You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

adaptive_pooling.cpp 6.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163
  1. #include "megbrain/opr/dnn/adaptive_pooling.h"
  2. #include "../algo_chooser.h"
  3. #include "../blob_manager_impl.h"
  4. #include "../dnn_op_helper.h"
  5. #include "../op_trait.h"
  6. #include "megbrain/imperative/ops/autogen.h"
  7. #include "megbrain/opr/io.h"
  8. namespace mgb::imperative {
  9. namespace {
  10. namespace adaptive_pooling {
  11. auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) {
  12. auto&& pool = static_cast<const AdaptivePooling&>(def);
  13. OperatorNodeConfig config{pool.make_name()};
  14. size_t nr_inp = inputs.size();
  15. if (nr_inp > 1) {
  16. return opr::AdaptivePooling::make(inputs[0], inputs[1], pool.param(), config);
  17. }
  18. HostTensorND hv = HostTensorND(inputs[0]->comp_node(), {2}, dtype::Int32());
  19. auto* ptr = hv.ptr<dt_int32>();
  20. ptr[0] = pool.shape[0];
  21. ptr[1] = pool.shape[1];
  22. auto graph = inputs[0]->owner_graph();
  23. auto target_shape = opr::ImmutableTensor::make(*graph, hv, config);
  24. return opr::AdaptivePooling::make(inputs[0], target_shape, pool.param(), config);
  25. }
  26. std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible(
  27. const OpDef& def, const SmallVector<LogicalTensorDesc>& inputs) {
  28. auto&& pool = static_cast<const AdaptivePooling&>(def);
  29. size_t nr_inp = inputs.size();
  30. auto&& src = inputs[0];
  31. TensorLayout dst_layout(src.layout.dtype);
  32. if (src.layout.is_empty()) {
  33. return {{{TensorLayout(src.layout.dtype), src.comp_node}}, false};
  34. }
  35. const dt_int32* oshp2d = nullptr;
  36. dst_layout.ndim = 4u;
  37. bool tshp1n = false;
  38. if (nr_inp == 1) {
  39. oshp2d = pool.shape.data();
  40. } else {
  41. auto&& tshp = inputs[1];
  42. if (tshp.value.empty()) {
  43. return {{{TensorLayout(src.layout.dtype), src.comp_node}}, false};
  44. }
  45. mgb_assert(
  46. tshp.layout.ndim == 1,
  47. "target shape of AdaptivePooling expects ndim=1; got ndim=%lu actually",
  48. tshp.layout.ndim);
  49. oshp2d = tshp.value.ptr<dt_int32>();
  50. tshp1n = tshp.layout.total_nr_elems() == 1;
  51. }
  52. auto param_format = pool.param().format;
  53. if (param_format == opr::AdaptivePooling::Param::Format::NCHW) {
  54. dst_layout[0] = src.layout[0];
  55. dst_layout[1] = src.layout[1];
  56. dst_layout[2] = oshp2d[0];
  57. dst_layout[3] = tshp1n ? oshp2d[0] : oshp2d[1];
  58. } else if (param_format == opr::AdaptivePooling::Param::Format::NHWC) {
  59. dst_layout[0] = src.layout[0];
  60. dst_layout[1] = oshp2d[0];
  61. dst_layout[2] = tshp1n ? oshp2d[0] : oshp2d[1];
  62. dst_layout[3] = src.layout[3];
  63. } else {
  64. mgb_throw(MegBrainError, "AdaptivePooling only support NCHW or NHWC format");
  65. }
  66. dst_layout.init_contiguous_stride();
  67. return {{{dst_layout, src.comp_node}}, true};
  68. }
  69. SmallVector<TensorPtr> apply_on_physical_tensor(
  70. const OpDef& def, const SmallVector<TensorPtr>& inputs,
  71. SmallVector<LogicalTensorDesc>& output_descs, const bool& validated) {
  72. auto&& pool = static_cast<const AdaptivePooling&>(def);
  73. auto&& cn = inputs[0]->comp_node();
  74. using TensorND = megdnn::TensorND;
  75. auto&& src_layout = inputs[0]->layout();
  76. TensorLayout dst_layout = output_descs[0].layout;
  77. auto param_format = pool.format;
  78. if (!validated) {
  79. dst_layout.ndim = src_layout.ndim;
  80. const dt_int32* oshp2d = nullptr;
  81. bool tshp1n = false;
  82. if (inputs.size() == 2) {
  83. auto&& tshp_nd = inputs[1];
  84. tshp1n = inputs[1]->layout().total_nr_elems() == 1;
  85. oshp2d = tshp_nd->get_value().proxy_to_default_cpu().ptr<dt_int32>();
  86. } else {
  87. oshp2d = pool.shape.data();
  88. }
  89. if (param_format == opr::AdaptivePooling::Param::Format::NCHW) {
  90. dst_layout[0] = src_layout[0];
  91. dst_layout[1] = src_layout[1];
  92. dst_layout[2] = oshp2d[0];
  93. dst_layout[3] = tshp1n ? oshp2d[0] : oshp2d[1];
  94. } else if (param_format == opr::AdaptivePooling::Param::Format::NHWC) {
  95. dst_layout[0] = src_layout[0];
  96. dst_layout[1] = oshp2d[0];
  97. dst_layout[2] = tshp1n ? oshp2d[0] : oshp2d[1];
  98. dst_layout[3] = src_layout[3];
  99. } else {
  100. mgb_throw(
  101. MegBrainError, "AdaptivePooling only support NCHW or NHWC format");
  102. }
  103. dst_layout.init_contiguous_stride();
  104. }
  105. size_t IH, IW, OH, OW;
  106. if (param_format == param::AdaptivePooling::Format::NCHW) {
  107. IH = src_layout[2];
  108. IW = src_layout[3];
  109. OH = dst_layout[2];
  110. OW = dst_layout[3];
  111. } else if (param_format == param::AdaptivePooling::Format::NHWC) {
  112. IH = src_layout[1];
  113. IW = src_layout[2];
  114. OH = dst_layout[1];
  115. OW = dst_layout[2];
  116. } else {
  117. mgb_throw(MegBrainError, "AdaptivePooling only support NCHW or NHWC format");
  118. }
  119. DnnOprCaller<megdnn::Pooling> dnn_opr(cn);
  120. auto&& param = dnn_opr.op->param();
  121. param.mode = pool.mode;
  122. param.format = pool.format;
  123. param.pad_h = param.pad_w = 0;
  124. param.stride_h = floor(IH / OH);
  125. param.stride_w = floor(IW / OW);
  126. param.window_h = IH - (OH - 1) * param.stride_h;
  127. param.window_w = IW - (OW - 1) * param.stride_w;
  128. TensorND src = inputs[0]->dnn_tensor();
  129. DeviceTensorND dst =
  130. BlobManager::inst()->alloc_workspace_with_defrag(cn, dst_layout);
  131. size_t sz = setup_algo<megdnn::Pooling>(
  132. {src_layout, dst_layout}, dnn_opr.op.get(), 0, false, false, cn,
  133. ::megdnn::param::ExecutionPolicy{}, false);
  134. megdnn::Workspace dnn_wk;
  135. if (sz) {
  136. TensorLayout w_layout({sz}, dtype::Byte());
  137. dnn_wk = dnn_opr.create_workspace(w_layout);
  138. }
  139. dnn_opr.op->exec(src, dst.as_megdnn(), dnn_wk);
  140. return {Tensor::make(dst)};
  141. }
  142. OP_TRAIT_REG(AdaptivePooling, AdaptivePooling)
  143. .apply_on_var_node(apply_on_var_node)
  144. .infer_output_attrs_fallible(infer_output_attrs_fallible)
  145. .apply_on_physical_tensor(apply_on_physical_tensor)
  146. .fallback();
  147. } // namespace adaptive_pooling
  148. } // namespace
  149. } // namespace mgb::imperative