You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_network.cpp 50 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410
  1. /**
  2. * \file test/test_network.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "lite_build_config.h"
  12. #if LITE_BUILD_WITH_MGE
  13. #include "./test_common.h"
  14. #include "megbrain/tensor.h"
  15. #ifndef WIN32
  16. #include <dirent.h>
  17. #include <string.h>
  18. #endif
  19. #include <chrono>
  20. #include <memory>
  21. #include <random>
  22. #include <unordered_map>
  23. using namespace lite;
  24. namespace {
  25. class CheckAllocator : public lite::Allocator {
  26. public:
  27. //! allocate memory of size in the given device with the given align
  28. void* allocate(LiteDeviceType device, int, size_t size, size_t align) override {
  29. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  30. m_nr_left++;
  31. m_nr_allocated++;
  32. #ifdef WIN32
  33. return _aligned_malloc(size, align);
  34. #elif defined(__ANDROID__) || defined(ANDROID)
  35. return memalign(align, size);
  36. #else
  37. void* ptr = nullptr;
  38. auto err = posix_memalign(&ptr, align, size);
  39. mgb_assert(!err, "failed to malloc %zubytes with align %zu", size, align);
  40. return ptr;
  41. #endif
  42. };
  43. //! free the memory pointed by ptr in the given device
  44. void free(LiteDeviceType device, int, void* ptr) override {
  45. m_nr_left--;
  46. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  47. #ifdef WIN32
  48. _aligned_free(ptr);
  49. #else
  50. ::free(ptr);
  51. #endif
  52. };
  53. std::atomic_size_t m_nr_left{0};
  54. std::atomic_size_t m_nr_allocated{0};
  55. };
  56. } // namespace
  57. TEST(TestNetWork, Basic) {
  58. Config config;
  59. auto lite_tensor = get_input_data("./input_data.npy");
  60. std::string model_path = "./shufflenet.mge";
  61. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  62. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  63. compare_lite_tensor<float>(result_lite, result_mgb);
  64. }
  65. TEST(TestNetWork, SetDeviceId) {
  66. Config config;
  67. auto lite_tensor = get_input_data("./input_data.npy");
  68. std::string model_path = "./shufflenet.mge";
  69. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  70. network->set_device_id(4);
  71. network->load_model(model_path);
  72. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  73. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  74. network->forward();
  75. network->wait();
  76. ASSERT_EQ(input_tensor->get_device_id(), 4);
  77. ASSERT_EQ(output_tensor->get_device_id(), 4);
  78. }
  79. TEST(TestNetWork, GetAllName) {
  80. Config config;
  81. auto lite_tensor = get_input_data("./input_data.npy");
  82. std::string model_path = "./shufflenet.mge";
  83. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  84. network->load_model(model_path);
  85. auto input_names = network->get_all_input_name();
  86. auto output_names = network->get_all_output_name();
  87. auto output_tensor = network->get_output_tensor(0);
  88. auto out_layout = output_tensor->get_layout();
  89. ASSERT_EQ(out_layout.ndim, 2);
  90. ASSERT_EQ(out_layout.shapes[0], 1);
  91. ASSERT_EQ(out_layout.shapes[1], 1000);
  92. ASSERT_EQ(input_names.size(), 1);
  93. ASSERT_EQ(output_names.size(), 1);
  94. ASSERT_TRUE(input_names[0] == "data");
  95. ASSERT_TRUE(output_names[0] == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  96. }
  97. TEST(TestNetWork, GetAllIoInfoAhead) {
  98. Config config;
  99. std::string model_path = "./shufflenet.mge";
  100. auto ios = Runtime::get_model_io_info(model_path);
  101. FILE* fin = fopen(model_path.c_str(), "rb");
  102. ASSERT_TRUE(fin);
  103. fseek(fin, 0, SEEK_END);
  104. size_t size = ftell(fin);
  105. fseek(fin, 0, SEEK_SET);
  106. void* ptr = malloc(size);
  107. std::shared_ptr<void> buf{ptr, ::free};
  108. auto nr = fread(buf.get(), 1, size, fin);
  109. LITE_ASSERT(nr == size);
  110. fclose(fin);
  111. auto ios_mem = Runtime::get_model_io_info(ptr, size);
  112. ASSERT_EQ(ios.inputs.size(), ios_mem.inputs.size());
  113. ASSERT_EQ(ios.inputs.size(), 1);
  114. ASSERT_EQ(ios.outputs.size(), ios_mem.outputs.size());
  115. ASSERT_EQ(ios.outputs.size(), 1);
  116. ASSERT_TRUE(ios.inputs[0].name == "data");
  117. ASSERT_TRUE(ios.outputs[0].name == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  118. ASSERT_TRUE(ios_mem.inputs[0].name == "data");
  119. ASSERT_TRUE(
  120. ios_mem.outputs[0].name == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  121. ASSERT_EQ(ios.inputs[0].config_layout.ndim, 4);
  122. ASSERT_EQ(ios.inputs[0].config_layout.shapes[1], 3);
  123. ASSERT_EQ(ios.inputs[0].config_layout.shapes[2], 224);
  124. ASSERT_EQ(ios.outputs[0].config_layout.ndim, 2);
  125. ASSERT_EQ(ios.outputs[0].config_layout.shapes[0], 1);
  126. ASSERT_EQ(ios.outputs[0].config_layout.shapes[1], 1000);
  127. ASSERT_EQ(ios_mem.inputs[0].config_layout.ndim, 4);
  128. ASSERT_EQ(ios_mem.inputs[0].config_layout.shapes[1], 3);
  129. ASSERT_EQ(ios_mem.inputs[0].config_layout.shapes[2], 224);
  130. ASSERT_EQ(ios_mem.outputs[0].config_layout.ndim, 2);
  131. ASSERT_EQ(ios_mem.outputs[0].config_layout.shapes[0], 1);
  132. ASSERT_EQ(ios_mem.outputs[0].config_layout.shapes[1], 1000);
  133. }
  134. TEST(TestNetWork, LoadFBSModel) {
  135. Config config;
  136. std::string model_path = "./ax.mge";
  137. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  138. network->load_model(model_path);
  139. auto output_tensor = network->get_output_tensor(0);
  140. auto out_layout = output_tensor->get_layout();
  141. ASSERT_EQ(out_layout.ndim, 4);
  142. ASSERT_EQ(out_layout.shapes[0], 1);
  143. ASSERT_EQ(out_layout.shapes[1], 1);
  144. ASSERT_EQ(out_layout.shapes[2], 40);
  145. ASSERT_EQ(out_layout.shapes[3], 180);
  146. }
  147. TEST(TestNetWork, BasicInplaceAndSingleThreadAffinity) {
  148. Config config;
  149. auto lite_tensor = get_input_data("./input_data.npy");
  150. std::string model_path = "./shufflenet.mge";
  151. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  152. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  153. Runtime::set_cpu_inplace_mode(network);
  154. network->load_model(model_path);
  155. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  156. int affinity_set = false;
  157. Runtime::set_runtime_thread_affinity(network, [&affinity_set](int id) {
  158. ASSERT_EQ(id, 0);
  159. affinity_set = true;
  160. });
  161. auto src_ptr = lite_tensor->get_memory_ptr();
  162. auto src_layout = lite_tensor->get_layout();
  163. input_tensor->reset(src_ptr, src_layout);
  164. //! inplace mode not support async mode
  165. ASSERT_THROW(network->set_async_callback([]() {}), std::exception);
  166. network->forward();
  167. network->wait();
  168. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  169. ASSERT_EQ(affinity_set, true);
  170. compare_lite_tensor<float>(output_tensor, result_mgb);
  171. }
  172. TEST(TestNetWork, NetworkShareWeights) {
  173. Config config;
  174. auto lite_tensor = get_input_data("./input_data.npy");
  175. std::string model_path = "./shufflenet.mge";
  176. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  177. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  178. network->load_model(model_path);
  179. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  180. std::shared_ptr<Network> network2 = std::make_shared<Network>(config);
  181. Runtime::set_cpu_inplace_mode(network2);
  182. Runtime::shared_weight_with_network(network2, network);
  183. std::shared_ptr<Tensor> input_tensor2 = network2->get_input_tensor(0);
  184. auto src_ptr = lite_tensor->get_memory_ptr();
  185. auto src_layout = lite_tensor->get_layout();
  186. input_tensor->reset(src_ptr, src_layout);
  187. input_tensor2->reset(src_ptr, src_layout);
  188. ASSERT_NE(input_tensor, input_tensor2);
  189. network->forward();
  190. network->wait();
  191. network2->forward();
  192. network2->wait();
  193. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  194. std::shared_ptr<Tensor> output_tensor2 = network2->get_output_tensor(0);
  195. ASSERT_NE(output_tensor->get_memory_ptr(), output_tensor2->get_memory_ptr());
  196. compare_lite_tensor<float>(output_tensor, result_mgb);
  197. compare_lite_tensor<float>(output_tensor2, result_mgb);
  198. }
  199. TEST(TestNetWork, SharedRuntimeMem) {
  200. Config config;
  201. auto lite_tensor = get_input_data("./input_data.npy");
  202. std::string model_path = "./shufflenet.mge";
  203. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  204. std::shared_ptr<Network> network_src = std::make_shared<Network>(config);
  205. std::shared_ptr<Network> network_dst = std::make_shared<Network>(config);
  206. Runtime::share_runtime_memory_with(network_dst, network_src);
  207. network_src->load_model(model_path);
  208. network_dst->load_model(model_path);
  209. }
  210. TEST(TestNetWork, UserAllocator) {
  211. auto allocator = std::make_shared<CheckAllocator>();
  212. {
  213. Config config;
  214. auto lite_tensor = get_input_data("./input_data.npy");
  215. std::string model_path = "./shufflenet.mge";
  216. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  217. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  218. Runtime::set_memory_allocator(network, allocator);
  219. network->load_model(model_path);
  220. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  221. auto src_ptr = lite_tensor->get_memory_ptr();
  222. auto src_layout = lite_tensor->get_layout();
  223. input_tensor->reset(src_ptr, src_layout);
  224. network->forward();
  225. network->wait();
  226. ASSERT_GE(allocator->m_nr_allocated, 1);
  227. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  228. compare_lite_tensor<float>(output_tensor, result_mgb);
  229. }
  230. ASSERT_EQ(allocator->m_nr_left, 0);
  231. }
  232. TEST(TestNetWork, BasicMultiThread) {
  233. Config config;
  234. auto lite_tensor = get_input_data("./input_data.npy");
  235. std::string model_path = "./shufflenet.mge";
  236. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  237. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  238. Runtime::set_cpu_threads_number(network, 2);
  239. network->load_model(model_path);
  240. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  241. auto src_ptr = lite_tensor->get_memory_ptr();
  242. auto src_layout = lite_tensor->get_layout();
  243. input_tensor->reset(src_ptr, src_layout);
  244. network->forward();
  245. network->wait();
  246. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  247. compare_lite_tensor<float>(output_tensor, result_mgb);
  248. }
  249. TEST(TestNetWork, ThreadAffinity) {
  250. size_t nr_threads = 4;
  251. Config config;
  252. auto lite_tensor = get_input_data("./input_data.npy");
  253. std::string model_path = "./shufflenet.mge";
  254. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  255. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  256. Runtime::set_cpu_threads_number(network, nr_threads);
  257. ASSERT_THROW(
  258. Runtime::set_runtime_thread_affinity(network, [](int) {}), std::exception);
  259. network->load_model(model_path);
  260. std::vector<std::thread::id> thread_ids(nr_threads);
  261. auto affinity = [&](int id) { thread_ids[id] = std::this_thread::get_id(); };
  262. Runtime::set_runtime_thread_affinity(network, affinity);
  263. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  264. auto src_ptr = lite_tensor->get_memory_ptr();
  265. auto src_layout = lite_tensor->get_layout();
  266. input_tensor->reset(src_ptr, src_layout);
  267. network->forward();
  268. network->wait();
  269. for (size_t i = 0; i < nr_threads; i++) {
  270. for (size_t j = i + 1; j < nr_threads; j++) {
  271. ASSERT_NE(thread_ids[i], thread_ids[j]);
  272. }
  273. }
  274. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  275. compare_lite_tensor<float>(output_tensor, result_mgb);
  276. }
  277. TEST(TestNetWork, BasicCryptAes) {
  278. Config config;
  279. auto lite_tensor = get_input_data("./input_data.npy");
  280. std::string model_path = "./shufflenet.mge";
  281. std::string model_crypt_path = "./shufflenet_crypt_aes.mge";
  282. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  283. config.bare_model_cryption_name = "AES_default";
  284. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  285. compare_lite_tensor<float>(result_lite, result_mgb);
  286. }
  287. TEST(TestNetWork, BasicCryptRc4) {
  288. Config config;
  289. auto lite_tensor = get_input_data("./input_data.npy");
  290. std::string model_path = "./shufflenet.mge";
  291. std::string model_crypt_path = "./shufflenet_crypt_rc4.mge";
  292. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  293. config.bare_model_cryption_name = "RC4_default";
  294. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  295. compare_lite_tensor<float>(result_lite, result_mgb);
  296. }
  297. TEST(TestNetWork, PackedCryptRc4) {
  298. Config config;
  299. auto lite_tensor = get_input_data("./input_data.npy");
  300. std::string model_path = "./shufflenet.mge";
  301. std::string model_crypt_path = "./test_packed_model_rc4.lite";
  302. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  303. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  304. compare_lite_tensor<float>(result_lite, result_mgb);
  305. }
  306. TEST(TestNetWork, BasicCryptSfRc4) {
  307. Config config;
  308. auto lite_tensor = get_input_data("./input_data.npy");
  309. std::string model_path = "./shufflenet.mge";
  310. std::string model_crypt_path = "./shufflenet_crypt_sfrc4.mge";
  311. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  312. config.bare_model_cryption_name = "SIMPLE_FAST_RC4_default";
  313. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  314. compare_lite_tensor<float>(result_lite, result_mgb);
  315. }
  316. TEST(TestNetWork, ResetInput) {
  317. Config config;
  318. auto tensor = get_input_data("./input_data.npy");
  319. std::string model_path = "./shufflenet.mge";
  320. std::string input_name = "data";
  321. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  322. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  323. network->load_model(model_path);
  324. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  325. auto src_ptr = tensor->get_memory_ptr();
  326. auto src_layout = tensor->get_layout();
  327. input_tensor->reset(src_ptr, src_layout);
  328. network->forward();
  329. network->wait();
  330. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  331. compare_lite_tensor<float>(output_tensor, result_mgb);
  332. }
  333. TEST(TestNetWork, ChangeInputShape) {
  334. Config config;
  335. auto tensor = get_input_data("./input_data.npy");
  336. std::string model_path = "./shufflenet.mge";
  337. std::string input_name = "data";
  338. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  339. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  340. network->load_model(model_path);
  341. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  342. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  343. input_tensor->set_layout(src_layout);
  344. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  345. //! Check memory is equal
  346. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  347. network->forward();
  348. network->wait();
  349. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  350. auto output_layout = output_tensor->get_layout();
  351. ASSERT_EQ(output_layout.shapes[0], 2);
  352. ASSERT_EQ(output_layout.shapes[1], 1000);
  353. }
  354. TEST(TestNetWork, ResetOutput) {
  355. Config config;
  356. auto tensor = get_input_data("./input_data.npy");
  357. std::string model_path = "./shufflenet.mge";
  358. std::string input_name = "data";
  359. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  360. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  361. network->load_model(model_path);
  362. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  363. auto src_ptr = tensor->get_memory_ptr();
  364. auto src_layout = tensor->get_layout();
  365. input_tensor->reset(src_ptr, src_layout);
  366. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  367. auto result_tensor = std::make_shared<Tensor>(
  368. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  369. void* out_data = result_tensor->get_memory_ptr();
  370. output_tensor->reset(out_data, result_tensor->get_layout());
  371. network->forward();
  372. network->wait();
  373. compare_lite_tensor<float>(output_tensor, result_mgb);
  374. }
  375. namespace {
  376. void test_output_no_copy(int record) {
  377. Config config;
  378. config.options.force_output_use_user_specified_memory = true;
  379. config.options.comp_node_seq_record_level = record;
  380. auto tensor = get_input_data("./input_data.npy");
  381. std::string model_path = "./shufflenet.mge";
  382. std::string input_name = "data";
  383. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  384. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  385. network->load_model(model_path);
  386. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  387. auto src_ptr = tensor->get_memory_ptr();
  388. auto src_layout = tensor->get_layout();
  389. input_tensor->reset(src_ptr, src_layout);
  390. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  391. size_t times = 5;
  392. std::vector<std::shared_ptr<Tensor>> result_tensors;
  393. for (size_t i = 0; i < times; i++) {
  394. auto tmp = std::make_shared<Tensor>(
  395. LiteDeviceType::LITE_CPU,
  396. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  397. result_tensors.push_back(tmp);
  398. }
  399. for (size_t i = 0; i < times; i++) {
  400. void* out_data = result_tensors[i]->get_memory_ptr();
  401. output_tensor->reset(out_data, result_tensors[i]->get_layout());
  402. network->forward();
  403. network->wait();
  404. ASSERT_EQ(output_tensor->get_memory_ptr(), out_data);
  405. compare_lite_tensor<float>(output_tensor, result_mgb);
  406. }
  407. for (size_t i = 0; i < times; i++) {
  408. compare_lite_tensor<float>(result_tensors[i], result_mgb);
  409. }
  410. }
  411. void test_input_no_copy(int record) {
  412. Config config;
  413. config.options.force_output_use_user_specified_memory = true;
  414. config.options.comp_node_seq_record_level = record;
  415. std::string model_path = "./shufflenet.mge";
  416. std::string input_name = "data";
  417. Layout layout_in{{1, 3, 224, 224}, 4};
  418. std::vector<std::shared_ptr<Tensor>> inputs;
  419. std::vector<std::shared_ptr<Tensor>> outputs;
  420. for (int i = 0; i < 3; i++) {
  421. auto tmp_in = std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, layout_in);
  422. auto ptr = static_cast<float*>(tmp_in->get_memory_ptr());
  423. for (size_t id = 0; id < 2 * 224 * 224; id++) {
  424. ptr[id] = i + 1;
  425. }
  426. inputs.push_back(tmp_in);
  427. outputs.push_back(mgb_lar(model_path, config, input_name, tmp_in));
  428. }
  429. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  430. network->load_model(model_path);
  431. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  432. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  433. for (int i = 0; i < 3; i++) {
  434. auto ptr = inputs[i]->get_memory_ptr();
  435. input_tensor->reset(ptr, layout_in);
  436. auto tmp_out = std::make_shared<Tensor>(
  437. LiteDeviceType::LITE_CPU,
  438. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  439. output_tensor->reset(tmp_out->get_memory_ptr(), output_tensor->get_layout());
  440. network->forward();
  441. network->wait();
  442. compare_lite_tensor<float>(output_tensor, outputs[i]);
  443. }
  444. }
  445. void test_io_no_copy_ax(std::string model_name, int record = 1) {
  446. std::string model_path = model_name;
  447. std::vector<std::string> input_names, output_names;
  448. std::vector<std::vector<std::shared_ptr<Tensor>>> inputs;
  449. std::vector<std::vector<std::shared_ptr<Tensor>>> outputs;
  450. Config config;
  451. config.options.graph_opt_level = 0;
  452. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  453. network->load_model(model_path);
  454. input_names = network->get_all_input_name();
  455. output_names = network->get_all_output_name();
  456. // prepare test data
  457. for (int i = 0; i < 3; i++) {
  458. std::vector<std::shared_ptr<Tensor>> net_inputs;
  459. std::vector<std::shared_ptr<Tensor>> net_outputs;
  460. for (size_t j = 0; j < input_names.size(); j++) {
  461. auto in_tesnor = network->get_io_tensor(input_names[j]);
  462. auto in_layout = in_tesnor->get_layout();
  463. auto tmp_in = std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, in_layout);
  464. auto size = in_tesnor->get_tensor_total_size_in_byte() /
  465. in_layout.get_elem_size();
  466. if (in_layout.data_type == LiteDataType::LITE_INT16) {
  467. auto ptr = static_cast<short*>(tmp_in->get_memory_ptr());
  468. for (size_t id = 0; id < size; id++) {
  469. ptr[id] = i + 1;
  470. }
  471. } else if (in_layout.data_type == LiteDataType::LITE_UINT8) {
  472. auto ptr = static_cast<uint8_t*>(tmp_in->get_memory_ptr());
  473. for (size_t id = 0; id < size; id++) {
  474. ptr[id] = i + 1;
  475. }
  476. }
  477. net_inputs.push_back(tmp_in);
  478. in_tesnor->copy_from(*tmp_in);
  479. }
  480. inputs.push_back(net_inputs);
  481. network->forward();
  482. network->wait();
  483. for (size_t j = 0; j < output_names.size(); j++) {
  484. auto out_tesnor = network->get_io_tensor(output_names[j]);
  485. auto out_layout = out_tesnor->get_layout();
  486. auto tmp_out =
  487. std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, out_layout);
  488. tmp_out->copy_from(*out_tesnor);
  489. net_outputs.push_back(tmp_out);
  490. }
  491. outputs.push_back(net_outputs);
  492. }
  493. config.options.force_output_use_user_specified_memory = true;
  494. config.options.comp_node_seq_record_level = record;
  495. config.options.const_shape = true;
  496. config.options.graph_opt_level = 2;
  497. std::shared_ptr<Network> network_record = std::make_shared<Network>(config);
  498. network_record->load_model(model_path);
  499. for (int i = 0; i < 3; i++) {
  500. for (size_t j = 0; j < inputs[i].size(); j++) {
  501. auto input_tensor = network_record->get_io_tensor(input_names[j]);
  502. input_tensor->reset(
  503. inputs[i][j]->get_memory_ptr(), inputs[i][j]->get_layout());
  504. }
  505. std::vector<std::shared_ptr<Tensor>> net_outputs;
  506. for (size_t j = 0; j < outputs[i].size(); j++) {
  507. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  508. auto tmp_out = std::make_shared<Tensor>(
  509. LiteDeviceType::LITE_CPU, output_tensor->get_layout());
  510. output_tensor->reset(
  511. tmp_out->get_memory_ptr(), output_tensor->get_layout());
  512. net_outputs.push_back(tmp_out);
  513. }
  514. network_record->forward();
  515. network_record->wait();
  516. for (size_t j = 0; j < outputs[i].size(); j++) {
  517. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  518. compare_lite_tensor<float>(output_tensor, outputs[i][j]);
  519. }
  520. }
  521. printf("profile the model %s run\n", model_path.c_str());
  522. std::vector<std::shared_ptr<Tensor>> net_outputs;
  523. for (size_t j = 0; j < outputs[0].size(); j++) {
  524. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  525. auto tmp_out = std::make_shared<Tensor>(
  526. LiteDeviceType::LITE_CPU, output_tensor->get_layout());
  527. output_tensor->reset(tmp_out->get_memory_ptr(), output_tensor->get_layout());
  528. net_outputs.push_back(tmp_out);
  529. }
  530. lite::Timer timer("profile");
  531. for (int i = 0; i < 10; i++) {
  532. network_record->forward();
  533. network_record->wait();
  534. }
  535. auto sum_time = timer.get_used_time();
  536. printf("model %s used time average %f ms\n", model_path.c_str(), sum_time / 10);
  537. }
  538. } // namespace
  539. TEST(TestNetWork, OutputNoCopy) {
  540. test_output_no_copy(0);
  541. }
  542. TEST(TestNetWork, OutputNoCopyRecord) {
  543. test_output_no_copy(1);
  544. }
  545. TEST(TestNetWork, IONoCopy) {
  546. test_input_no_copy(0);
  547. }
  548. TEST(TestNetWork, IONoCopyRecord) {
  549. test_input_no_copy(1);
  550. }
  551. TEST(TestNetWork, IONoCopyRecordAx) {
  552. std::vector<std::string> file_names;
  553. #ifndef WIN32
  554. DIR* dirptr = NULL;
  555. struct dirent* dirp;
  556. std::string model_dir = "./ax_models";
  557. dirptr = opendir(model_dir.c_str());
  558. while (dirptr != NULL && (dirp = readdir(dirptr)) != NULL) {
  559. std::string file_name(dirp->d_name);
  560. if (file_name.find(".axe", 0) != std::string::npos) {
  561. file_names.push_back(model_dir + "/" + file_name);
  562. }
  563. }
  564. closedir(dirptr);
  565. #endif
  566. for (auto file_name : file_names) {
  567. printf("test model: %s\n", file_name.c_str());
  568. test_io_no_copy_ax(file_name);
  569. }
  570. }
  571. TEST(TestNetWork, OutputDynamicAlloc) {
  572. Config config;
  573. config.options.force_output_dynamic_alloc = true;
  574. auto tensor = get_input_data("./input_data.npy");
  575. std::string model_path = "./shufflenet.mge";
  576. std::string input_name = "data";
  577. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  578. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  579. network->load_model(model_path);
  580. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  581. auto src_ptr = tensor->get_memory_ptr();
  582. auto src_layout = tensor->get_layout();
  583. input_tensor->reset(src_ptr, src_layout);
  584. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  585. size_t times = 5;
  586. for (size_t i = 0; i < times; i++) {
  587. network->forward();
  588. network->wait();
  589. compare_lite_tensor<float>(output_tensor, result_mgb);
  590. }
  591. }
  592. TEST(TestNetWork, AsyncExec) {
  593. Config config;
  594. config.options.var_sanity_check_first_run = false;
  595. auto tensor = get_input_data("./input_data.npy");
  596. std::string model_path = "./shufflenet.mge";
  597. std::string input_name = "data";
  598. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  599. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  600. network->load_model(model_path);
  601. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  602. auto src_ptr = tensor->get_memory_ptr();
  603. auto src_layout = tensor->get_layout();
  604. input_tensor->reset(src_ptr, src_layout);
  605. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  606. auto result_tensor = std::make_shared<Tensor>(
  607. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  608. void* out_data = result_tensor->get_memory_ptr();
  609. output_tensor->reset(out_data, result_tensor->get_layout());
  610. //! set async mode and callback
  611. volatile bool finished = false;
  612. network->set_async_callback([&finished]() { finished = true; });
  613. network->forward();
  614. size_t count = 0;
  615. while (finished == false) {
  616. count++;
  617. }
  618. ASSERT_GT(count, 0);
  619. compare_lite_tensor<float>(output_tensor, result_mgb);
  620. }
  621. TEST(TestNetWork, CPUDeviceInput) {
  622. auto tensor = get_input_data("./input_data.npy");
  623. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  624. std::string model_path = "./shufflenet.mge";
  625. std::string input_name = "data";
  626. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  627. NetworkIO IO;
  628. bool is_host = false;
  629. IO.inputs.push_back({input_name, is_host});
  630. std::shared_ptr<Network> network = std::make_shared<Network>(IO);
  631. network->load_model(model_path);
  632. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  633. auto src_ptr = tensor->get_memory_ptr();
  634. input_tensor->reset(src_ptr, layout);
  635. network->forward();
  636. network->wait();
  637. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  638. compare_lite_tensor<float>(output_tensor, result_mgb);
  639. }
  640. TEST(TestNetWork, ShareTensorWith) {
  641. auto tensor = get_input_data("./input_data.npy");
  642. std::string model_path = "./shufflenet.mge";
  643. std::string input_name = "data";
  644. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  645. std::shared_ptr<Network> network = std::make_shared<Network>();
  646. network->load_model(model_path);
  647. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  648. input_tensor->share_memory_with(*tensor);
  649. network->forward();
  650. network->wait();
  651. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  652. compare_lite_tensor<float>(output_tensor, result_mgb);
  653. }
  654. TEST(TestNetWork, InputCallBack) {
  655. auto tensor = get_input_data("./input_data.npy");
  656. std::string model_path = "./shufflenet.mge";
  657. std::string input_name = "data";
  658. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  659. NetworkIO ios;
  660. bool is_host = false;
  661. ios.inputs.push_back({input_name, is_host});
  662. std::shared_ptr<Network> network = std::make_shared<Network>(ios);
  663. network->load_model(model_path);
  664. volatile bool finised_check_input = false;
  665. auto input_callback =
  666. [&tensor, &finised_check_input,
  667. input_name](const std::unordered_map<
  668. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  669. input_map) {
  670. ASSERT_EQ(input_map.size(), 1);
  671. auto tensor_input = input_map.at(input_name).second;
  672. compare_lite_tensor<float>(tensor_input, tensor);
  673. finised_check_input = true;
  674. };
  675. network->set_start_callback(input_callback);
  676. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  677. input_tensor->share_memory_with(*tensor);
  678. network->forward();
  679. network->wait();
  680. ASSERT_TRUE(finised_check_input);
  681. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  682. compare_lite_tensor<float>(output_tensor, result_mgb);
  683. }
  684. TEST(TestNetWork, OutputCallBack) {
  685. auto tensor = get_input_data("./input_data.npy");
  686. std::string model_path = "./shufflenet.mge";
  687. std::string input_name = "data";
  688. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  689. std::shared_ptr<Network> network = std::make_shared<Network>();
  690. network->load_model(model_path);
  691. auto output_name = network->get_output_name(0);
  692. volatile bool finised_check_output = false;
  693. auto output_callback =
  694. [&result_mgb, &finised_check_output,
  695. output_name](const std::unordered_map<
  696. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  697. output_map) {
  698. ASSERT_EQ(output_map.size(), 1);
  699. auto tensor_output = output_map.at(output_name).second;
  700. compare_lite_tensor<float>(tensor_output, result_mgb);
  701. finised_check_output = true;
  702. };
  703. network->set_finish_callback(output_callback);
  704. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  705. input_tensor->share_memory_with(*tensor);
  706. network->forward();
  707. network->wait();
  708. ASSERT_TRUE(finised_check_output);
  709. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  710. compare_lite_tensor<float>(output_tensor, result_mgb);
  711. }
  712. TEST(TestNetWork, OutputShapeOnly) {
  713. auto tensor = get_input_data("./input_data.npy");
  714. std::string model_path = "./shufflenet.mge";
  715. std::string input_name = "data";
  716. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  717. NetworkIO IO;
  718. bool is_host = true;
  719. IO.outputs.push_back({output_name, is_host, LiteIOType::LITE_IO_SHAPE});
  720. Config config;
  721. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  722. network->load_model(model_path);
  723. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  724. std::shared_ptr<Tensor> output_tensor = network->get_io_tensor(output_name);
  725. auto src_ptr = tensor->get_memory_ptr();
  726. auto src_layout = tensor->get_layout();
  727. input_tensor->reset(src_ptr, src_layout);
  728. network->forward();
  729. network->wait();
  730. ASSERT_EQ(output_tensor->get_tensor_total_size_in_byte() / sizeof(float), 1000);
  731. }
  732. TEST(TestNetWork, ProfileIOdump) {
  733. auto tensor = get_input_data("./input_data.npy");
  734. std::string model_path = "./shufflenet.mge";
  735. std::string input_name = "data";
  736. NetworkIO IO;
  737. Config config;
  738. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  739. network->enable_profile_performance("./profile.json");
  740. network->load_model(model_path);
  741. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  742. auto src_ptr = tensor->get_memory_ptr();
  743. auto src_layout = tensor->get_layout();
  744. input_tensor->reset(src_ptr, src_layout);
  745. network->forward();
  746. network->wait();
  747. ASSERT_TRUE(fopen("./profile.json", "r"));
  748. Runtime::enable_io_txt_dump(network, "./io_txt_dump.txt");
  749. network->forward();
  750. network->wait();
  751. ASSERT_TRUE(fopen("./io_txt_dump.txt", "r"));
  752. }
  753. TEST(TestNetWork, LoadPackedModel) {
  754. auto tensor = get_input_data("./input_data.npy");
  755. std::string model_path = "./test_packed_model.lite";
  756. std::string input_name = "data";
  757. NetworkIO IO;
  758. Config config;
  759. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  760. network->load_model(model_path);
  761. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  762. auto src_ptr = tensor->get_memory_ptr();
  763. auto src_layout = tensor->get_layout();
  764. input_tensor->reset(src_ptr, src_layout);
  765. network->forward();
  766. network->wait();
  767. }
  768. TEST(TestNetWork, GlabalLayoutTransform) {
  769. auto tensor = get_input_data("./input_data.npy");
  770. std::string model_path = "./shufflenet.mge";
  771. std::string input_name = "data";
  772. std::string dump_model_name = "./shufflenet_after_trans.mge";
  773. NetworkIO IO;
  774. Config config;
  775. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  776. Runtime::enable_global_layout_transform(network);
  777. network->load_model(model_path);
  778. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  779. auto src_ptr = tensor->get_memory_ptr();
  780. auto src_layout = tensor->get_layout();
  781. input_tensor->reset(src_ptr, src_layout);
  782. Runtime::dump_layout_transform_model(network, dump_model_name);
  783. network->forward();
  784. network->wait();
  785. ASSERT_TRUE(fopen(dump_model_name.c_str(), "r"));
  786. remove(dump_model_name.c_str());
  787. }
  788. TEST(TestNetWork, GetDeviceType) {
  789. auto tensor = get_input_data("./input_data.npy");
  790. std::string model_path = "./shufflenet.mge";
  791. Config config;
  792. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  793. network->load_model(model_path);
  794. ASSERT_TRUE(network->get_device_type() == LiteDeviceType::LITE_CPU);
  795. }
  796. TEST(TestNetWork, GetModelExtraInfo) {
  797. std::string model_path = "./track_640_320_pack_model_rc4_with_info.lite";
  798. Config config;
  799. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  800. network->load_model(model_path);
  801. auto& extra_info = network->get_model_extra_info();
  802. ASSERT_TRUE(extra_info.size() > 0);
  803. printf("extra_info %s \n", extra_info.c_str());
  804. }
  805. #ifndef __IN_TEE_ENV__
  806. #if MGB_ENABLE_JSON
  807. TEST(TestNetWork, GetMemoryInfo) {
  808. Config config;
  809. auto lite_tensor = get_input_data("./input_data.npy");
  810. std::string model_path = "./shufflenet.mge";
  811. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  812. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  813. Runtime::set_cpu_threads_number(network, 2);
  814. network->load_model(model_path);
  815. network->get_static_memory_alloc_info();
  816. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  817. auto src_ptr = lite_tensor->get_memory_ptr();
  818. auto src_layout = lite_tensor->get_layout();
  819. input_tensor->reset(src_ptr, src_layout);
  820. network->forward();
  821. network->wait();
  822. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  823. compare_lite_tensor<float>(output_tensor, result_mgb);
  824. }
  825. #endif
  826. #endif
  827. #if LITE_WITH_CUDA
  828. TEST(TestNetWork, BasicDevice) {
  829. auto lite_tensor = get_input_data("./input_data.npy");
  830. Config config;
  831. config.device_type = LiteDeviceType::LITE_CUDA;
  832. std::string model_path = "./shufflenet.mge";
  833. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  834. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  835. compare_lite_tensor<float>(result_lite, result_mgb);
  836. }
  837. TEST(TestNetWork, DeviceInput) {
  838. auto tensor = get_input_data("./input_data.npy");
  839. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  840. std::string model_path = "./shufflenet.mge";
  841. std::string input_name = "data";
  842. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  843. NetworkIO IO;
  844. bool is_host = false;
  845. IO.inputs.push_back({input_name, is_host});
  846. Config config;
  847. config.device_type = LiteDeviceType::LITE_CUDA;
  848. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  849. network->load_model(model_path);
  850. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  851. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  852. tensor_cuda.copy_from(*tensor);
  853. auto src_ptr = tensor_cuda.get_memory_ptr();
  854. input_tensor->reset(src_ptr, layout);
  855. network->forward();
  856. network->wait();
  857. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  858. compare_lite_tensor<float>(output_tensor, result_mgb);
  859. }
  860. TEST(TestNetWork, ChangeInputShapeDevice) {
  861. Config config;
  862. auto tensor = get_input_data("./input_data.npy");
  863. std::string model_path = "./shufflenet.mge";
  864. std::string input_name = "data";
  865. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  866. config.device_type = LiteDeviceType::LITE_CUDA;
  867. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  868. network->load_model(model_path);
  869. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  870. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  871. input_tensor->set_layout(src_layout);
  872. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  873. //! Check memory is equal
  874. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  875. network->forward();
  876. network->wait();
  877. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  878. auto output_layout = output_tensor->get_layout();
  879. ASSERT_EQ(output_layout.shapes[0], 2);
  880. ASSERT_EQ(output_layout.shapes[1], 1000);
  881. }
  882. TEST(TestNetWork, DeviceOutput) {
  883. auto tensor = get_input_data("./input_data.npy");
  884. std::string model_path = "./shufflenet.mge";
  885. std::string input_name = "data";
  886. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  887. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  888. NetworkIO IO;
  889. bool is_host = false;
  890. IO.outputs.push_back({output_name, is_host});
  891. Config config;
  892. config.device_type = LiteDeviceType::LITE_CUDA;
  893. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  894. network->load_model(model_path);
  895. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  896. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  897. auto src_ptr = tensor->get_memory_ptr();
  898. auto src_layout = tensor->get_layout();
  899. input_tensor->reset(src_ptr, src_layout);
  900. network->forward();
  901. network->wait();
  902. auto output_tensor = std::make_shared<Tensor>();
  903. output_tensor->copy_from(*output_tensor_cuda);
  904. compare_lite_tensor<float>(output_tensor, result_mgb);
  905. }
  906. TEST(TestNetWork, WrongIONameDevice) {
  907. auto tensor = get_input_data("./input_data.npy");
  908. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  909. std::string model_path = "./shufflenet.mge";
  910. std::string input_name = "data";
  911. std::string input_name_wrong = "data0";
  912. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  913. std::string output_name_wrong = "w_TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  914. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  915. NetworkIO IO;
  916. bool is_host = false;
  917. IO.inputs.push_back({input_name, is_host});
  918. IO.outputs.push_back({output_name, is_host});
  919. IO.outputs.push_back({output_name_wrong, is_host});
  920. Config config;
  921. config.device_type = LiteDeviceType::LITE_CUDA;
  922. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  923. network->load_model(model_path);
  924. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  925. tensor_cuda.copy_from(*tensor);
  926. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  927. auto src_ptr = tensor_cuda.get_memory_ptr();
  928. auto src_layout = tensor_cuda.get_layout();
  929. input_tensor->reset(src_ptr, src_layout);
  930. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  931. network->forward();
  932. network->wait();
  933. auto output_tensor = std::make_shared<Tensor>();
  934. output_tensor->copy_from(*output_tensor_cuda);
  935. compare_lite_tensor<float>(output_tensor, result_mgb);
  936. }
  937. TEST(TestNetWork, ConfigIONameDevice) {
  938. std::string model_path = "./model.mgb";
  939. NetworkIO IO;
  940. bool is_host = false;
  941. IO.outputs.push_back({"clsfy", is_host});
  942. Config config;
  943. config.device_type = LiteDeviceType::LITE_CUDA;
  944. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  945. network->compute_only_configured_output();
  946. network->load_model(model_path);
  947. ASSERT_EQ(network->get_all_output_name().size(), 1);
  948. ASSERT_EQ(network->get_all_output_name()[0], "clsfy");
  949. std::shared_ptr<Network> network2 = std::make_shared<Network>(config, IO);
  950. network2->load_model(model_path);
  951. ASSERT_EQ(network2->get_all_output_name().size(), 2);
  952. }
  953. TEST(TestNetWork, SetDeviceIdDeviceTest) {
  954. #if LITE_WITH_CUDA
  955. if (get_device_count(LITE_CUDA) <= 1)
  956. return;
  957. #endif
  958. std::string model_path = "./model.mgb";
  959. NetworkIO IO;
  960. bool is_host = false;
  961. IO.inputs.push_back({"data", is_host});
  962. IO.outputs.push_back({"clsfy", is_host});
  963. Config config;
  964. config.device_type = LiteDeviceType::LITE_CUDA;
  965. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  966. network->set_device_id(1);
  967. network->load_model(model_path);
  968. auto inputs_names = network->get_all_input_name();
  969. for (auto name : inputs_names) {
  970. auto tensor = network->get_io_tensor(name);
  971. ASSERT_EQ(tensor->get_device_id(), 1);
  972. if (name == "idx") {
  973. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  974. for (int i = 0; i < 23; i++) {
  975. index_ptr[i] = i % 3;
  976. }
  977. }
  978. if (name == "landmark") {
  979. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  980. for (int i = 0; i < 23 * 18 * 2; i++) {
  981. landmakrk_ptr[i] = 0.1f;
  982. }
  983. }
  984. }
  985. auto outputs_names = network->get_all_output_name();
  986. for (auto name : outputs_names) {
  987. auto tensor = network->get_io_tensor(name);
  988. ASSERT_EQ(tensor->get_device_id(), 1);
  989. }
  990. network->forward();
  991. network->wait();
  992. }
  993. TEST(TestNetWork, SetStreamIdDeviceTest) {
  994. std::string model_path = "./model.mgb";
  995. NetworkIO IO;
  996. bool is_host = false;
  997. IO.inputs.push_back({"data", is_host});
  998. IO.outputs.push_back({"clsfy", is_host});
  999. Config config;
  1000. config.device_type = LiteDeviceType::LITE_CUDA;
  1001. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  1002. network->set_stream_id(1);
  1003. network->load_model(model_path);
  1004. auto inputs_names = network->get_all_input_name();
  1005. for (auto name : inputs_names) {
  1006. auto tensor = network->get_io_tensor(name);
  1007. if (name == "idx") {
  1008. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  1009. for (int i = 0; i < 23; i++) {
  1010. index_ptr[i] = i % 3;
  1011. }
  1012. }
  1013. if (name == "landmark") {
  1014. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  1015. for (int i = 0; i < 23 * 18 * 2; i++) {
  1016. landmakrk_ptr[i] = 0.1f;
  1017. }
  1018. }
  1019. }
  1020. network->forward();
  1021. network->wait();
  1022. }
  1023. #if CUDART_VERSION >= 10000
  1024. TEST(TestNetWork, DeviceAsyncExec) {
  1025. auto tensor = get_input_data("./input_data.npy");
  1026. Config config;
  1027. config.device_type = LiteDeviceType::LITE_CUDA;
  1028. config.options.var_sanity_check_first_run = false;
  1029. std::string model_path = "./shufflenet.mge";
  1030. std::string input_name = "data";
  1031. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  1032. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  1033. network->load_model(model_path);
  1034. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  1035. auto src_ptr = tensor->get_memory_ptr();
  1036. auto src_layout = tensor->get_layout();
  1037. input_tensor->reset(src_ptr, src_layout);
  1038. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  1039. auto result_tensor = std::make_shared<Tensor>(
  1040. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  1041. void* out_data = result_tensor->get_memory_ptr();
  1042. output_tensor->reset(out_data, result_tensor->get_layout());
  1043. //! set async mode and callback
  1044. volatile bool finished = false;
  1045. network->set_async_callback([&finished]() { finished = true; });
  1046. network->forward();
  1047. size_t count = 0;
  1048. while (finished == false) {
  1049. count++;
  1050. }
  1051. ASSERT_GT(count, 0);
  1052. compare_lite_tensor<float>(output_tensor, result_mgb);
  1053. }
  1054. #endif
  1055. #endif
  1056. #if MGB_ATLAS || MGB_CAMBRICON
  1057. namespace {
  1058. void load_no_device(LiteDeviceType device_type, const std::string& model_path) {
  1059. lite::Config config;
  1060. config.device_type = device_type;
  1061. auto network = std::make_shared<lite::Network>(config);
  1062. network->load_model(model_path);
  1063. network->forward();
  1064. network->wait();
  1065. }
  1066. void load_device_input(
  1067. LiteDeviceType device_type, const std::string& model_path,
  1068. const std::vector<std::string>& inputs) {
  1069. lite::NetworkIO networkio;
  1070. lite::IO input_data_io = {};
  1071. input_data_io.name = inputs[0];
  1072. input_data_io.is_host = false;
  1073. networkio.inputs.emplace_back(input_data_io);
  1074. lite::IO input_input0_io = {};
  1075. input_input0_io.name = inputs[1];
  1076. input_input0_io.is_host = false;
  1077. networkio.inputs.emplace_back(input_input0_io);
  1078. lite::Config config;
  1079. config.device_type = device_type;
  1080. auto network = std::make_shared<lite::Network>(config, networkio);
  1081. network->load_model(model_path);
  1082. network->forward();
  1083. network->wait();
  1084. }
  1085. void load_device_id(
  1086. LiteDeviceType device_type, int device_id, const std::string& model_path) {
  1087. lite::Config config;
  1088. config.device_type = device_type;
  1089. auto network = std::make_shared<lite::Network>(config);
  1090. network->set_device_id(device_id);
  1091. network->load_model(model_path);
  1092. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  1093. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  1094. network->forward();
  1095. network->wait();
  1096. ASSERT_EQ(output_tensor->get_device_id(), device_id);
  1097. }
  1098. } // namespace
  1099. #endif
  1100. #if MGB_ATLAS
  1101. TEST(TestNetWork, AtlasLoadNoDevice) {
  1102. load_no_device(LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_atlas.mgb");
  1103. }
  1104. TEST(TestNetWork, AtlasLoadDeviceInput) {
  1105. load_device_input(
  1106. LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_atlas.mgb",
  1107. {"data", "input0"});
  1108. }
  1109. TEST(TestNetWork, AtlasLoadAtlas) {
  1110. load_no_device(LiteDeviceType::LITE_ATLAS, "./model_atlas.mgb");
  1111. }
  1112. TEST(TestNetWork, AtlasLoadAtlasDeviceInput) {
  1113. load_device_input(
  1114. LiteDeviceType::LITE_ATLAS, "./model_atlas.mgb", {"data", "input0"});
  1115. }
  1116. TEST(TestNetWork, AtlasDeviceID) {
  1117. load_device_id(LiteDeviceType::LITE_ATLAS, 1, "./model_atlas.mgb");
  1118. }
  1119. #endif
  1120. #if MGB_CAMBRICON
  1121. TEST(TestNetWork, CambriconLoadNoDevice) {
  1122. load_no_device(LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_magicmind.mgb");
  1123. }
  1124. TEST(TestNetWork, CambriconLoadDeviceInput) {
  1125. load_device_input(
  1126. LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_magicmind.mgb",
  1127. {"data", "input0"});
  1128. }
  1129. TEST(TestNetWork, CambriconLoadCambricon) {
  1130. load_no_device(LiteDeviceType::LITE_CAMBRICON, "./model_magicmind.mgb");
  1131. }
  1132. TEST(TestNetWork, CambriconLoadCambriconDeviceInput) {
  1133. load_device_input(
  1134. LiteDeviceType::LITE_CAMBRICON, "./model_magicmind.mgb",
  1135. {"data", "input0"});
  1136. }
  1137. TEST(TestNetWork, CambriconDeviceID) {
  1138. load_device_id(LiteDeviceType::LITE_CAMBRICON, 0, "./model_magicmind.mgb");
  1139. }
  1140. #endif
  1141. #endif
  1142. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}