h" | |||
| namespace mgb::imperative::profiler { | |||
| } | |||
| @@ -6,6 +6,8 @@ | |||
| #include "megbrain/tensor.h" | |||
| #include "./events.h" | |||
| namespace mgb::imperative::profiler { | |||
| struct ProfileDeviceState { | |||
| @@ -53,6 +55,7 @@ struct ProfileStaticsState { | |||
| struct ProfileOperatorState { | |||
| uint64_t id; | |||
| std::string name; | |||
| OpParams params; | |||
| SmallVector<uint64_t> inputs; | |||
| SmallVector<uint64_t> outputs; | |||
| CompNode device; | |||
| @@ -47,8 +47,8 @@ struct Interpreter { | |||
| virtual size_t get_option(std::string name) = 0; | |||
| virtual void set_option(std::string name, size_t value) = 0; | |||
| virtual void start_profile(std::unordered_map<std::string, int> option) = 0; | |||
| virtual void stop_profile(std::string basename, std::string format) = 0; | |||
| virtual void start_profile() = 0; | |||
| virtual void stop_profile() = 0; | |||
| virtual void push_scope(std::string name) = 0; | |||
| virtual void pop_scope(std::string name) = 0; | |||
| @@ -17,6 +17,9 @@ | |||
| #include <fstream> | |||
| #include <chrono> | |||
| #include <bitset> | |||
| #include <deque> | |||
| #include <any> | |||
| #include <typeindex> | |||
| #include "megbrain/comp_node.h" | |||
| #include "megbrain/graph/event.h" | |||
| @@ -29,165 +32,188 @@ | |||
| namespace mgb { | |||
| namespace imperative { | |||
| class DeviceTimer { | |||
| public: | |||
| using SharedEvent = std::shared_ptr<CompNode::Event>; | |||
| DeviceTimer() = default; | |||
| SharedEvent get_device_time(CompNode device); | |||
| SmallVector<SharedEvent> get_all(SmallVector<CompNode> device_list); | |||
| }; | |||
| class HostTimer { | |||
| class Timer { | |||
| public: | |||
| void reset(); | |||
| double get_msecs(); | |||
| double get_started_at(); | |||
| uint64_t get_nsecs(); | |||
| uint64_t get_started_at(); | |||
| static std::shared_ptr<CompNode::Event> record_event(CompNode device); | |||
| private: | |||
| decltype(std::chrono::steady_clock::now()) m_start; | |||
| double m_started_at; | |||
| uint64_t m_started_at; | |||
| }; | |||
| class ProfilerBase { | |||
| class Profiler { | |||
| public: | |||
| using Host = std::thread::id; | |||
| using Device = CompNode; | |||
| struct HostInstant { | |||
| Host tid; | |||
| double time; | |||
| void wait() const {} | |||
| struct Record { | |||
| uint64_t id; | |||
| uint64_t time; //in ns | |||
| std::any data; | |||
| }; | |||
| struct DeviceInstant { | |||
| double before; | |||
| std::shared_ptr<CompNode::Event> event; | |||
| double after; | |||
| void wait() const { | |||
| event->host_wait(); | |||
| } | |||
| enum Status: uint8_t { | |||
| Running = 0, | |||
| Recording = 1, | |||
| Collecting = 2, | |||
| }; | |||
| using ProfileCollector = std::function<void(std::thread::id, Record)>; | |||
| using option_t = uint64_t; | |||
| using options_t = std::unordered_map<std::string, option_t>; | |||
| using result_t = std::pair<std::thread::id, Record>; | |||
| using results_t = std::vector<result_t>; | |||
| using thread_dict_t = std::unordered_map<std::thread::id, std::string>; | |||
| private: | |||
| std::thread::id m_thread_id; | |||
| std::vector<Record> m_records; | |||
| std::atomic<Status> m_status = Running; | |||
| uint64_t m_last_time = 0; | |||
| std::string m_thread_name; | |||
| static options_t sm_profile_options; | |||
| static std::mutex sm_mutex; | |||
| static std::unordered_map<std::thread::id, Profiler*> sm_profilers; | |||
| static Timer sm_timer; | |||
| static std::atomic_uint64_t sm_last_id; | |||
| static std::atomic_size_t sm_preferred_capacity; | |||
| static bool sm_profiling; | |||
| static constexpr bool sm_debug = false; | |||
| thread_local static std::unique_ptr<Profiler> tm_profiler; | |||
| public: | |||
| Profiler() { | |||
| m_thread_id = std::this_thread::get_id(); | |||
| MGB_LOCK_GUARD(sm_mutex); | |||
| if (sm_profilers.size() == 0) { | |||
| reset(); | |||
| } | |||
| mgb_assert(sm_profilers.count(m_thread_id) == 0); | |||
| sm_profilers[m_thread_id] = this; | |||
| } | |||
| ~Profiler() { | |||
| MGB_LOCK_GUARD(sm_mutex); | |||
| mgb_assert(sm_profilers.count(m_thread_id) == 1); | |||
| sm_profilers.erase(m_thread_id); | |||
| } | |||
| public: | |||
| static Profiler& get_instance() { | |||
| return *tm_profiler; | |||
| } | |||
| using Instant = std::variant<HostInstant, DeviceInstant>; | |||
| static void reset() { | |||
| mgb_assert(sm_profilers.size() == 0, "profiler already running"); | |||
| sm_timer.reset(); | |||
| } | |||
| template <typename TEvent> | |||
| struct EventRecord { | |||
| Instant instant; | |||
| TEvent data; | |||
| static uint64_t next_id() { | |||
| return sm_last_id++; | |||
| } | |||
| const HostInstant& host() const { | |||
| return std::get<HostInstant>(instant); | |||
| template <typename T, typename... TArgs> | |||
| static uint64_t record(TArgs&&... args) { | |||
| auto& profiler = get_instance(); | |||
| auto last_time = profiler.m_last_time; | |||
| if constexpr (sm_debug) { | |||
| Status expected = Running; | |||
| mgb_assert(profiler.m_status.compare_exchange_strong(expected, Recording)); | |||
| } | |||
| const DeviceInstant& device() const { | |||
| return std::get<DeviceInstant>(instant); | |||
| uint64_t id = next_id(); | |||
| uint64_t time = sm_timer.get_nsecs(); | |||
| time = std::max(time, last_time + 2000); | |||
| profiler.m_last_time = time; | |||
| profiler.m_records.push_back({id, time, T{std::forward<TArgs>(args)...}}); | |||
| if constexpr (sm_debug) { | |||
| Status expected = Recording; | |||
| mgb_assert(profiler.m_status.compare_exchange_strong(expected, Running)); | |||
| } | |||
| return id; | |||
| } | |||
| void wait() const { | |||
| std::visit([&](const auto& instant){ instant.wait(); }, instant); | |||
| static results_t collect() { | |||
| MGB_LOCK_GUARD(sm_mutex); | |||
| if constexpr (sm_debug) { | |||
| for (auto&& [tid, profiler]: sm_profilers) { | |||
| Status expected = Running; | |||
| mgb_assert(profiler->m_status.compare_exchange_strong(expected, Collecting)); | |||
| } | |||
| } | |||
| }; | |||
| protected: | |||
| HostInstant record_host() { | |||
| return {std::this_thread::get_id(), m_host_timer.get_msecs()}; | |||
| std::vector<std::pair<std::thread::id, Record>> profile_data; | |||
| for (auto&& [tid, profiler]: sm_profilers) { | |||
| sm_preferred_capacity = std::max(sm_preferred_capacity.load(), profiler->m_records.size()); | |||
| for (auto& record: profiler->m_records) { | |||
| profile_data.push_back({tid, std::move(record)}); | |||
| } | |||
| profiler->m_records.clear(); | |||
| profiler->m_records.reserve(sm_preferred_capacity); | |||
| } | |||
| std::sort(profile_data.begin(), profile_data.end(), [](auto& lhs, auto& rhs){ | |||
| return lhs.second.id < rhs.second.id; | |||
| }); | |||
| if constexpr (sm_debug) { | |||
| for (auto&& [tid, profiler]: sm_profilers) { | |||
| Status expected = Collecting; | |||
| mgb_assert(profiler->m_status.compare_exchange_strong(expected, Running)); | |||
| } | |||
| } | |||
| return profile_data; | |||
| } | |||
| DeviceInstant record_device(Device device) { | |||
| auto before = m_host_timer.get_msecs(); | |||
| auto event = m_device_timer.get_device_time(device); | |||
| auto after = m_host_timer.get_msecs(); | |||
| return {before, event, after}; | |||
| static option_t get_option(std::string key, option_t default_val) { | |||
| if (!sm_profile_options.count(key)) { | |||
| return default_val; | |||
| } | |||
| return sm_profile_options.at(key); | |||
| } | |||
| protected: | |||
| std::atomic_int64_t m_last_id = 0; | |||
| HostTimer m_host_timer; | |||
| DeviceTimer m_device_timer; | |||
| Spinlock m_lock; | |||
| }; | |||
| static void load_options(options_t options) { | |||
| sm_profile_options = std::move(options); | |||
| } | |||
| template <typename... TEvents> | |||
| class Profiler: public ProfilerBase { | |||
| public: | |||
| using Record = std::variant<EventRecord<TEvents>...>; | |||
| using Mask = std::bitset<sizeof...(TEvents)>; | |||
| static options_t get_options() { | |||
| return sm_profile_options; | |||
| } | |||
| struct Data { | |||
| std::vector<Record> records; | |||
| double started_at; | |||
| }; | |||
| static bool is_profiling() { | |||
| return sm_profiling; | |||
| } | |||
| template <typename TEvent, size_t index = 0> | |||
| static constexpr size_t index_of() { | |||
| if constexpr (index == std::variant_size_v<Record>) { | |||
| return index; | |||
| } else if constexpr (std::is_same_v<EventRecord<TEvent>, std::variant_alternative_t<index, Record>>) { | |||
| return index; | |||
| } else { | |||
| return index_of<TEvent, index+1>(); | |||
| } | |||
| }; | |||
| static void start_profile() { | |||
| mgb_assert(!sm_profiling); | |||
| sm_profiling = true; | |||
| } | |||
| template <typename... TEvents2> | |||
| static Mask mask_of() { | |||
| return Mask{} | (Mask{}.set(index_of<TEvents2>()) |...); | |||
| static void stop_profile() { | |||
| mgb_assert(sm_profiling); | |||
| sm_profiling = false; | |||
| } | |||
| enum Status { | |||
| NotStarted, Profiling, Stopped | |||
| }; | |||
| static thread_dict_t get_thread_dict(); | |||
| static void dump_profile(std::string basename, std::string format, results_t results, options_t options); | |||
| }; | |||
| class ProfileDataCollector { | |||
| public: | |||
| template <typename TEvent, typename... TArgs> | |||
| void record_host(TArgs&&... args) { | |||
| MGB_LOCK_GUARD(m_lock); | |||
| if (!m_event_mask.test(index_of<TEvent>())) { | |||
| return; | |||
| } | |||
| mgb_assert(m_status != Stopped, "record after stop"); | |||
| auto instant = HostInstant{std::this_thread::get_id(), m_host_timer.get_msecs()}; | |||
| m_record_list.emplace_back(EventRecord<TEvent>{std::move(instant), {std::forward<TArgs>(args)...}}); | |||
| template <typename T> | |||
| using SubCollector = std::function<void(uint64_t, std::thread::id, uint64_t, T)>; | |||
| private: | |||
| std::unordered_map<std::type_index, SubCollector<std::any>> m_collectors; | |||
| public: | |||
| template <typename T> | |||
| ProfileDataCollector& handle(SubCollector<T> collector) { | |||
| auto erased = [collector](uint64_t id, std::thread::id tid, uint64_t time, std::any data){ | |||
| collector(id, tid, time, std::any_cast<T>(std::move(data))); | |||
| }; | |||
| m_collectors[typeid(T)] = erased; | |||
| return *this; | |||
| } | |||
| template <typename TEvent, typename... TArgs> | |||
| void record_device(Device device, TArgs&&... args) { | |||
| MGB_LOCK_GUARD(m_lock); | |||
| if (!m_event_mask.test(index_of<TEvent>())) { | |||
| void operator()(uint64_t id, std::thread::id tid, uint64_t time, std::any event) { | |||
| std::type_index type = event.type(); | |||
| if (m_collectors.count(type) == 0) { | |||
| return; | |||
| } | |||
| mgb_assert(m_status != Stopped, "record after stop"); | |||
| auto before = m_host_timer.get_msecs(); | |||
| auto event = m_device_timer.get_device_time(device); | |||
| auto after = m_host_timer.get_msecs(); | |||
| auto instant = DeviceInstant{before, event, after}; | |||
| m_record_list.emplace_back(EventRecord<TEvent>{std::move(instant), {std::forward<TArgs>(args)...}}); | |||
| } | |||
| // unsafe | |||
| bool is_profiling() { | |||
| return m_status == Profiling; | |||
| } | |||
| void start(Mask mask) { | |||
| MGB_LOCK_GUARD(m_lock); | |||
| mgb_assert(m_status == NotStarted, "profiler already started"); | |||
| m_status = Profiling; | |||
| m_event_mask = mask; | |||
| m_host_timer.reset(); | |||
| } | |||
| Data stop() { | |||
| MGB_LOCK_GUARD(m_lock); | |||
| mgb_assert(m_status == Profiling, "profiler not active"); | |||
| m_status = Stopped; | |||
| for (auto&& record: m_record_list) { | |||
| std::visit([&](const auto& record){ | |||
| record.wait(); | |||
| }, record); | |||
| } | |||
| auto records = std::move(m_record_list); | |||
| return { records, m_host_timer.get_started_at() }; | |||
| auto& handler = m_collectors.at(type); | |||
| handler(id, tid, time, std::move(event)); | |||
| } | |||
| protected: | |||
| std::vector<Record> m_record_list; | |||
| Mask m_event_mask; | |||
| std::atomic<Status> m_status = NotStarted; | |||
| }; | |||
| } // namespace imperative | |||