GitOrigin-RevId: 562103186f
tags/v1.5.0
| @@ -220,7 +220,7 @@ pdef('Axis').add_fields('int32', 'axis', 0) | |||
| (pdef('Images2Neibs'). | |||
| add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1, | |||
| 'window_h', 3, 'window_w', 3)) | |||
| 'dilate_h', 1, 'dilate_w', 1, 'window_h', 3, 'window_w', 3)) | |||
| (pdef('Pooling', version=0, is_legacy=True). | |||
| add_enum( | |||
| @@ -23,6 +23,8 @@ void Images2NeibsBase::deduce_layout_fwd(const TensorLayout &src, | |||
| "pad_w=" + std::to_string(param().pad_w) + ", " + | |||
| "stride_h=" + std::to_string(param().stride_h) + ", " + | |||
| "stride_w=" + std::to_string(param().stride_w) + ", " + | |||
| "dilate_h=" + std::to_string(param().dilate_h) + ", " + | |||
| "dilate_w=" + std::to_string(param().dilate_w) + ", " + | |||
| "window_h=" + std::to_string(param().window_h) + ", " + | |||
| "window_w=" + std::to_string(param().window_w); | |||
| }; | |||
| @@ -34,11 +36,13 @@ void Images2NeibsBase::deduce_layout_fwd(const TensorLayout &src, | |||
| size_t pw = this->param().pad_w; | |||
| size_t sh = this->param().stride_h; | |||
| size_t sw = this->param().stride_w; | |||
| size_t dh = this->param().dilate_h; | |||
| size_t dw = this->param().dilate_w; | |||
| size_t wh = this->param().window_h; | |||
| size_t ww = this->param().window_w; | |||
| size_t oh, ow; | |||
| infer_conv_shape2d(ih, iw, wh, ww, sh, sw, ph, pw, oh, ow); | |||
| infer_conv_shape2d(ih, iw, wh+(wh-1)*(dh-1), ww+(ww-1)*(dw-1), sh, sw, ph, pw, oh, ow); | |||
| dst = TensorLayout(TensorShape({n, ic, oh, ow, wh, ww}), src.dtype); | |||
| } | |||
| @@ -24,7 +24,7 @@ namespace images2neibs { | |||
| template <typename T> | |||
| __global__ void forward_kernel(const T *src, T *dst, | |||
| int N, int C, int IH, int IW, int OH, int OW, | |||
| int ph, int pw, int sh, int sw, int WH, int WW) | |||
| int ph, int pw, int sh, int sw, int dh, int dw, int WH, int WW) | |||
| { | |||
| int NC = N * C; | |||
| int WP = WH*WW; | |||
| @@ -37,8 +37,8 @@ __global__ void forward_kernel(const T *src, T *dst, | |||
| if (op < OH * OW) { | |||
| int oh = op / OW; | |||
| int ow = op % OW; | |||
| int ih = -ph + sh * oh + wh; | |||
| int iw = -pw + sw * ow + ww; | |||
| int ih = -ph + sh * oh + wh* dh; | |||
| int iw = -pw + sw * ow + ww* dw; | |||
| int dst_pos = nc * OH * OW * WH * WW + op * WH * WW + wp; | |||
| int src_pos = nc * IH * IW + ih * IW + iw; | |||
| dst[dst_pos] = (ih >= 0 && ih < IH && iw >= 0 && iw < IW) | |||
| @@ -52,7 +52,7 @@ __global__ void forward_kernel(const T *src, T *dst, | |||
| template <typename T> | |||
| void forward(const T* src, T* dst, int N, int C, int IH, int IW, int OH, int OW, | |||
| int ph, int pw, int sh, int sw, int wh, int ww, | |||
| int ph, int pw, int sh, int sw, int dh, int dw, int wh, int ww, | |||
| cudaStream_t stream) { | |||
| int spatial_size = OH * OW; | |||
| int kernel_size = wh * ww; | |||
| @@ -63,7 +63,7 @@ void forward(const T* src, T* dst, int N, int C, int IH, int IW, int OH, int OW, | |||
| int by = N * C; | |||
| forward_kernel<<<dim3(bx, std::min(grid_y_max, by)), dim3(tx, ty), 0, | |||
| stream>>>(src, dst, N, C, IH, IW, OH, OW, ph, pw, sh, sw, | |||
| stream>>>(src, dst, N, C, IH, IW, OH, OW, ph, pw, sh, sw, dh, dw, | |||
| wh, ww); | |||
| after_kernel_launch(); | |||
| } | |||
| @@ -73,7 +73,7 @@ void forward(const T* src, T* dst, int N, int C, int IH, int IW, int OH, int OW, | |||
| template <typename T> | |||
| __global__ void backward_kernel(const T *diff, T *grad, | |||
| int N, int C, int IH, int IW, int OH, int OW, | |||
| int ph, int pw, int sh, int sw, int WH, int WW) | |||
| int ph, int pw, int sh, int sw, int dh, int dw, int WH, int WW) | |||
| { | |||
| int id = threadIdx.x + blockIdx.x * blockDim.x; | |||
| if (id < N*C*IH*IW) { | |||
| @@ -82,17 +82,20 @@ __global__ void backward_kernel(const T *diff, T *grad, | |||
| int iw = id % (IH*IW) % IW; | |||
| grad[nc*IH*IW + ih*IW + iw] = 0.0f; | |||
| int oh_max = min((ih+ph) / sh, OH-1); | |||
| int oh_min = max((ih+ph-(WH-1)+sh-1) / sh, 0); | |||
| int oh_min = max((ih+ph-(WH-1)*dh+sh-1) / sh, 0); | |||
| int ow_max = min((iw+pw) / sw, OW-1); | |||
| int ow_min = max((iw+pw-(WW-1)+sw-1) / sw, 0); | |||
| int ow_min = max((iw+pw-(WW-1)*dw+sw-1) / sw, 0); | |||
| for (int oh = oh_min; oh <= oh_max; ++oh) | |||
| for (int ow = ow_min; ow <= ow_max; ++ow) | |||
| { | |||
| int wh = ih+ph - sh*oh; | |||
| int ww = iw+pw - sw*ow; | |||
| grad[nc*IH*IW + ih*IW + iw] += | |||
| diff[nc*OH*OW*WH*WW + oh*OW*WH*WW + ow*WH*WW + | |||
| wh*WW + ww]; | |||
| if ((ih+ph - sh*oh)%dh==0 && (iw+pw - sw*ow)%dw==0){ | |||
| int wh = ih+ph - sh*oh - (ih+ph - sh*oh)/dh * (dh-1); | |||
| int ww = iw+pw - sw*ow - (iw+pw - sw*ow)/dw * (dw-1); | |||
| grad[nc*IH*IW + ih*IW + iw] += | |||
| diff[nc*OH*OW*WH*WW + oh*OW*WH*WW + ow*WH*WW + | |||
| wh*WW + ww]; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -100,23 +103,23 @@ __global__ void backward_kernel(const T *diff, T *grad, | |||
| template <typename T> | |||
| void backward(const T *diff, T *grad, | |||
| int N, int C, int IH, int IW, int OH, int OW, | |||
| int ph, int pw, int sh, int sw, int wh, int ww, | |||
| int ph, int pw, int sh, int sw, int dh, int dw, int wh, int ww, | |||
| cudaStream_t stream) | |||
| { | |||
| int threads = NR_THREADS; | |||
| int blocks = DIVUP(N*C*IH*IW, threads); | |||
| backward_kernel<<<blocks, threads, 0, stream>>>(diff, grad, | |||
| N, C, IH, IW, OH, OW, | |||
| ph, pw, sh, sw, wh, ww); | |||
| ph, pw, sh, sw, dh, dw, wh, ww); | |||
| after_kernel_launch(); | |||
| } | |||
| #define INST(T) \ | |||
| template void forward<T>(const T *, T *, int, int, int, int, int, int, \ | |||
| int, int, int, int, int, int, \ | |||
| int, int, int, int, int, int, int, int, \ | |||
| cudaStream_t); \ | |||
| template void backward<T>(const T *, T *, int, int, int, int, int, int, \ | |||
| int, int, int, int, int, int, \ | |||
| int, int, int, int, int, int, int, int, \ | |||
| cudaStream_t); | |||
| #define cb(DType) \ | |||
| INST(DTypeTrait<DType>::ctype) | |||
| @@ -18,13 +18,13 @@ namespace images2neibs { | |||
| template <typename T> | |||
| void forward(const T *src, T *dst, | |||
| int N, int C, int IH, int IW, int OH, int OW, | |||
| int ph, int pw, int sh, int sw, int wh, int ww, | |||
| int ph, int pw, int sh, int sw, int dh, int dw, int wh, int ww, | |||
| cudaStream_t stream); | |||
| template <typename T> | |||
| void backward(const T *diff, T *grad, | |||
| int N, int C, int IH, int IW, int OH, int OW, | |||
| int ph, int pw, int sh, int sw, int wh, int ww, | |||
| int ph, int pw, int sh, int sw, int dh, int dw, int wh, int ww, | |||
| cudaStream_t stream); | |||
| } // namespace images2neibs | |||
| @@ -27,13 +27,14 @@ void Images2NeibsForwardImpl::exec(_megdnn_tensor_in src, | |||
| int OH = dst.layout[2], OW = dst.layout[3]; | |||
| int ph = param().pad_h, pw = param().pad_w; | |||
| int sh = param().stride_h, sw = param().stride_w; | |||
| int dh = param().dilate_h, dw = param().dilate_w; | |||
| int wh = param().window_h, ww = param().window_w; | |||
| #define cb(DType) \ | |||
| if (src.layout.dtype.enumv() == DTypeTrait<DType>::enumv) { \ | |||
| using T = DTypeTrait<DType>::ctype; \ | |||
| images2neibs::forward(src.ptr<T>(), dst.ptr<T>(), \ | |||
| N, C, IH, IW, OH, OW, \ | |||
| ph, pw, sh, sw, wh, ww, \ | |||
| ph, pw, sh, sw, dh, dw, wh, ww, \ | |||
| stream); \ | |||
| return; \ | |||
| } | |||
| @@ -53,13 +54,14 @@ void Images2NeibsBackwardImpl::exec(_megdnn_tensor_in diff, | |||
| int OH = diff.layout[2], OW = diff.layout[3]; | |||
| int ph = param().pad_h, pw = param().pad_w; | |||
| int sh = param().stride_h, sw = param().stride_w; | |||
| int dh = param().dilate_h, dw = param().dilate_w; | |||
| int wh = param().window_h, ww = param().window_w; | |||
| #define cb(DType) \ | |||
| if (diff.layout.dtype == DType()) { \ | |||
| using T = DTypeTrait<DType>::ctype; \ | |||
| images2neibs::backward(diff.ptr<T>(), grad.ptr<T>(), \ | |||
| N, C, IH, IW, OH, OW, \ | |||
| ph, pw, sh, sw, wh, ww, \ | |||
| ph, pw, sh, sw, dh, dw, wh, ww, \ | |||
| stream); \ | |||
| return; \ | |||
| } | |||
| @@ -33,20 +33,25 @@ void Images2NeibsForwardImpl::exec_internal(_megdnn_tensor_in src, | |||
| int pad_w = static_cast<int>(param().pad_w); | |||
| int stride_h = static_cast<int>(param().stride_h); | |||
| int stride_w = static_cast<int>(param().stride_w); | |||
| int dilate_h = static_cast<int>(param().dilate_h); | |||
| int dilate_w = static_cast<int>(param().dilate_w); | |||
| int equ_window_h = dilate_h * (window_h-1) + 1; | |||
| int equ_window_w = dilate_w * (window_w-1) + 1; | |||
| for (int n = 0; n < N; ++n) | |||
| for (int c = 0; c < C; ++c) | |||
| { | |||
| int ih = -pad_h; | |||
| for (; ih+window_h <= IH+pad_h; ih += stride_h) { | |||
| for (; ih+equ_window_h <= IH+pad_h; ih += stride_h) { | |||
| int iw = -pad_w; | |||
| for (; iw+window_w <= IW+pad_w; iw += stride_w) { | |||
| for (; iw+equ_window_w <= IW+pad_w; iw += stride_w) { | |||
| for (int kh = 0; kh < window_h; ++kh) | |||
| for (int kw = 0; kw < window_w; ++kw) | |||
| { | |||
| int ih2 = ih+dilate_h*kh, iw2 = iw+dilate_w*kw; | |||
| dptr[idx*window_h*window_w + kh*window_w + kw] = | |||
| (ih+kh) >= 0 && (ih+kh) < IH && | |||
| (iw+kw) >= 0 && (iw+kw) < IW ? | |||
| sptr[n*C*IH*IW + c*IH*IW + (ih+kh)*IW + (iw+kw)] : 0.0f; | |||
| ih2 >= 0 && ih2 < IH && | |||
| iw2 >= 0 && iw2 < IW ? | |||
| sptr[n*C*IH*IW + c*IH*IW + ih2*IW + iw2] : 0.0f; | |||
| } | |||
| ++idx; | |||
| } | |||
| @@ -86,18 +91,22 @@ void Images2NeibsBackwardImpl::exec_internal(_megdnn_tensor_in diff, | |||
| int pad_w = static_cast<int>(param().pad_w); | |||
| int stride_h = static_cast<int>(param().stride_h); | |||
| int stride_w = static_cast<int>(param().stride_w); | |||
| int dilate_h = static_cast<int>(param().dilate_h); | |||
| int dilate_w = static_cast<int>(param().dilate_w); | |||
| int equ_window_h = dilate_h * (window_h-1) + 1; | |||
| int equ_window_w = dilate_w * (window_w-1) + 1; | |||
| memset(sptr, 0, sizeof(T) * N*C*IH*IW); | |||
| for (int n = 0; n < N; ++n) | |||
| for (int c = 0; c < C; ++c) | |||
| { | |||
| int ih = -pad_h; | |||
| for (; ih+window_h <= IH+pad_h; ih += stride_h) { | |||
| for (; ih+equ_window_h <= IH+pad_h; ih += stride_h) { | |||
| int iw = -pad_w; | |||
| for (; iw+window_w <= IW+pad_w; iw += stride_w) { | |||
| for (; iw+equ_window_w <= IW+pad_w; iw += stride_w) { | |||
| for (int kh = 0; kh < window_h; ++kh) | |||
| for (int kw = 0; kw < window_w; ++kw) | |||
| { | |||
| int ih2 = ih+kh, iw2 = iw+kw; | |||
| int ih2 = ih+dilate_h*kh, iw2 = iw+dilate_w*kw; | |||
| if (ih2 >= 0 && ih2 < IH && iw2 >= 0 && iw2 < IW) { | |||
| sptr[n*C*IH*IW + c*IH*IW + ih2*IW + iw2] += | |||
| dptr[idx*window_h*window_w + kh*window_w + kw]; | |||
| @@ -31,17 +31,19 @@ inline std::vector<TestArg> get_args() { | |||
| for (uint32_t pw : {0, 1}) | |||
| for (uint32_t sh : {1, 2}) | |||
| for (uint32_t sw : {1, 2}) | |||
| for (uint32_t dh : {1, 2, 3}) | |||
| for (uint32_t dw : {1, 2, 3}) | |||
| for (uint32_t wh : {3, 4}) | |||
| for (uint32_t ww : {3, 4}) { | |||
| args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, wh, ww}, | |||
| TensorShape{2, 3, 5, 6}); | |||
| args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, dh, dw, wh, ww}, | |||
| TensorShape{2, 3, 19, 20}); | |||
| } | |||
| // clang-format on | |||
| // large window case | |||
| args.emplace_back(param::Images2Neibs{0, 0, 1, 1, 32, 64}, | |||
| args.emplace_back(param::Images2Neibs{0, 0, 1, 1, 1, 1, 32, 64}, | |||
| TensorShape{2, 3, 96, 128}); | |||
| // large size | |||
| args.emplace_back(param::Images2Neibs{0, 0, 1, 1, 1, 1}, | |||
| args.emplace_back(param::Images2Neibs{0, 0, 1, 1, 1, 1, 1, 1}, | |||
| TensorShape{128, 128, 28, 24}); | |||
| return args; | |||
| @@ -54,17 +56,19 @@ inline std::vector<TestArg> get_benchmark_args() { | |||
| for (uint32_t pw : {0, 1}) | |||
| for (uint32_t sh : {1, 2}) | |||
| for (uint32_t sw : {1, 2}) | |||
| for (uint32_t dh : {1, 2}) | |||
| for (uint32_t dw : {1, 2}) | |||
| for (uint32_t wh : {3, 4}) | |||
| for (uint32_t ww : {3, 4}) | |||
| for (uint32_t b : {1, 64}) | |||
| for (uint32_t c : {64, 128}) | |||
| for (uint32_t hw : {64, 128}) { | |||
| args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, wh, ww}, | |||
| args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, dh, dw, wh, ww}, | |||
| TensorShape{b, c, hw, hw}); | |||
| } | |||
| // clang-format on | |||
| // large size | |||
| args.emplace_back(param::Images2Neibs{0, 0, 1, 1, 1, 1}, | |||
| args.emplace_back(param::Images2Neibs{0, 0, 1, 1, 1, 1, 1, 1}, | |||
| TensorShape{1024, 128, 28, 24}); | |||
| return args; | |||
| @@ -0,0 +1,59 @@ | |||
| /** | |||
| * \file dnn/test/naive/images2neibs.cpp | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| */ | |||
| #include "test/naive/fixture.h" | |||
| #include "megdnn/oprs/nn.h" | |||
| #include "test/common/checker.h" | |||
| using namespace megdnn; | |||
| using namespace test; | |||
| TEST_F(NAIVE, IMAGES2NEIBS_FORWARD) { | |||
| Checker<Images2Neibs> checker(handle(), /* check_dispatch */false); | |||
| Images2Neibs::Param param(0,0,1,1,1,1,2,2); | |||
| checker.set_param(param).exect( | |||
| Testcase{TensorValue({1, 1, 3, 3}, dtype::Uint8(), | |||
| {0,1,2, | |||
| 3,4,5, | |||
| 6,7,8}), {}}, | |||
| Testcase{{}, | |||
| TensorValue({1, 1, 2, 2, 2, 2}, dtype::Uint8(), | |||
| {0,1,3,4, | |||
| 1,2,4,5, | |||
| 3,4,6,7, | |||
| 4,5,7,8})}); | |||
| param.pad_h = 1; | |||
| param.pad_w = 1; | |||
| param.stride_h = 2; | |||
| param.stride_w = 2; | |||
| param.dilate_h = 2; | |||
| param.dilate_w = 2; | |||
| param.window_h = 3; | |||
| param.window_w = 3; | |||
| checker.set_param(param).exect( | |||
| Testcase{TensorValue({1, 1, 6, 7}, dtype::Uint8(), | |||
| {0,1,2,3,4,5,6, | |||
| 7,8,9,10,11,12,13, | |||
| 14,15,16,17,18,19,20, | |||
| 21,22,23,24,25,26,27, | |||
| 28,29,30,31,32,33,34, | |||
| 35,36,37,38,39,40,41}), {}}, | |||
| Testcase{{}, | |||
| TensorValue({1, 1, 2, 3, 3, 3}, dtype::Uint8(), | |||
| {0,0,0,0,8,10,0,22,24, | |||
| 0,0,0,8,10,12,22,24,26, | |||
| 0,0,0,10,12,0,24,26,0, | |||
| 0,8,10,0,22,24,0,36,38, | |||
| 8,10,12,22,24,26,36,38,40, | |||
| 10,12,0,24,26,0,38,40,0})}); | |||
| } | |||
| @@ -70,6 +70,7 @@ __all__ = [ | |||
| "remap", | |||
| "resize", | |||
| "sigmoid", | |||
| "sliding_window", | |||
| "softmax", | |||
| "softplus", | |||
| "sync_batch_norm", | |||
| @@ -1353,6 +1354,44 @@ def indexing_one_hot( | |||
| return result | |||
| def sliding_window( | |||
| inp: Tensor, | |||
| kernel_size: Union[int, Tuple[int, int]], | |||
| padding: Union[int, Tuple[int, int]] = 0, | |||
| stride: Union[int, Tuple[int, int]] = 1, | |||
| dilation: Union[int, Tuple[int, int]] = 1, | |||
| ) -> Tensor: | |||
| """ | |||
| Extracts sliding local blocks from a batched input tensor. | |||
| Refer to :class:`~.SlidingWindow` for more information. | |||
| :param inp: input tensor. | |||
| :param kernel_size: size of the window. | |||
| :param padding: implicit zero padding added on both sides of input. Default: 0 | |||
| :param stride: stride of the window. Default: 1 | |||
| :param dilation: dilation of the window. Default: 1 | |||
| :return: output tensor. | |||
| """ | |||
| padding_h, padding_w = _pair(padding) | |||
| stride_h, stride_w = _pair_nonzero(stride) | |||
| dilation_h, dilation_w = _pair_nonzero(dilation) | |||
| window_h, window_w = _pair_nonzero(kernel_size) | |||
| op = builtin.Images2Neibs( | |||
| pad_h=padding_h, | |||
| pad_w=padding_w, | |||
| stride_h=stride_h, | |||
| stride_w=stride_w, | |||
| dilate_h=dilation_h, | |||
| dilate_w=dilation_w, | |||
| window_h=window_h, | |||
| window_w=window_w, | |||
| ) | |||
| (output,) = apply(op, inp) | |||
| return output | |||
| interpolate = deprecated_func("1.3", "megengine.functional.vision", "interpolate", True) | |||
| roi_pooling = deprecated_func("1.3", "megengine.functional.vision", "roi_pooling", True) | |||
| roi_align = deprecated_func("1.3", "megengine.functional.vision", "roi_align", True) | |||
| @@ -34,3 +34,4 @@ from .normalization import GroupNorm, InstanceNorm, LayerNorm | |||
| from .pooling import AvgPool2d, MaxPool2d | |||
| from .quant_dequant import DequantStub, QuantStub | |||
| from .sequential import Sequential | |||
| from .sliding_window import SlidingWindow | |||
| @@ -0,0 +1,88 @@ | |||
| # -*- coding: utf-8 -*- | |||
| # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| # | |||
| # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| from typing import Tuple, Union | |||
| from ..functional import sliding_window | |||
| from .module import Module | |||
| class SlidingWindow(Module): | |||
| r""" | |||
| Apply a sliding window to input tensor and copy content in the window to | |||
| corresponding output location. Assume input shape is :math:`(N, C, IH, IW)`, | |||
| then output shape would be :math:`(N, C, OH, OW, window_h, window_w)` where | |||
| :math:`(OH, OW)` would be computed from padding, stride, window and | |||
| :math:`(IH, IW)`, as in convolution. For each output location, we have; | |||
| .. math:: | |||
| out_{n, c, oh, ow, wh, ww} &= src_{n, c, ih+wh, iw+ww} \\ | |||
| \text{where } & ih=-pad_h+oh \times stride_h + (wh-1) \times (dilation_h-1) \\ | |||
| & iw=-pad_w+ow \times stride_w + (ww-1) \times (dilation_w-1) | |||
| :param kernel_size: the size of the window to take a max over. | |||
| :param padding: implicit zero padding to be added on both sides. Default: 0 | |||
| :param stride: the stride of the window. Default: 1 | |||
| :param dilation: the dilation of the window. Default: 1 | |||
| Example: | |||
| .. testcode:: | |||
| from megengine import tensor | |||
| import megengine.module as M | |||
| import numpy as np | |||
| inp = tensor(np.arange(30).reshape(1,1,5,6)) | |||
| op = M.SlidingWindow(kernel_size=3, padding=1, stride=2, dilation=2) | |||
| out = op(inp) | |||
| print(out.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [[[[[[ 0 0 0] | |||
| [ 0 7 9] | |||
| [ 0 19 21]] | |||
| [[ 0 0 0] | |||
| [ 7 9 11] | |||
| [19 21 23]]] | |||
| [[[ 0 7 9] | |||
| [ 0 19 21] | |||
| [ 0 0 0]] | |||
| [[ 7 9 11] | |||
| [19 21 23] | |||
| [ 0 0 0]]]]]] | |||
| """ | |||
| def __init__( | |||
| self, | |||
| kernel_size: Union[int, Tuple[int, int]], | |||
| padding: Union[int, Tuple[int, int]] = 0, | |||
| stride: Union[int, Tuple[int, int]] = 1, | |||
| dilation: Union[int, Tuple[int, int]] = 1, | |||
| **kwargs | |||
| ): | |||
| super(SlidingWindow, self).__init__(**kwargs) | |||
| self.kernel_size = kernel_size | |||
| self.padding = padding | |||
| self.stride = stride | |||
| self.dilation = dilation | |||
| def forward(self, inp): | |||
| return sliding_window( | |||
| inp, self.kernel_size, self.padding, self.stride, self.dilation | |||
| ) | |||
| @@ -927,3 +927,28 @@ def test_neg_axis(): | |||
| y = F.argmin(x, axis=(-1, -2)) | |||
| yy = F.argmin(x, axis=(0, 1)) | |||
| np.testing.assert_equal(y.numpy(), yy.numpy()) | |||
| def test_sliding_window(): | |||
| N, C, H, W = 2, 3, 7, 8 | |||
| inp = np.random.normal(size=(N, C, H, W)) | |||
| ph, pw = 1, 2 | |||
| sh, sw = 2, 1 | |||
| wh, ww = 3, 2 | |||
| dh, dw = 1, 3 | |||
| s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1 | |||
| inp_pad = np.zeros((N, C, H + ph * 2, W + pw * 2)) | |||
| inp_pad[:, :, ph : H + ph, pw : W + pw] = inp | |||
| gt_out = np.empty( | |||
| (N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww), dtype=np.float32 | |||
| ) | |||
| for n, c, oh, ow in itertools.product(*map(range, gt_out.shape[:4])): | |||
| ih, iw = oh * sh, ow * sw | |||
| gt_out[n, c, oh, ow, :] = inp_pad[ | |||
| n, c, ih : ih + (wh - 1) * dh + 1 : dh, iw : iw + (ww - 1) * dw + 1 : dw | |||
| ] | |||
| out = F.sliding_window( | |||
| tensor(inp), (wh, ww), padding=(ph, pw), stride=(sh, sw), dilation=(dh, dw) | |||
| ) | |||
| np.testing.assert_equal(gt_out, out.numpy()) | |||
| @@ -32,6 +32,7 @@ | |||
| #include "megbrain/opr/tensor_gen.h" | |||
| #include "megbrain/opr/tensor_manip.h" | |||
| #include "megbrain/opr/utility.h" | |||
| #include "megbrain/opr/dnn/images2neibs.h" | |||
| #include "../op_trait.h" | |||
| @@ -652,4 +653,17 @@ OP_TRAIT_REG(SVD, SVD) | |||
| .fallback(); | |||
| }} // svd | |||
| namespace { namespace images2neibs { | |||
| auto apply_on_var_node( | |||
| const OpDef& def, | |||
| const VarNodeArray& inputs) { | |||
| auto&& op = static_cast<const Images2Neibs&>(def); | |||
| OperatorNodeConfig config{op.make_name()}; | |||
| return opr::Images2Neibs::make(inputs[0], op.param(), config); | |||
| } | |||
| OP_TRAIT_REG(Images2Neibs, Images2Neibs) | |||
| .apply_on_var_node(apply_on_var_node) | |||
| .fallback(); | |||
| }} // images2neibs | |||
| } // namespace mgb::imperative | |||
| @@ -79,6 +79,8 @@ def BatchConvBias : MgbHashableOp<"BatchConvBias", [BatchConvBiasParam, Executio | |||
| ); | |||
| } | |||
| def Images2Neibs : MgbHashableOp<"Images2Neibs", [Images2NeibsParam]>; | |||
| def BatchNorm : MgbHashableOp<"BatchNorm", [BNParam]>; | |||
| def ROIAlign: MgbHashableOp<"ROIAlign", [ROIAlignParam]>; | |||