You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

vision.cpp 5.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136
  1. #include "megbrain/imperative/ops/autogen.h"
  2. #include "megbrain/opr/dnn/roi_align.h"
  3. #include "megbrain/opr/dnn/roi_pooling.h"
  4. #include "megbrain/opr/imgproc.h"
  5. #include "../blob_manager_impl.h"
  6. #include "../dnn_op_helper.h"
  7. #include "../op_trait.h"
  8. namespace mgb {
  9. namespace imperative {
  10. namespace {
  11. auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) {
  12. auto&& op = static_cast<const CvtColor&>(def);
  13. mgb_assert(inputs.size() == 1);
  14. OperatorNodeConfig config{op.make_name()};
  15. return opr::CvtColor::make(inputs[0], op.param(), config);
  16. }
  17. OP_TRAIT_REG(CvtColor, CvtColor).apply_on_var_node(apply_on_var_node).fallback();
  18. } // namespace
  19. namespace {
  20. namespace roi_align {
  21. VarNodeArray apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) {
  22. auto&& op = static_cast<const ROIAlign&>(def);
  23. mgb_assert(inputs.size() == 2);
  24. OperatorNodeConfig config{op.make_name()};
  25. auto* opr = opr::ROIAlign::make(inputs[0], inputs[1], op.param(), config)
  26. .node()
  27. ->owner_opr();
  28. return {opr->output(0), opr->output(1)};
  29. }
  30. std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible(
  31. const OpDef& def, const SmallVector<LogicalTensorDesc>& inputs) {
  32. auto&& op = static_cast<const ROIAlign&>(def);
  33. if (inputs[0].layout.is_empty() || inputs[1].layout.is_empty()) {
  34. return {{{TensorLayout(inputs[0].layout.dtype), inputs[0].comp_node},
  35. {TensorLayout(dtype::Int32()), inputs[1].comp_node}},
  36. false};
  37. }
  38. SmallVector<LogicalTensorDesc> descs(2u);
  39. size_t n = inputs[1].layout[0];
  40. size_t c = inputs[0].layout[1];
  41. descs[0].layout = TensorLayout(
  42. {n, c, op.pooled_height, op.pooled_width}, inputs[0].layout.dtype);
  43. descs[0].layout.init_contiguous_stride();
  44. descs[0].comp_node = inputs[0].comp_node;
  45. descs[1].layout =
  46. TensorLayout({n, c, op.pooled_height, op.pooled_width}, dtype::Int32());
  47. descs[1].layout.init_contiguous_stride();
  48. descs[1].comp_node = descs[0].comp_node;
  49. return {descs, true};
  50. }
  51. SmallVector<TensorPtr> apply_on_physical_tensor(
  52. const OpDef& def, const SmallVector<TensorPtr>& inputs,
  53. SmallVector<LogicalTensorDesc>& output_descs, const bool& validated) {
  54. auto&& op = static_cast<const ROIAlign&>(def);
  55. CompNode cn = inputs[0]->comp_node();
  56. TensorLayout out_layout = output_descs[0].layout;
  57. TensorLayout ind_layout = output_descs[1].layout;
  58. if (!validated) {
  59. size_t n = inputs[1]->layout()[0];
  60. size_t c = inputs[0]->layout()[1];
  61. out_layout = TensorLayout(
  62. {n, c, op.pooled_height, op.pooled_width}, inputs[0]->layout().dtype);
  63. out_layout.init_contiguous_stride();
  64. ind_layout =
  65. TensorLayout({n, c, op.pooled_height, op.pooled_width}, dtype::Int32());
  66. ind_layout.init_contiguous_stride();
  67. }
  68. DeviceTensorND out =
  69. BlobManager::inst()->alloc_workspace_with_defrag(cn, out_layout);
  70. DeviceTensorND inds =
  71. BlobManager::inst()->alloc_workspace_with_defrag(cn, ind_layout);
  72. if (out_layout.is_empty() || ind_layout.is_empty()) {
  73. return {Tensor::make(out), Tensor::make(inds)};
  74. }
  75. DnnOprCaller<megdnn::ROIAlign> dnn_opr(cn);
  76. dnn_opr.op->param() = op.param();
  77. size_t sz = dnn_opr.op->get_workspace_in_bytes(
  78. inputs[0]->layout(), inputs[1]->layout(), out_layout, ind_layout);
  79. TensorLayout w_layout({sz}, dtype::Byte());
  80. auto dnn_wk = dnn_opr.create_workspace(w_layout);
  81. dnn_opr.op->exec(
  82. inputs[0]->dnn_tensor(), inputs[1]->dnn_tensor(), out.as_megdnn(),
  83. inds.as_megdnn(), dnn_wk);
  84. return {Tensor::make(out), Tensor::make(inds)};
  85. }
  86. SmallVector<VarNode::LayoutConstraintCallback> get_input_layout_constraint(
  87. const OpDef& def, const SmallVector<TensorPtr>& inputs) {
  88. SmallVector<VarNode::LayoutConstraintCallback> layout_checker(inputs.size());
  89. layout_checker[0] = layout_checker[1] = [](const TensorLayout& layout) {
  90. return layout.is_contiguous();
  91. };
  92. return layout_checker;
  93. }
  94. OP_TRAIT_REG(ROIAlign, ROIAlign)
  95. .apply_on_var_node(apply_on_var_node)
  96. .apply_on_physical_tensor(apply_on_physical_tensor)
  97. .infer_output_attrs_fallible(infer_output_attrs_fallible)
  98. .get_input_layout_constraint(get_input_layout_constraint)
  99. .fallback();
  100. } // namespace roi_align
  101. } // namespace
  102. namespace {
  103. namespace roi_pooling {
  104. VarNodeArray apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) {
  105. auto&& op = static_cast<const ROIPooling&>(def);
  106. mgb_assert(inputs.size() == 3);
  107. OperatorNodeConfig config{op.make_name()};
  108. auto* opr =
  109. opr::ROIPooling::make(inputs[0], inputs[1], inputs[2], op.param(), config)
  110. .node()
  111. ->owner_opr();
  112. return {opr->output(0), opr->output(1)};
  113. }
  114. OP_TRAIT_REG(ROIPooling, ROIPooling).apply_on_var_node(apply_on_var_node).fallback();
  115. } // namespace roi_pooling
  116. } // namespace
  117. } // namespace imperative
  118. } // namespace mgb