GitOrigin-RevId: 27abd22295
tags/v1.9.0
| @@ -18,6 +18,7 @@ file( | |||
| opr/impl/nvof/*.cpp | |||
| plugin/impl/*.cpp | |||
| serialization/impl/*.cpp | |||
| rdnn/impl/*.cpp | |||
| core/impl/*.inl | |||
| gopt/impl/*.inl | |||
| opr/impl/*.inl | |||
| @@ -53,7 +54,8 @@ set(MGB_INC | |||
| ${CMAKE_CURRENT_LIST_DIR}/gopt/include | |||
| ${CMAKE_CURRENT_LIST_DIR}/opr/include | |||
| ${CMAKE_CURRENT_LIST_DIR}/plugin/include | |||
| ${CMAKE_CURRENT_LIST_DIR}/serialization/include) | |||
| ${CMAKE_CURRENT_LIST_DIR}/serialization/include | |||
| ${CMAKE_CURRENT_LIST_DIR}/rdnn/include) | |||
| if(MGE_WITH_JIT) | |||
| list(APPEND MGB_INC ${CMAKE_CURRENT_LIST_DIR}/jit/include) | |||
| @@ -183,7 +183,7 @@ struct OprWithPolicyMaker<opr::BatchConvBiasForward> | |||
| MakeOprWithPolicyCaller4<megdnn::BatchConvBiasForward>, | |||
| megdnn::param::BatchConvBias> {}; | |||
| #include "../../opr/impl/internal/invoke.h" | |||
| #include "megbrain/utils/invoke.h" | |||
| template <typename Opr> | |||
| struct MultiAlgoOprTrait; | |||
| @@ -23,8 +23,8 @@ | |||
| #include "megbrain/opr/imgproc.h" | |||
| #include "megbrain/opr/misc.h" | |||
| #include "megbrain/opr/nn_int.h" | |||
| #include "megbrain/opr/search_policy/algo_chooser.h" | |||
| #include "megbrain/opr/search_policy/algo_chooser_helper.h" | |||
| #include "megbrain/opr/search_policy/profiler.h" | |||
| #include "megbrain/opr/tensor_gen.h" | |||
| #include "megbrain/opr/tensor_manip.h" | |||
| #include "megbrain/opr/utility.h" | |||
| @@ -19,7 +19,6 @@ | |||
| #include "megbrain/opr/tensor_manip.h" | |||
| #include "megbrain/opr/search_policy/algo_chooser.h" | |||
| #include "megbrain/opr/search_policy/profiler.h" | |||
| #include "./internal/megdnn_opr_wrapper.inl" | |||
| #include "./search_policy/workspace_need_limit_getter.inl" | |||
| @@ -18,11 +18,11 @@ | |||
| #include "megbrain/graph/grad_impl.h" | |||
| #include "megbrain/system.h" | |||
| #include "megbrain/utils/hash_ct.h" | |||
| #include "megbrain/utils/invoke.h" | |||
| #include "megbrain/utils/timer.h" | |||
| #include "megdnn/oprs/utils.h" | |||
| #include "../internal/invoke.h" | |||
| #include "../internal/megdnn_opr_wrapper.inl" | |||
| #include "../search_policy/workspace_need_limit_getter.inl" | |||
| @@ -25,26 +25,6 @@ using namespace mixin; | |||
| /* ================== global functions ================== */ | |||
| namespace { | |||
| template <class Opr> | |||
| class MegDNNGlobalOprContainer final : public UserDataContainer::UserData { | |||
| MGB_TYPEINFO_OBJ_DECL; | |||
| std::shared_ptr<megdnn::Handle> m_megdnn_handle; | |||
| std::unique_ptr<Opr> m_opr; | |||
| public: | |||
| MegDNNGlobalOprContainer(CompNode cn) | |||
| : m_megdnn_handle{get_megdnn_handle_shared(cn)}, | |||
| m_opr{m_megdnn_handle->create_operator<Opr>()} { | |||
| mgb_assert(m_opr->is_thread_safe()); | |||
| } | |||
| Opr* get() const { return m_opr.get(); } | |||
| }; | |||
| template <class Opr> | |||
| MGB_TYPEINFO_OBJ_IMPL(MegDNNGlobalOprContainer<Opr>); | |||
| class TempStorageContainer final : public UserDataContainer::UserData { | |||
| MGB_TYPEINFO_OBJ_DECL; | |||
| @@ -55,34 +35,6 @@ public: | |||
| MGB_TYPEINFO_OBJ_IMPL(TempStorageContainer); | |||
| } // anonymous namespace | |||
| std::shared_ptr<megdnn::Handle> intl::get_megdnn_handle_shared(CompNode comp_node) { | |||
| auto& handle = MegDNNHandle::get(CompNodeEnv::from_comp_node(comp_node)); | |||
| return {handle.shared_from_this(), handle.handle()}; | |||
| } | |||
| megdnn::Handle* intl::get_megdnn_handle(CompNode comp_node) { | |||
| return MegDNNHandle::get(CompNodeEnv::from_comp_node(comp_node)).handle(); | |||
| } | |||
| template <typename Opr> | |||
| Opr* intl::get_megdnn_global_opr(CompNode comp_node) { | |||
| using T = MegDNNGlobalOprContainer<Opr>; | |||
| auto maker = [comp_node]() { return std::make_shared<T>(comp_node); }; | |||
| return CompNodeEnv::from_comp_node(comp_node).get_user_data<T>(maker).get(); | |||
| } | |||
| namespace mgb { | |||
| namespace opr { | |||
| namespace intl { | |||
| #define INST(o) template o* get_megdnn_global_opr<o>(CompNode) | |||
| INST(megdnn::AddUpdate); | |||
| INST(megdnn::Relayout); | |||
| INST(megdnn::Checksum); | |||
| #undef INST | |||
| } // namespace intl | |||
| } // namespace opr | |||
| } // namespace mgb | |||
| DeviceTensorStorage& intl::get_temp_storage(ComputingGraph& graph, CompNode comp_node) { | |||
| auto container = | |||
| graph.options().user_data.get_user_data_or_create<TempStorageContainer>(); | |||
| @@ -1,413 +0,0 @@ | |||
| /** | |||
| * \file src/opr/impl/search_policy/profile.cpp | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #include "megbrain/opr/search_policy/profiler.h" | |||
| #include "../internal/invoke.h" | |||
| #include "../internal/megdnn_opr_wrapper.inl" | |||
| #include "megdnn/handle.h" | |||
| #include "megdnn/oprs/base.h" | |||
| #if MGB_ROCM | |||
| #include "hcc_detail/hcc_defs_prologue.h" | |||
| #include "megcore_rocm.h" | |||
| #endif | |||
| //! TODO: here has to be know some megdnn::opr when there is produced midout.h | |||
| //! fix it if there is another graceful way. | |||
| #include "megdnn/oprs.h" | |||
| #include "midout.h" | |||
| MIDOUT_DECL(megbrain_opr_profile) | |||
| #define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_profile, __VA_ARGS__) { | |||
| #define MIDOUT_E \ | |||
| } \ | |||
| MIDOUT_END(); | |||
| namespace { | |||
| std::string serialize_policy(const megdnn::ExecutionPolicy& policy) { | |||
| std::string ret; | |||
| //! serialize AlgorithmDesc | |||
| megdnn::Algorithm::serialize_write_pod(policy.algo.handle_type, ret); | |||
| megdnn::Algorithm::serialize_write_pod(policy.algo.type, ret); | |||
| uint32_t param_size = policy.algo.param.size(); | |||
| uint32_t name_size = policy.algo.name.size(); | |||
| megdnn::Algorithm::serialize_write_pod<uint32_t>(param_size, ret); | |||
| megdnn::Algorithm::serialize_write_pod<uint32_t>(name_size, ret); | |||
| ret += policy.algo.param; | |||
| ret += policy.algo.name; | |||
| //! serialize sub_policy | |||
| uint32_t size = policy.sub_policy.size(); | |||
| megdnn::Algorithm::serialize_write_pod(size, ret); | |||
| for (auto&& sub : policy.sub_policy) { | |||
| ret += serialize_policy(sub); | |||
| } | |||
| return ret; | |||
| } | |||
| megdnn::ExecutionPolicy deserialize_policy( | |||
| const char* buf, uint32_t size, uint32_t& offset) { | |||
| megdnn::ExecutionPolicy ret; | |||
| #define cb(_val, _type) \ | |||
| _val = megdnn::Algorithm::deserialize_read_pod<_type>(buf, offset); \ | |||
| offset += sizeof(_val) | |||
| cb(ret.algo.handle_type, megdnn::Handle::HandleType); | |||
| cb(ret.algo.type, uint32_t); | |||
| uint32_t param_size = 0; | |||
| uint32_t name_size = 0; | |||
| cb(param_size, uint32_t); | |||
| cb(name_size, uint32_t); | |||
| if (param_size > 0) { | |||
| ret.algo.param = std::string(buf + offset, param_size); | |||
| offset += param_size; | |||
| } | |||
| if (name_size > 0) { | |||
| ret.algo.name = std::string(buf + offset, name_size); | |||
| offset += name_size; | |||
| } | |||
| uint32_t nr_policy = 0; | |||
| cb(nr_policy, uint32_t); | |||
| #undef cb | |||
| for (uint32_t i = 0; i < nr_policy; i++) { | |||
| ret.sub_policy.push_back(deserialize_policy(buf, size, offset)); | |||
| } | |||
| return ret; | |||
| } | |||
| } // namespace | |||
| namespace mgb { | |||
| namespace opr { | |||
| #define APPLY(statement, ...) \ | |||
| mgb::apply( \ | |||
| [&](const auto&... args) { return statement; }, \ | |||
| std::tuple_cat(__VA_ARGS__)) | |||
| ////////////// TimedProfiler::Param::ExecutionPolicyBlob ////////////////////// | |||
| template <typename Opr> | |||
| typename TimedProfiler<Opr>::Param::ExecutionPolicyBlob TimedProfiler<Opr>::Param:: | |||
| ExecutionPolicyBlob::serialize(const megdnn::ExecutionPolicy& policy) { | |||
| ExecutionPolicyBlob ret; | |||
| std::string serialize_bin = serialize_policy(policy); | |||
| mgb_assert(serialize_bin.size() < MAX_SIZE_IN_BYTES); | |||
| memcpy(ret.data, serialize_bin.data(), serialize_bin.size()); | |||
| ret.size = serialize_bin.size(); | |||
| return ret; | |||
| } | |||
| template <typename Opr> | |||
| megdnn::ExecutionPolicy TimedProfiler<Opr>::Param::ExecutionPolicyBlob::deserialize() | |||
| const { | |||
| uint32_t offset = 0; | |||
| auto&& ret = deserialize_policy(data, size, offset); | |||
| mgb_assert(offset == size); | |||
| return std::move(ret); | |||
| } | |||
| #define INST(Opr) \ | |||
| template typename TimedProfiler<megdnn::Opr>::Param::ExecutionPolicyBlob \ | |||
| TimedProfiler<megdnn::Opr>::Param::ExecutionPolicyBlob::serialize( \ | |||
| const megdnn::ExecutionPolicy& policy); \ | |||
| template megdnn::ExecutionPolicy \ | |||
| TimedProfiler<megdnn::Opr>::Param::ExecutionPolicyBlob::deserialize() const; | |||
| MGB_FOREACH_FASTRUN_OPR(INST) | |||
| #undef INST | |||
| ////////////////// TimedProfiler ////////////////////////////// | |||
| template <typename Opr> | |||
| const double TimedProfiler<Opr>::timeout_setting = | |||
| TimedProfiler<Opr>::init_timeout_setting(); | |||
| template <typename Opr> | |||
| double TimedProfiler<Opr>::init_timeout_setting() { | |||
| #if MGB_ENABLE_FASTRUN | |||
| sys::TimedFuncInvoker::ins().register_func( | |||
| AlgoChooserFuncId<Opr>::ID, &TimedProfiler<Opr>::prof_impl, | |||
| &TimedProfiler<Opr>::prof_init_device); | |||
| auto to_set = MGB_GETENV("MGB_CONV_PROFILING_TIMEOUT"); | |||
| if (to_set) | |||
| return std::stod(to_set); | |||
| #endif | |||
| return 0; | |||
| } | |||
| #define APPLY(statement, ...) \ | |||
| mgb::apply( \ | |||
| [&](const auto&... args) { return statement; }, \ | |||
| std::tuple_cat(__VA_ARGS__)) | |||
| template <typename Opr> | |||
| void TimedProfiler<Opr>::preprocess( | |||
| const TensorLayoutArray&, const megdnn::SmallVector<DeviceTensorND>&, | |||
| intl::UniqPtrWithCN<Opr>&, megdnn::Workspace&, std::array<TensorLayout, arity>&, | |||
| std::array<DeviceTensorND, arity_in>&, PreprocessFilter<Opr>&) { | |||
| // Opr is neither convbias nor convolution.This function do nothing. | |||
| } | |||
| //! convbias | |||
| template <> | |||
| void TimedProfiler<megdnn::ConvBias>::preprocess( | |||
| const TensorLayoutArray& preprocessed_layout, | |||
| const SmallVector<DeviceTensorND>& flt_val, | |||
| intl::UniqPtrWithCN<megdnn::ConvBias>& megdnn_opr, | |||
| megdnn::Workspace& mdn_workspace, std::array<TensorLayout, arity>& layouts, | |||
| std::array<DeviceTensorND, arity_in>& inp_val, | |||
| PreprocessFilter<megdnn::ConvBias>& prep_flt) { | |||
| if (!preprocessed_layout.empty()) { | |||
| auto&& pf = prep_flt; | |||
| pf.algorithm_id = nullptr; | |||
| pf.tensors.resize(flt_val.size()); | |||
| for (size_t i = 0; i < flt_val.size(); i++) { | |||
| pf.tensors[i] = flt_val[i].as_megdnn(); | |||
| } | |||
| APPLY(megdnn_opr->exec_preprocess(args..., &pf, mdn_workspace), | |||
| std::forward_as_tuple( | |||
| layouts[0], inp_val[1].as_megdnn(), inp_val[2].as_megdnn()), | |||
| array_skip<arity_in - 1>(layouts)); | |||
| } | |||
| } | |||
| //! convolution | |||
| template <> | |||
| void TimedProfiler<megdnn::ConvolutionForward>::preprocess( | |||
| const TensorLayoutArray& preprocessed_layout, | |||
| const megdnn::SmallVector<DeviceTensorND>& flt_val, | |||
| intl::UniqPtrWithCN<megdnn::ConvolutionForward>& megdnn_opr, | |||
| megdnn::Workspace& mdn_workspace, std::array<TensorLayout, arity>& layouts, | |||
| std::array<DeviceTensorND, arity_in>& inp_val, | |||
| PreprocessFilter<megdnn::ConvolutionForward>& prep_flt) { | |||
| if (!preprocessed_layout.empty()) { | |||
| auto&& pf = prep_flt; | |||
| pf.algorithm_id = nullptr; | |||
| pf.tensors.resize(flt_val.size()); | |||
| for (size_t i = 0; i < flt_val.size(); i++) { | |||
| pf.tensors[i] = flt_val[i].as_megdnn(); | |||
| } | |||
| APPLY(megdnn_opr->exec_preprocess(args..., &pf, mdn_workspace), | |||
| std::forward_as_tuple(layouts[0], inp_val[1].as_megdnn()), | |||
| array_skip<2>(layouts)); | |||
| } | |||
| } | |||
| template <typename Opr> | |||
| typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl( | |||
| const TParam& raw_param) { | |||
| MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_impl"))) | |||
| #if MGB_ROCM | |||
| bool miopen_algo_search_enabled; | |||
| megcore::getMIOpenAlgoSearchStatus(&miopen_algo_search_enabled); | |||
| mgb_assert(miopen_algo_search_enabled, "MIOpen algo search not enabled"); | |||
| #endif | |||
| auto&& param = raw_param.as_single_pod<Param>(); | |||
| CompNode cn = CompNode::load(param.comp_node_physical, param.comp_node_logical); | |||
| auto megdnn_opr = intl::create_megdnn_opr<Opr>(cn); | |||
| std::array<TensorLayout, arity> layouts; | |||
| auto from_enum = [&](DTypeEnum enumv) -> DType { | |||
| switch (enumv) { | |||
| #define cb(_dt) \ | |||
| case DTypeTrait<_dt>::enumv: \ | |||
| return _dt(1.0f, static_cast<uint8_t>(0)) | |||
| cb(dtype::Quantized8Asymm); | |||
| cb(dtype::Quantized4Asymm); | |||
| #undef cb | |||
| #define cb(_dt) \ | |||
| case DTypeTrait<_dt>::enumv: \ | |||
| return _dt(1.0f) | |||
| cb(dtype::QuantizedS8); | |||
| cb(dtype::QuantizedS16); | |||
| cb(dtype::QuantizedS32); | |||
| cb(dtype::QuantizedS4); | |||
| default: | |||
| return DType::from_enum(enumv); | |||
| #undef cb | |||
| } | |||
| }; | |||
| for (int i = 0; i < arity; ++i) { | |||
| layouts[i] = {param.shapes[i], from_enum(param.dtypes[i])}; | |||
| } | |||
| megdnn_opr->param() = param.opr_param; | |||
| megdnn_opr->execution_policy() = param.execution_policy.deserialize(); | |||
| // Allocate preprocessed weight buffers. | |||
| TensorLayoutArray preprocessed_layout; | |||
| if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||
| if (param.allow_weight_preprocess) { | |||
| preprocessed_layout = APPLY( | |||
| _(megdnn_opr)->deduce_preprocessed_filter_layout(args...), layouts); | |||
| } | |||
| }); | |||
| { | |||
| // first allocate a whole chunk to avoid memory fragmentation (here we | |||
| // rely on memory allocator to reuse memory) | |||
| auto align = cn.get_mem_addr_alignment(); | |||
| size_t tot_size = align; | |||
| for (int i = 0; i < arity; ++i) { | |||
| tot_size += layouts[i].span().high_byte + align; | |||
| } | |||
| for (const auto& layout : preprocessed_layout) { | |||
| tot_size += layout.span().high_byte + align; | |||
| } | |||
| tot_size += param.workspace; | |||
| DeviceTensorStorage storage{cn}; | |||
| storage.ensure_size(tot_size); | |||
| } | |||
| // allocate input and output memory | |||
| std::array<DeviceTensorND, arity_in> inp_val; | |||
| std::array<DeviceTensorND, arity_out> out_val; | |||
| DeviceTensorND workspace; | |||
| for (int i = 0; i < arity_in; ++i) { | |||
| inp_val[i].comp_node(cn).dtype(layouts[i].dtype).resize(layouts[i]); | |||
| } | |||
| for (int i = 0; i < arity_out; ++i) { | |||
| out_val[i] | |||
| .comp_node(cn) | |||
| .dtype(layouts[arity_in + i].dtype) | |||
| .resize(layouts[arity_in + i]); | |||
| } | |||
| megdnn::Workspace mdn_workspace; | |||
| // allocate workspace | |||
| if (param.workspace) { | |||
| workspace.comp_node(cn).dtype(dtype::Byte()).resize({param.workspace}); | |||
| mdn_workspace.size = param.workspace; | |||
| mdn_workspace.raw_ptr = workspace.raw_ptr(); | |||
| } | |||
| // allocate storage for preprocessed filter | |||
| SmallVector<DeviceTensorND> flt_val(preprocessed_layout.size()); | |||
| for (size_t i = 0; i < preprocessed_layout.size(); i++) { | |||
| flt_val[i] = { | |||
| cn, preprocessed_layout[i], preprocessed_layout[i].dtype, | |||
| preprocessed_layout[i].format}; | |||
| } | |||
| for (int i = 0; i < arity_in; ++i) { | |||
| fill_zero_dev_tensor(inp_val[i]); | |||
| } | |||
| PreprocessFilter<Opr> prep_flt; | |||
| preprocess( | |||
| preprocessed_layout, flt_val, megdnn_opr, mdn_workspace, layouts, inp_val, | |||
| prep_flt); | |||
| RealTimer timer; | |||
| auto ev_start = cn.create_event(CompNode::Event::NEED_TIMER), | |||
| ev_end = cn.create_event(CompNode::Event::NEED_TIMER); | |||
| ev_start->record(); | |||
| if_constexpr<opr_supports_preprocess<Opr>()>( | |||
| [&](auto _) { | |||
| auto&& opr = _(megdnn_opr); | |||
| PreprocessFilter<Opr>* pf = | |||
| preprocessed_layout.empty() ? nullptr : &prep_flt; | |||
| APPLY(opr->exec(args.as_megdnn()..., pf, mdn_workspace), inp_val, | |||
| out_val); | |||
| }, | |||
| /* else */ | |||
| [&](auto _) { | |||
| APPLY(_(megdnn_opr)->exec(args.as_megdnn()..., mdn_workspace), inp_val, | |||
| out_val); | |||
| }); | |||
| ev_end->record(); | |||
| megdnn::Algorithm* algo = | |||
| megdnn_opr->get_algorithm_from_desc(megdnn_opr->execution_policy().algo); | |||
| mgb_assert(algo); | |||
| double next_report_time = 0.5; | |||
| while (!ev_end->finished()) { | |||
| if (timer.get_secs() >= next_report_time) { | |||
| #if MGB_ENABLE_GETENV | |||
| mgb_log_warn( | |||
| "profiling conv algo %s already took %.3f/%.3f secs" | |||
| " (limit can be set by MGB_CONV_PROFILING_TIMEOUT) ", | |||
| algo->name(), timer.get_secs(), param.actual_timeout); | |||
| #else | |||
| mgb_log_warn( | |||
| "profiling conv algo %s already took %.3f/%.3f secs", algo->name(), | |||
| timer.get_secs(), param.actual_timeout); | |||
| #endif | |||
| next_report_time = timer.get_secs() + 1; | |||
| } | |||
| using namespace std::literals; | |||
| #if !__DEPLOY_ON_XP_SP2__ | |||
| std::this_thread::sleep_for(1000us); | |||
| #endif | |||
| } | |||
| // release all free blocks owned by child process, | |||
| // in order to avoid main process running out of memory | |||
| cn.try_coalesce_all_free_memory(); | |||
| mgb_assert(ev_start->finished()); | |||
| return TResult::from_pod(Result{ev_start->elapsed_time_until(*ev_end)}); | |||
| MIDOUT_E | |||
| }; | |||
| template <typename Opr> | |||
| Maybe<typename TimedProfiler<Opr>::Result> TimedProfiler<Opr>::profile( | |||
| const Param& param, double& timeout) { | |||
| mgb_assert(timeout >= 0); | |||
| if (!timeout) { | |||
| timeout = timeout_setting; | |||
| } else if (timeout_setting) { | |||
| timeout = std::min(timeout, timeout_setting); | |||
| } | |||
| param.actual_timeout = timeout ? timeout : std::numeric_limits<double>::infinity(); | |||
| auto res = sys::TimedFuncInvoker::ins().invoke( | |||
| AlgoChooserFuncId<Opr>::ID, TParam::from_pod(const_cast<Param&>(param)), | |||
| timeout); | |||
| if (res.valid()) | |||
| return res.val().template as_single_pod<Result>(); | |||
| return None; | |||
| } | |||
| template <typename Opr> | |||
| void TimedProfiler<Opr>::prof_init_device(const TParam& raw_param) { | |||
| MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_init_device"))) | |||
| #if MGB_ROCM | |||
| megcore::enableMIOpenAlgoSearch(true); | |||
| #endif | |||
| auto&& param = raw_param.as_single_pod<Param>(); | |||
| CompNode cn = CompNode::load(param.comp_node_physical, param.comp_node_logical); | |||
| // wait for cuda init, so its time does not get accounted in timeout | |||
| cn.sync(); | |||
| MIDOUT_E | |||
| } | |||
| #define INST(Opr) \ | |||
| template const double TimedProfiler<megdnn::Opr>::timeout_setting; \ | |||
| template double TimedProfiler<megdnn::Opr>::init_timeout_setting(); \ | |||
| template typename TimedProfiler<megdnn::Opr>::TResult \ | |||
| TimedProfiler<megdnn::Opr>::prof_impl(const TParam& raw_param); \ | |||
| template Maybe<typename TimedProfiler<megdnn::Opr>::Result> \ | |||
| TimedProfiler<megdnn::Opr>::profile(const Param& param, double& timeout); \ | |||
| template void TimedProfiler<megdnn::Opr>::prof_init_device(const TParam& raw_param); | |||
| MGB_FOREACH_FASTRUN_OPR(INST) | |||
| #undef INST | |||
| } // namespace opr | |||
| } // namespace mgb | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
| @@ -12,7 +12,7 @@ | |||
| #pragma once | |||
| #include "megbrain/opr/search_policy/profiler.h" | |||
| #include "megbrain/opr/search_policy/algo_chooser.h" | |||
| #include "../internal/megdnn_opr_wrapper.inl" | |||
| @@ -25,7 +25,7 @@ namespace intl { | |||
| struct AutoAddWorkspaceNeedLimitGetter<megdnn::_Opr> { \ | |||
| static constexpr bool val = true; \ | |||
| }; | |||
| MGB_FOREACH_FASTRUN_OPR(cb) | |||
| DNN_FOREACH_FASTRUN_OPR(cb) | |||
| #undef cb | |||
| @@ -13,6 +13,7 @@ | |||
| #include "megbrain/graph.h" | |||
| #include "megbrain/opr/internal/mixin_base.h" | |||
| #include "megbrain/rdnn/management.h" | |||
| #include "megdnn/handle.h" | |||
| @@ -20,43 +21,6 @@ namespace mgb { | |||
| namespace opr { | |||
| namespace intl { | |||
| //! get megdnn handle from comp node | |||
| MGE_WIN_DECLSPEC_FUC megdnn::Handle* get_megdnn_handle(CompNode comp_node); | |||
| MGE_WIN_DECLSPEC_FUC std::shared_ptr<megdnn::Handle> get_megdnn_handle_shared( | |||
| CompNode comp_node); | |||
| /*! | |||
| * \brief get global megdnn operator asscoated with a computing node | |||
| * \tparam Opr megdnn operator class, must be one of: | |||
| * * AddUpdate | |||
| * * Relayout | |||
| * * Checksum | |||
| */ | |||
| template <typename Opr> | |||
| MGE_WIN_DECLSPEC_FUC Opr* get_megdnn_global_opr(CompNode comp_node); | |||
| template <class Obj> | |||
| class UniqPtrWithCN : public std::unique_ptr<Obj> { | |||
| CompNode m_cn; | |||
| public: | |||
| UniqPtrWithCN() = default; | |||
| template <class RObj> | |||
| UniqPtrWithCN(UniqPtrWithCN<RObj>&& o) | |||
| : std::unique_ptr<Obj>(std::move(o)), m_cn(o.comp_node()) {} | |||
| UniqPtrWithCN(std::unique_ptr<Obj> ptr, CompNode cn) | |||
| : std::unique_ptr<Obj>{std::move(ptr)}, m_cn{cn} {} | |||
| CompNode comp_node() const { return m_cn; } | |||
| }; | |||
| //! create megdnn opr from megdnn handle in a CompNode | |||
| template <class Opr> | |||
| UniqPtrWithCN<Opr> create_megdnn_opr(CompNode comp_node) { | |||
| return {get_megdnn_handle(comp_node)->create_operator<Opr>(), comp_node}; | |||
| } | |||
| /*! | |||
| * \brief get temporary storage for oprs | |||
| @@ -19,7 +19,7 @@ | |||
| #include "megbrain/opr/dnn/convolution.h" | |||
| #include "megbrain/opr/dnn/pooling.h" | |||
| #include "megbrain/opr/search_policy/algo_chooser_helper.h" | |||
| #include "megbrain/opr/search_policy/profiler.h" | |||
| #include "megbrain/rdnn/algo_chooser.h" | |||
| #include "megdnn/oprs/base.h" | |||
| template <class MegDNNOpr> | |||
| @@ -31,18 +31,13 @@ struct MegDNNOpr2MGBOpr; | |||
| using MGBOpr = mgb::opr::_Opr; \ | |||
| }; | |||
| MGB_FOREACH_FASTRUN_OPR(cb) | |||
| DNN_FOREACH_FASTRUN_OPR(cb) | |||
| #undef cb | |||
| namespace mgb { | |||
| //! define logical operation of megdnn::param::ExecutionPolicy::Strategy::Enum | |||
| //! and megdnn::detail::AlgoAttribute enum | |||
| using ExecutionStrategy = megdnn::param::ExecutionPolicy::Strategy; | |||
| using AlgoAttribute = megdnn::AlgoAttribute; | |||
| #define MGB_FOREACH_FASTRUN_OPR(cb) DNN_FOREACH_FASTRUN_OPR(cb) | |||
| namespace mgb { | |||
| namespace opr { | |||
| /* =================== AlgoChooser =================== */ | |||
| @@ -56,138 +51,14 @@ namespace opr { | |||
| * \tparam Opr megdnn operator impl | |||
| */ | |||
| template <typename Opr> | |||
| class AlgoChooser { | |||
| static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||
| static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||
| static constexpr int arity = OprArityTrait<Opr>::arity; | |||
| using ImplAlgo = typename Opr::AlgorithmInfo; | |||
| using ImplAlgoDesc = typename Opr::AlgorithmInfo::Desc; | |||
| using ImplExecutionPolicy = megdnn::ExecutionPolicy; | |||
| class AlgoChooser : public rdnn::AlgoChooser<Opr> { | |||
| using Base = rdnn::AlgoChooser<Opr>; | |||
| using MGBOpr = typename MegDNNOpr2MGBOpr<Opr>::MGBOpr; | |||
| using ImplExecutionPolicy = typename Base::ImplExecutionPolicy; | |||
| public: | |||
| using FixedTensorLayouts = std::array<TensorLayout, arity>; | |||
| class AlgoChooserHelper { | |||
| //! fastrun layouts | |||
| FixedTensorLayouts m_fastrun_layouts; | |||
| //! layouts used when get and set cache item | |||
| FixedTensorLayouts m_incache_layouts; | |||
| Opr* m_dnn_opr; | |||
| std::string m_param; | |||
| const cg::OperatorNodeBase* m_base_mgb_opr; | |||
| CompNode m_cn; | |||
| megdnn::param::ExecutionPolicy m_execution_policy; | |||
| bool m_allow_weight_preprocess; | |||
| public: | |||
| AlgoChooserHelper( | |||
| const FixedTensorLayouts& layouts, Opr* megdnn_opr, | |||
| const std::string& param_str, const cg::OperatorNodeBase* mgb_opr, | |||
| const CompNode& cn, | |||
| const megdnn::param::ExecutionPolicy& execution_policy, | |||
| bool allow_weight_preprocess); | |||
| Opr* megdnn_opr() const { return m_dnn_opr; } | |||
| const cg::OperatorNodeBase* mgb_opr() const { return m_base_mgb_opr; } | |||
| const TensorLayout& inp_layout(size_t idx) const { | |||
| return m_fastrun_layouts[idx]; | |||
| } | |||
| cg::ComputingGraph* owner_graph() const { | |||
| return m_base_mgb_opr->owner_graph(); | |||
| } | |||
| const megdnn::param::ExecutionPolicy& execution_policy() const { | |||
| return m_execution_policy; | |||
| } | |||
| CompNode comp_node() const { return m_cn; } | |||
| const std::string& param() const { return m_param; } | |||
| bool allow_weight_preprocess() const { return m_allow_weight_preprocess; } | |||
| megdnn::Algorithm* get_algorithm_from_desc( | |||
| const megdnn::Algorithm::Info::Desc& desc) const { | |||
| return m_dnn_opr->get_algorithm_from_desc(desc); | |||
| } | |||
| const FixedTensorLayouts& fastrun_layouts() const { return m_fastrun_layouts; } | |||
| const FixedTensorLayouts& incache_layouts() const { return m_incache_layouts; } | |||
| //! construct algo chain by heuristic | |||
| ImplExecutionPolicy choose_by_heuristic( | |||
| const ExecutionStrategy& selected_strategy) const; | |||
| //! construct algo chain by profiling | |||
| ImplExecutionPolicy choose_by_profile( | |||
| const ExecutionStrategy& selected_strategy, bool enable_update) const; | |||
| //! get all profile algorithm from cache, return invalid if not exists | |||
| std::pair<ImplAlgoDesc, Maybe<AlgoChooserProfileCache::Result>> | |||
| get_profile_result_from_cache(const ExecutionStrategy& selected_strategy) const; | |||
| /** | |||
| * \brief construct execution policy from cache or heuristic. | |||
| * | |||
| * \param selected_strategy select algo which matched this strategy | |||
| * \param[in,out] policy execution policy | |||
| * \param retrive_from_cache retrive algo from cache if set True, get | |||
| * from heuristic otherwise. | |||
| * \param allow_log no warning log print if set True, print warning info | |||
| * otherwise. | |||
| */ | |||
| void construct_execution_policy( | |||
| const ExecutionStrategy& selected_strategy, ImplExecutionPolicy& policy, | |||
| bool retrive_from_cache = true, bool allow_log = true) const; | |||
| //! get workspace size required for specific execution policy | |||
| size_t get_workspace_size_bytes( | |||
| const ImplExecutionPolicy& policy, | |||
| const FixedTensorLayouts& layouts = {}) const; | |||
| //! get all candidate algos, and the one choose_by_heuristic() is | |||
| //! put first | |||
| std::vector<ImplAlgo> get_all_candidates() const; | |||
| /*! | |||
| * \brief profile a single algorithm | |||
| * | |||
| * This is actually a wrapper that constructs param and call | |||
| * TimedProfiler<Opr>::profile for the actual profiling | |||
| * | |||
| * \param[in,out] timeout set the timeout, and return the actual | |||
| * timeout used during profiling | |||
| */ | |||
| Maybe<AlgoChooserProfileCache::ResultEntry> profile_single_algo( | |||
| const ImplExecutionPolicy& policy, double& timeout) const; | |||
| //! profile and save to cache | |||
| void profile(const ExecutionStrategy& selected_strategy) const; | |||
| /** | |||
| * \brief extract algo attribute from execution strategy and graph | |||
| * option. | |||
| * | |||
| * \param strategy select algo which matched this strategy | |||
| * \return pair<positive_attr, negative_attr> | |||
| */ | |||
| std::pair<AlgoAttribute, AlgoAttribute> extract_algo_attribute( | |||
| const ExecutionStrategy& strategy) const; | |||
| private: | |||
| Maybe<PreprocessFilter<Opr>> construct_fake_preprocess_filter( | |||
| const FixedTensorLayouts& layouts = {}) const; | |||
| }; | |||
| template <typename U> | |||
| friend class AlgoChooser; | |||
| private: | |||
| //! entrance for getting algorithm according to execution strategy | |||
| static ImplExecutionPolicy get_policy(const AlgoChooserHelper& helper); | |||
| public: | |||
| using AlgoChooserHelper = typename Base::AlgoChooserHelper; | |||
| using FixedTensorLayouts = typename Base::FixedTensorLayouts; | |||
| /*! | |||
| * \brief setup algorithm and return workspace size | |||
| */ | |||
| @@ -1,165 +0,0 @@ | |||
| /** | |||
| * \file src/opr/include/megbrain/opr/search_policy/profile.h | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
| * implied. | |||
| */ | |||
| #pragma once | |||
| #include "megbrain/comp_node.h" | |||
| #include "megbrain/opr/internal/megdnn_opr_wrapper.h" | |||
| #include "megbrain/system.h" | |||
| #include "megbrain/tensor.h" | |||
| #include "megbrain/utils/hash_ct.h" | |||
| #include "megbrain/utils/timer.h" | |||
| #include "megdnn/basic_types.h" | |||
| #include "megdnn/oprs.h" | |||
| namespace mgb { | |||
| namespace opr { | |||
| // clang-format off | |||
| #define MGB_FOREACH_FASTRUN_OPR(cb) \ | |||
| cb(ConvolutionForward) \ | |||
| cb(ConvBiasForward) \ | |||
| cb(ConvolutionBackwardData) \ | |||
| cb(ConvolutionBackwardFilter) \ | |||
| cb(Convolution3DForward) \ | |||
| cb(Convolution3DBackwardData) \ | |||
| cb(Convolution3DBackwardFilter) \ | |||
| cb(LocalShareForward) \ | |||
| cb(LocalShareBackwardData) \ | |||
| cb(LocalShareBackwardFilter) \ | |||
| cb(DeformableConvForward) \ | |||
| cb(DeformableConvBackwardFilter) \ | |||
| cb(DeformableConvBackwardData) \ | |||
| cb(BatchConvBiasForward) \ | |||
| cb(MatrixMul) \ | |||
| cb(BatchedMatrixMul) \ | |||
| cb(PoolingForward) \ | |||
| cb(PoolingBackward) | |||
| // clang-format on | |||
| template <typename Opr> | |||
| constexpr bool opr_supports_preprocess() { | |||
| return std::is_same<Opr, megdnn::ConvolutionForward>::value || | |||
| std::is_same<Opr, megdnn::ConvBias>::value; | |||
| } | |||
| template <typename Opr> | |||
| constexpr bool opr_contain_bias() { | |||
| return std::is_same<Opr, megdnn::ConvBias>::value; | |||
| } | |||
| //! matmul and batchedMatrixMul | |||
| template <typename Opr> | |||
| constexpr bool is_matmul() { | |||
| return std::is_same<Opr, megdnn::MatrixMul>::value || | |||
| std::is_same<Opr, megdnn::BatchedMatrixMul>::value; | |||
| } | |||
| template <typename Opr, bool has_prep> | |||
| struct PreprocessFilterImpl { | |||
| using T = union {}; | |||
| }; | |||
| template <typename Opr> | |||
| struct PreprocessFilterImpl<Opr, true> { | |||
| using T = typename Opr::PreprocessedFilter; | |||
| }; | |||
| template <typename Opr> | |||
| using PreprocessFilter = | |||
| typename PreprocessFilterImpl<Opr, opr_supports_preprocess<Opr>()>::T; | |||
| template <typename Opr> | |||
| struct AlgoChooserFuncId {}; | |||
| #define DEF_FUNC_ID(func) \ | |||
| template <> \ | |||
| struct AlgoChooserFuncId<megdnn::func> { \ | |||
| __attribute__((unused)) static constexpr sys::TimedFuncInvoker::FuncId ID = \ | |||
| static_cast<sys::TimedFuncInvoker::FuncId>( \ | |||
| MGB_HASH_STR("megdnn::" #func)); \ | |||
| }; | |||
| MGB_FOREACH_FASTRUN_OPR(DEF_FUNC_ID) | |||
| #undef DEF_FUNC_ID | |||
| /* =================== TimedProfiler =================== */ | |||
| /*! | |||
| * \brief profile a megdnn opr conv with given param | |||
| * | |||
| * This class only provides static methods, and the entry point is | |||
| * TimedProfiler::profile; it would run profiler in a timed environment by | |||
| * sys::TimedFuncInvoker | |||
| * | |||
| * \tparam Opr megdnn opr impl | |||
| */ | |||
| template <typename Opr> | |||
| class TimedProfiler { | |||
| static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||
| static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||
| static constexpr int arity = OprArityTrait<Opr>::arity; | |||
| using TensorShapeArray = std::array<megdnn::TensorShape, arity>; | |||
| public: | |||
| struct Param { | |||
| struct ExecutionPolicyBlob { | |||
| //! enlarge the max size if needed | |||
| constexpr static size_t MAX_SIZE_IN_BYTES = 10240; | |||
| char data[MAX_SIZE_IN_BYTES]; | |||
| uint32_t size; | |||
| static ExecutionPolicyBlob serialize(const megdnn::ExecutionPolicy& policy); | |||
| megdnn::ExecutionPolicy deserialize() const; | |||
| }; | |||
| ExecutionPolicyBlob execution_policy; | |||
| size_t workspace; | |||
| megdnn::DTypeEnum dtypes[arity]; | |||
| CompNode::Locator comp_node_physical, comp_node_logical; | |||
| TensorShapeArray shapes; | |||
| typename Opr::Param opr_param; | |||
| bool allow_weight_preprocess; | |||
| //! filled by profile() | |||
| mutable double actual_timeout; | |||
| }; | |||
| struct Result { | |||
| double time; | |||
| }; | |||
| static Maybe<Result> profile(const Param& param, double& timeout); | |||
| private: | |||
| using TParam = sys::TimedFuncInvoker::Param; | |||
| using TResult = sys::TimedFuncInvoker::Result; | |||
| static const double timeout_setting; | |||
| static double init_timeout_setting(); | |||
| static void preprocess( | |||
| const megdnn::TensorLayoutArray& preprocessed_layout, | |||
| const SmallVector<DeviceTensorND>& flt_val, | |||
| intl::UniqPtrWithCN<Opr>& megdnn_opr, megdnn::Workspace& mdn_workspace, | |||
| std::array<TensorLayout, arity>& layouts, | |||
| std::array<DeviceTensorND, arity_in>& inp_val, | |||
| PreprocessFilter<Opr>& prep_flt); | |||
| static TResult prof_impl(const TParam& raw_param); | |||
| static void prof_init_device(const TParam& raw_param); | |||
| }; | |||
| } // namespace opr | |||
| } // namespace mgb | |||
| // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||