| @@ -13,7 +13,7 @@ from typing import Union | |||
| import numpy as np | |||
| from .._imperative_rt.common import CompNode | |||
| from .._imperative_rt.core2 import SymbolVar, Tensor, apply | |||
| from .._imperative_rt.core2 import SymbolVar, Tensor, apply, dtype_promotion | |||
| from ..ops import builtin | |||
| from . import amp | |||
| from .indexing import getitem, setitem | |||
| @@ -81,7 +81,11 @@ def _matmul(inp1, inp2): | |||
| inp1, inp2 = cast_tensors(inp1, inp2) | |||
| else: | |||
| compute_mode = "default" | |||
| inp1, inp2 = convert_inputs(inp1, inp2) | |||
| dtype = dtype_promotion(inp1, inp2) | |||
| if inp1.dtype != dtype: | |||
| inp1 = inp1.astype(dtype) | |||
| if inp2.dtype != dtype: | |||
| inp2 = inp2.astype(dtype) | |||
| op = builtin.MatrixMul( | |||
| transposeA=False, transposeB=False, compute_mode=compute_mode, format="default" | |||
| ) | |||
| @@ -91,7 +95,6 @@ def _matmul(inp1, inp2): | |||
| def _transpose(data, axes): | |||
| op = builtin.Dimshuffle(axes) | |||
| (data,) = convert_inputs(data) | |||
| (result,) = apply(op, data) | |||
| return result | |||
| @@ -201,7 +204,6 @@ def _remove_axis(inp: Tensor, axis) -> Tensor: | |||
| def _reduce(mode): | |||
| def f(self, axis=None, keepdims: bool = False): | |||
| data = self | |||
| (data,) = convert_inputs(data) | |||
| if mode == "mean": | |||
| data = data.astype("float32") | |||
| elif self.dtype == np.bool_: | |||
| @@ -13,7 +13,7 @@ from ..core._imperative_rt.core2 import SymbolVar, apply | |||
| from ..core.ops import builtin | |||
| from ..core.ops.builtin import Elemwise | |||
| from ..core.tensor.array_method import _elwise | |||
| from ..core.tensor.utils import astype, convert_inputs | |||
| from ..core.tensor.utils import convert_inputs | |||
| from ..tensor import Tensor | |||
| from ..utils.deprecation import deprecated_func | |||
| @@ -10,16 +10,16 @@ import collections | |||
| import math | |||
| from typing import Optional, Sequence, Tuple, Union | |||
| from ..core._imperative_rt.core2 import apply | |||
| from ..core._imperative_rt.core2 import apply, dtype_promotion | |||
| from ..core._trace_option import use_symbolic_shape | |||
| from ..core.ops import builtin | |||
| from ..core.ops.special import Const | |||
| from ..core.tensor import amp | |||
| from ..core.tensor.utils import _normalize_axis, cast_tensors, convert_inputs, setscalar | |||
| from ..core.tensor.utils import _normalize_axis, cast_tensors, setscalar | |||
| from ..tensor import Tensor | |||
| from .debug_param import get_execution_strategy | |||
| from .elemwise import clip, exp, log, log1p | |||
| from .tensor import broadcast_to, concat, expand_dims, reshape, squeeze | |||
| from .elemwise import clip | |||
| from .tensor import broadcast_to, concat, expand_dims, squeeze | |||
| __all__ = [ | |||
| "argmax", | |||
| @@ -816,10 +816,13 @@ def matmul( | |||
| compute_mode = "float32" | |||
| inp1, inp2 = cast_tensors(inp1, inp2) | |||
| else: | |||
| inp1, inp2 = convert_inputs(inp1, inp2) | |||
| dtype = dtype_promotion(inp1, inp2) | |||
| if inp1.dtype != dtype: | |||
| inp1 = inp1.astype(dtype) | |||
| if inp2.dtype != dtype: | |||
| inp2 = inp2.astype(dtype) | |||
| remove_row, remove_col = False, False | |||
| dim1, dim2 = inp1.ndim, inp2.ndim | |||
| # handle dim=1 cases, dot and matrix-vector multiplication | |||
| if dim1 == 1 and dim2 == 1: | |||
| @@ -931,7 +934,6 @@ def dot(inp1: Tensor, inp2: Tensor) -> Tensor: | |||
| """ | |||
| op = builtin.Dot() | |||
| inp1, inp2 = convert_inputs(inp1, inp2) | |||
| assert ( | |||
| inp1.ndim <= 1 and inp2.ndim <= 1 | |||
| ), "Input tensors for dot must be 1-dimensional or scalar" | |||
| @@ -10,8 +10,6 @@ | |||
| from typing import Optional, Sequence, Tuple, Union | |||
| from ..core._imperative_rt.core2 import apply | |||
| from ..core._imperative_rt.graph import VarNode | |||
| from ..core._trace_option import use_symbolic_shape | |||
| from ..core.ops import builtin | |||
| from ..core.ops.builtin import BatchNorm, Elemwise | |||
| from ..core.ops.special import Const | |||
| @@ -21,7 +19,6 @@ from ..core.tensor.utils import ( | |||
| astensor1d, | |||
| astype, | |||
| cast_tensors, | |||
| convert_inputs, | |||
| convert_single_value, | |||
| setscalar, | |||
| ) | |||
| @@ -33,18 +30,9 @@ from ..utils.deprecation import deprecated_func | |||
| from ..utils.tuple_function import _pair, _pair_nonzero, _triple, _triple_nonzero | |||
| from .debug_param import get_execution_strategy | |||
| from .distributed import all_reduce_sum | |||
| from .elemwise import _elwise, exp, floor, log, log1p, maximum, minimum | |||
| from .math import argsort, matmul, max, prod, sum | |||
| from .tensor import ( | |||
| broadcast_to, | |||
| concat, | |||
| expand_dims, | |||
| full, | |||
| ones, | |||
| reshape, | |||
| squeeze, | |||
| zeros, | |||
| ) | |||
| from .elemwise import _elwise, exp, log, log1p, maximum, minimum | |||
| from .math import matmul, max, sum | |||
| from .tensor import broadcast_to, concat, expand_dims, ones, squeeze, zeros | |||
| __all__ = [ | |||
| "adaptive_avg_pool2d", | |||
| @@ -167,8 +155,6 @@ def conv1d( | |||
| if amp._enabled: | |||
| compute_mode = "float32" | |||
| inp, weight, bias = cast_tensors(inp, weight, bias) | |||
| else: | |||
| inp, weight = convert_inputs(inp, weight) | |||
| inp = expand_dims(inp, 3) | |||
| weight = expand_dims(weight, 3) | |||
| @@ -246,8 +232,6 @@ def conv2d( | |||
| if amp._enabled: | |||
| compute_mode = "float32" | |||
| inp, weight, bias = cast_tensors(inp, weight, bias) | |||
| else: | |||
| inp, weight = convert_inputs(inp, weight) | |||
| stride_h, stride_w = expand_hw(stride) | |||
| pad_h, pad_w = expand_hw(padding) | |||
| @@ -304,7 +288,6 @@ def conv3d( | |||
| :return: output tensor. | |||
| """ | |||
| assert conv_mode.lower() == "cross_correlation" | |||
| inp, weight = convert_inputs(inp, weight) | |||
| D, H, W = 0, 1, 2 | |||
| @@ -379,8 +362,6 @@ def conv_transpose2d( | |||
| if amp._enabled: | |||
| compute_mode = "float32" | |||
| inp, weight, bias = cast_tensors(inp, weight, bias) | |||
| else: | |||
| inp, weight = convert_inputs(inp, weight) | |||
| if groups != 1: | |||
| raise NotImplementedError("group transposed conv2d is not supported yet.") | |||
| @@ -454,7 +435,8 @@ def deformable_conv2d( | |||
| compute_mode = "float32" | |||
| inp, weight, offset, mask, bias = cast_tensors(inp, weight, offset, mask, bias) | |||
| else: | |||
| inp, weight, offset, mask = convert_inputs(inp, weight, offset, mask) | |||
| offset = offset.astype("float32") | |||
| mask = mask.astype("float32") | |||
| stride_h, stride_w = expand_hw(stride) | |||
| pad_h, pad_w = expand_hw(padding) | |||
| @@ -493,7 +475,6 @@ def local_conv2d( | |||
| conv_mode.lower() == "cross_correlation" | |||
| or conv_mode.name == "CROSS_CORRELATION" | |||
| ) | |||
| inp, weight = convert_inputs(inp, weight) | |||
| stride_h, stride_w = expand_hw(stride) | |||
| pad_h, pad_w = expand_hw(padding) | |||
| @@ -539,8 +520,6 @@ def conv_transpose3d( | |||
| :param dilation: dilation of the 3D convolution operation. Default: 1 | |||
| :return: output tensor. | |||
| """ | |||
| inp, weight = convert_inputs(inp, weight) | |||
| D, H, W = 0, 1, 2 | |||
| pad = _triple(padding) | |||
| stride = _triple_nonzero(stride) | |||
| @@ -1078,10 +1057,6 @@ def batch_norm( | |||
| weight, bias, running_mean, running_var = cast_tensors( | |||
| weight, bias, running_mean, running_var, promote=True | |||
| ) | |||
| elif compute_mode != "float32": | |||
| inp, weight, bias, running_mean, running_var = convert_inputs( | |||
| inp, weight, bias, running_mean, running_var | |||
| ) | |||
| weight = make_full_if_none(weight, 1) | |||
| bias = make_full_if_none(bias, 0) | |||
| @@ -6,25 +6,18 @@ | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| import math | |||
| from typing import Iterable, Optional, Sequence, Union | |||
| import numpy as np | |||
| from ..core._imperative_rt import CompNode | |||
| from ..core._imperative_rt.core2 import SymbolVar, apply | |||
| from ..core._imperative_rt.core2 import SymbolVar, apply, dtype_promotion | |||
| from ..core._wrap import as_device | |||
| from ..core.ops import builtin | |||
| from ..core.ops.builtin import Copy, Identity | |||
| from ..core.ops.special import Const | |||
| from ..core.tensor.array_method import _broadcast, _remove_axis | |||
| from ..core.tensor.utils import ( | |||
| astensor1d, | |||
| convert_inputs, | |||
| convert_single_value, | |||
| dtype_promotion, | |||
| get_device, | |||
| ) | |||
| from ..core.tensor.utils import astensor1d, convert_inputs, get_device | |||
| from ..device import get_default_device | |||
| from ..tensor import Tensor | |||
| from .elemwise import ceil, floor_div | |||
| @@ -288,6 +281,7 @@ def concat(inps: Iterable[Tensor], axis: int = 0, device=None) -> Tensor: | |||
| if len(inps) == 1: | |||
| return inps[0] | |||
| # FIXME: remove this convert_inputs | |||
| inps = convert_inputs(*inps, device=device) | |||
| if device is None: | |||
| device = get_device(inps) | |||
| @@ -640,6 +634,7 @@ def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| mask = tensor(np.array([[True, False], [False, True]], dtype=np.bool)) | |||
| @@ -657,7 +652,6 @@ def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: | |||
| [7. 4.]] | |||
| """ | |||
| x, y = convert_inputs(x, y) | |||
| if not isinstance(x, Tensor): | |||
| raise TypeError("input x must be a tensor") | |||
| if not isinstance(y, Tensor): | |||
| @@ -669,6 +663,12 @@ def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: | |||
| if x.device != mask.device: | |||
| raise ValueError("ambiguous device: {} vs {}".format(x.device, mask.device)) | |||
| dtype = dtype_promotion(x, y) | |||
| if x.dtype != dtype: | |||
| x = x.astype(dtype) | |||
| if y.dtype != dtype: | |||
| y = y.astype(dtype) | |||
| v0, index0 = cond_take(mask, x) | |||
| v1, index1 = cond_take(~mask, y) | |||
| @@ -1021,12 +1021,10 @@ def arange( | |||
| if stop is None: | |||
| start, stop = 0, start | |||
| if isinstance(start, Tensor): | |||
| start = start.astype("float32") | |||
| if isinstance(stop, Tensor): | |||
| stop = stop.astype("float32") | |||
| if isinstance(step, Tensor): | |||
| step = step.astype("float32") | |||
| start = Tensor(start, dtype="float32") | |||
| stop = Tensor(stop, dtype="float32") | |||
| step = Tensor(step, dtype="float32") | |||
| num = ceil((stop - start) / step) | |||
| stop = start + step * (num - 1) | |||
| result = linspace(start, stop, num, device=device) | |||
| @@ -8,6 +8,8 @@ | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| from typing import Iterable, Optional, Tuple, Union | |||
| import numpy as np | |||
| from ..core._imperative_rt.core2 import apply | |||
| from ..core.ops import builtin | |||
| from ..core.tensor import megbrain_graph, utils | |||
| @@ -98,7 +100,6 @@ def roi_pooling( | |||
| output_shape = (output_shape, output_shape) | |||
| op = builtin.ROIPooling(mode=mode, scale=scale) | |||
| inp, rois = utils.convert_inputs(inp, rois) | |||
| result, _ = apply( | |||
| op, inp, rois, Tensor(output_shape, dtype="int32", device=inp.device) | |||
| ) | |||
| @@ -187,6 +188,8 @@ def roi_align( | |||
| [0.1359 0.1359]]] | |||
| """ | |||
| if inp.dtype != np.float32: | |||
| inp = inp.astype(np.float32) | |||
| mode = mode.lower() | |||
| assert mode in ["max", "average"], "only max/average mode is supported" | |||
| if isinstance(output_shape, int): | |||
| @@ -207,7 +210,6 @@ def roi_align( | |||
| sample_height=sample_height, | |||
| sample_width=sample_width, | |||
| ) | |||
| inp, rois = utils.convert_inputs(inp, rois) | |||
| result, *_ = apply(op, inp, rois) | |||
| return result | |||
| @@ -270,7 +272,7 @@ def nms( | |||
| max_output = boxes.shape[0] | |||
| op = builtin.NMSKeep(iou_thresh, max_output) | |||
| inp = utils.convert_inputs(boxes.reshape(1, -1, 4)) | |||
| inp = (boxes.reshape(1, -1, 4),) | |||
| indices, count = apply(op, *inp) | |||
| indices = indices[0][: count[0]] | |||
| keep_inds = sorted_idx[indices] | |||
| @@ -442,10 +444,13 @@ def warp_perspective( | |||
| [ 9. 10.]]]] | |||
| """ | |||
| if inp.dtype == np.float32: | |||
| mat = mat.astype("float32") | |||
| if inp.dtype == np.float16: | |||
| inp = inp.astype("float32") | |||
| op = builtin.WarpPerspective( | |||
| imode=interp_mode, bmode=border_mode, format=format, border_val=border_val | |||
| ) | |||
| inp, mat = utils.convert_inputs(inp, mat) | |||
| out_shape = astensor1d(out_shape, inp, dtype="int32", device=inp.device) | |||
| if mat_idx is not None: | |||
| mat_idx = astensor1d(mat_idx, inp, dtype="int32", device=inp.device) | |||
| @@ -14,8 +14,7 @@ import megengine.autodiff as ad | |||
| import megengine.distributed as dist | |||
| import megengine.functional as F | |||
| import megengine.optimizer as optimizer | |||
| from megengine import Parameter, tensor | |||
| from megengine.distributed.helper import get_device_count_by_fork | |||
| from megengine import tensor | |||
| from megengine.jit import trace | |||
| from megengine.module import BatchNorm2d, Conv2d, Module, Sequential, SyncBatchNorm | |||
| @@ -88,7 +87,7 @@ def test_bn_no_track_stat(): | |||
| optim = optimizer.SGD(m.parameters(), lr=1.0) | |||
| optim.clear_grad() | |||
| data = np.random.random((6, nchannel, 2, 2)).astype("float32") | |||
| data = tensor(np.random.random((6, nchannel, 2, 2)).astype("float32")) | |||
| with gm: | |||
| loss = m(data).sum() | |||
| gm.backward(loss) | |||
| @@ -110,7 +109,7 @@ def test_bn_no_track_stat2(): | |||
| optim = optimizer.SGD(m.parameters(), lr=1.0) | |||
| optim.clear_grad() | |||
| data = np.random.random((6, nchannel, 2, 2)).astype("float32") | |||
| data = tensor(np.random.random((6, nchannel, 2, 2)).astype("float32")) | |||
| with gm: | |||
| loss = m(data).sum() | |||
| gm.backward(loss) | |||
| @@ -146,7 +145,7 @@ def test_trace_bn_forward_twice(): | |||
| pred = net(inp) | |||
| return pred | |||
| x = np.ones((1, 1, 32, 32), dtype=np.float32) | |||
| x = tensor(np.ones((1, 1, 32, 32), dtype=np.float32)) | |||
| y = train_bn(x, net=Simple()) | |||
| np.testing.assert_equal(y.numpy(), 0) | |||
| @@ -194,5 +193,5 @@ def test_trace_several_syncbn(trace_mode): | |||
| def test_frozen_bn_no_affine(): | |||
| nchannel = 3 | |||
| m = BatchNorm2d(nchannel, freeze=True, affine=False) | |||
| data = megengine.Tensor(np.random.random((6, nchannel, 2, 2)).astype("float32")) | |||
| data = tensor(np.random.random((6, nchannel, 2, 2)).astype("float32")) | |||
| m(data).numpy() | |||
| @@ -9,7 +9,6 @@ | |||
| import itertools | |||
| import numpy as np | |||
| import pytest | |||
| import megengine as mge | |||
| import megengine.autodiff as ad | |||
| @@ -105,10 +104,10 @@ def test_training_converge(): | |||
| xx, yy = np.meshgrid(x, x) | |||
| xx = xx.reshape((ngrid * ngrid, 1)) | |||
| yy = yy.reshape((ngrid * ngrid, 1)) | |||
| data = np.concatenate((xx, yy), axis=1).astype(np.float32) | |||
| data = mge.tensor(np.concatenate((xx, yy), axis=1).astype(np.float32)) | |||
| pred = infer(data).numpy() | |||
| precision = calculate_precision(data, pred) | |||
| precision = calculate_precision(data.numpy(), pred) | |||
| assert precision == 1.0, "Test precision must be high enough, get {}".format( | |||
| precision | |||
| ) | |||
| @@ -9,7 +9,6 @@ | |||
| import itertools | |||
| import numpy as np | |||
| import pytest | |||
| import megengine as mge | |||
| import megengine.autodiff as ad | |||
| @@ -110,10 +109,10 @@ def test_training_converge(): | |||
| xx, yy = np.meshgrid(x, x) | |||
| xx = xx.reshape((ngrid * ngrid, 1)) | |||
| yy = yy.reshape((ngrid * ngrid, 1)) | |||
| data = np.concatenate((xx, yy), axis=1).astype(np.float32) | |||
| data = mge.tensor(np.concatenate((xx, yy), axis=1).astype(np.float32)) | |||
| pred = infer(data).numpy() | |||
| precision = calculate_precision(data, pred) | |||
| precision = calculate_precision(data.numpy(), pred) | |||
| print("precision=", precision) | |||
| assert precision == 1.0, "Test precision must be high enough, get {}".format( | |||
| precision | |||
| @@ -9,7 +9,6 @@ | |||
| import itertools | |||
| import numpy as np | |||
| import pytest | |||
| import megengine as mge | |||
| import megengine.autodiff as ad | |||
| @@ -118,10 +117,10 @@ def test_training_converge_with_swap_and_drop(): | |||
| xx, yy = np.meshgrid(x, x) | |||
| xx = xx.reshape((ngrid * ngrid, 1)) | |||
| yy = yy.reshape((ngrid * ngrid, 1)) | |||
| data = np.concatenate((xx, yy), axis=1).astype(np.float32) | |||
| data = mge.tensor(np.concatenate((xx, yy), axis=1).astype(np.float32)) | |||
| pred = infer(Tensor(data)).numpy() | |||
| precision = calculate_precision(data, pred) | |||
| precision = calculate_precision(data.numpy(), pred) | |||
| assert precision == 1.0, "Test precision must be high enough, get {}".format( | |||
| precision | |||
| ) | |||
| @@ -36,7 +36,7 @@ def test_level1_infer_value(): | |||
| def test_level1_infer_shape_with_unknown(): | |||
| config_async_level(2) | |||
| a = mge.tensor([[1, 2, 2, 3]], dtype="float32") | |||
| b = mge.tensor([1, 1]) | |||
| b = mge.tensor([1, 1], dtype="float32") | |||
| multi2 = mge.tensor(np.array([[2, 0], [0, 2]]), dtype="float32") | |||
| c = F.matmul(b, multi2) | |||
| # make DepType::SHAPE unknown | |||
| @@ -13,7 +13,7 @@ import megengine.functional as F | |||
| import megengine.functional.elemwise as elemwise | |||
| from megengine import tensor | |||
| from megengine.core.tensor import dtype | |||
| from megengine.functional.elemwise import Elemwise, _elwise | |||
| from megengine.functional.elemwise import Elemwise | |||
| from megengine.jit import trace | |||
| @@ -57,6 +57,17 @@ def test_multiply(): | |||
| ) | |||
| def test_div(): | |||
| np.testing.assert_allclose( | |||
| F.div(tensor([3, 4]), 2).numpy(), | |||
| np.divide(np.array([3, 4], dtype=np.float32), 2), | |||
| ) | |||
| np.testing.assert_allclose( | |||
| (tensor([3, 4]) / 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2), | |||
| ) | |||
| def test_clamp(): | |||
| """Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and | |||
| `F.clip` will fall into wrong conditions unexpectedly. | |||
| @@ -456,9 +456,10 @@ def test_interpolate_fastpath(): | |||
| np.testing.assert_equal(out.item(), np_x.mean()) | |||
| def test_warp_perspective(): | |||
| @pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16]) | |||
| def test_warp_perspective(dt): | |||
| inp_shape = (1, 1, 4, 4) | |||
| x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) | |||
| x = tensor(np.arange(16, dtype=dt).reshape(inp_shape)) | |||
| M_shape = (1, 3, 3) | |||
| # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) | |||
| M = tensor( | |||
| @@ -467,14 +468,13 @@ def test_warp_perspective(): | |||
| ).reshape(M_shape) | |||
| ) | |||
| outp = F.vision.warp_perspective(x, M, (2, 2)) | |||
| np.testing.assert_equal( | |||
| outp.numpy(), np.array([[[[5.0, 6.0], [9.0, 10.0]]]], dtype=np.float32) | |||
| ) | |||
| np.testing.assert_equal(outp.numpy(), np.array([[[[5, 6], [9, 10]]]], dtype=dt)) | |||
| def test_warp_perspective_mat_idx(): | |||
| @pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16]) | |||
| def test_warp_perspective_mat_idx(dt): | |||
| inp_shape = (2, 1, 4, 4) | |||
| x = tensor(np.arange(32, dtype=np.float32).reshape(inp_shape)) | |||
| x = tensor(np.arange(32, dtype=dt).reshape(inp_shape)) | |||
| M_shape = (1, 3, 3) | |||
| # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) | |||
| M = tensor( | |||
| @@ -488,12 +488,12 @@ def test_warp_perspective_mat_idx(): | |||
| outp.numpy(), | |||
| np.array( | |||
| [ | |||
| [[[5.0, 6.0], [9.0, 10.0]]], | |||
| [[[21.0, 22.0], [25.0, 26.0]]], | |||
| [[[21.0, 22.0], [25.0, 26.0]]], | |||
| [[[5.0, 6.0], [9.0, 10.0]]], | |||
| [[[5, 6], [9, 10]]], | |||
| [[[21, 22], [25, 26]]], | |||
| [[[21, 22], [25, 26]]], | |||
| [[[5, 6], [9, 10]]], | |||
| ], | |||
| dtype=np.float32, | |||
| dtype=dt, | |||
| ), | |||
| ) | |||
| @@ -5,11 +5,8 @@ | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| import platform | |||
| import weakref | |||
| import numpy as np | |||
| import pytest | |||
| import megengine as mge | |||
| import megengine.autodiff as ad | |||
| @@ -65,7 +62,7 @@ def test_clip_grad_value(): | |||
| gm = ad.GradManager().attach(net.parameters()) | |||
| opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) | |||
| with gm: | |||
| y = net(x) | |||
| y = net(mge.tensor(x)) | |||
| y = y.mean() | |||
| gm.backward(y) | |||
| save_grad_value(net) | |||