You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

common.cpp 9.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214
  1. /**
  2. * \file imperative/python/src/common.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "./common.h"
  12. #include <pybind11/operators.h>
  13. #include "./helper.h"
  14. #include "./numpy_dtypes.h"
  15. #include "megbrain/comp_node.h"
  16. #include "megbrain/graph.h"
  17. #include "megbrain/imperative/physical_tensor.h"
  18. namespace py = pybind11;
  19. using namespace mgb;
  20. using namespace imperative;
  21. namespace {
  22. template <typename XTensorND>
  23. auto def_TensorND(py::object parent, const char* name) {
  24. return py::class_<XTensorND>(parent, name)
  25. .def_property_readonly(
  26. "shape", py::overload_cast<>(&XTensorND::shape, py::const_))
  27. .def_property_readonly(
  28. "dtype", py::overload_cast<>(&XTensorND::dtype, py::const_))
  29. .def_property_readonly(
  30. "comp_node", py::overload_cast<>(&XTensorND::comp_node, py::const_))
  31. .def("copy_from", &XTensorND::template copy_from<DeviceTensorStorage>)
  32. .def("copy_from", &XTensorND::template copy_from<HostTensorStorage>)
  33. .def("copy_from_fixlayout",
  34. py::overload_cast<const DeviceTensorND&>(
  35. &XTensorND::template copy_from_fixlayout<DeviceTensorStorage>))
  36. .def("copy_from_fixlayout",
  37. py::overload_cast<const HostTensorND&>(
  38. &XTensorND::template copy_from_fixlayout<HostTensorStorage>));
  39. }
  40. std::string default_device = "xpux";
  41. } // namespace
  42. void set_default_device(const std::string& device) {
  43. default_device = device;
  44. }
  45. std::string get_default_device() {
  46. return default_device;
  47. }
  48. void init_common(py::module m) {
  49. auto PyCompNode =
  50. py::class_<CompNode>(m, "CompNode")
  51. .def(py::init())
  52. .def(py::init(
  53. py::overload_cast<const std::string&>(&CompNode::load)))
  54. .def_property_readonly(
  55. "logical_name",
  56. [](const CompNode& cn) { return cn.to_string_logical(); })
  57. .def_property_readonly(
  58. "physical_name",
  59. [](const CompNode& cn) { return cn.to_string(); })
  60. .def_property_readonly(
  61. "get_mem_status_bytes",
  62. [](const CompNode& cn) {
  63. return cn.get_mem_status_bytes();
  64. })
  65. .def("create_event", &CompNode::create_event,
  66. py::arg("flags") = 0ul)
  67. .def_static("_set_default_device", &set_default_device)
  68. .def_static("_get_default_device", &get_default_device)
  69. .def("__str__", &CompNode::to_string_logical)
  70. .def("__repr__",
  71. [](const CompNode& cn) {
  72. return mgb::ssprintf(
  73. "CompNode(\"%s\" from \"%s\")",
  74. cn.to_string_physical().c_str(),
  75. cn.to_string_logical().c_str());
  76. })
  77. .def("__hash__", [](CompNode cn) { return mgb::hash(cn); })
  78. .def_static("_sync_all", &CompNode::sync_all)
  79. .def(py::self == py::self)
  80. .def_static(
  81. "_get_device_count", &CompNode::get_device_count,
  82. "Get total number of specific devices on this system")
  83. .def(py::pickle(
  84. [](const CompNode& cn) {
  85. return py::str(cn.to_string_logical());
  86. },
  87. [](py::str cn) { return CompNode::load(cn); }));
  88. py::class_<CompNode::Event, std::shared_ptr<CompNode::Event>>(PyCompNode, "Event")
  89. .def("record", &CompNode::Event::record)
  90. .def("wait", &CompNode::Event::host_wait);
  91. py::implicitly_convertible<std::string, CompNode>();
  92. def_TensorND<DeviceTensorND>(m, "DeviceTensorND")
  93. .def("numpy", [](const DeviceTensorND& self) {
  94. HostTensorND hv;
  95. hv.copy_from(self).sync();
  96. return py::handle(
  97. npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE));
  98. });
  99. def_TensorND<HostTensorND>(m, "HostTensorND")
  100. .def(py::init([](py::array data, CompNode cn, DType dtype) {
  101. if (!cn.valid()) {
  102. throw py::type_error("device must not be None");
  103. }
  104. return npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
  105. }))
  106. .def("numpy", [](const HostTensorND& self) {
  107. return py::reinterpret_steal<py::object>(
  108. npy::ndarray_from_tensor(self, npy::ShareType::TRY_SHARE));
  109. });
  110. py::class_<cg::OperatorNodeConfig>(m, "OperatorNodeConfig")
  111. .def(py::init())
  112. .def_property(
  113. "name",
  114. [](const OperatorNodeConfig& config) -> py::object {
  115. auto name = config.name();
  116. if (name.valid()) {
  117. return py::str(name.val());
  118. } else {
  119. return py::none();
  120. }
  121. },
  122. [](OperatorNodeConfig& config, std::string name) {
  123. config.name(std::move(name));
  124. })
  125. .def_property(
  126. "dtype",
  127. [](const OperatorNodeConfig& config) {
  128. return config.output_dtype();
  129. },
  130. [](OperatorNodeConfig& config, DType dtype) {
  131. config.output_dtype(dtype);
  132. })
  133. .def_property(
  134. "comp_node_arr",
  135. [](const OperatorNodeConfig& config) -> py::tuple {
  136. auto arr = config.comp_node();
  137. std::vector<CompNode> tmp(arr.begin(), arr.end());
  138. return py::cast(tmp);
  139. },
  140. [](OperatorNodeConfig& config, std::vector<CompNode> cns) {
  141. config.comp_node_arr({cns.begin(), cns.end()});
  142. })
  143. .def_property(
  144. "comp_node",
  145. [](const OperatorNodeConfig& config) {
  146. auto arr = config.comp_node();
  147. if (arr.size() != 1) {
  148. throw py::value_error("invalid number of comp_node");
  149. }
  150. return arr[0];
  151. },
  152. [](OperatorNodeConfig& config, CompNode cn) {
  153. OperatorNodeConfig::CompNodeArray arr{cn};
  154. config.comp_node_arr(arr);
  155. });
  156. py::class_<LogicalTensorDesc>(m, "TensorAttr")
  157. .def(py::init())
  158. .def(py::init([](const TensorShape& shape, const DType& dtype,
  159. const CompNode& comp_node) {
  160. return LogicalTensorDesc{TensorLayout{shape, dtype}, comp_node};
  161. }))
  162. .def_property(
  163. "shape",
  164. [](const LogicalTensorDesc& desc) {
  165. return static_cast<TensorShape>(desc.layout);
  166. },
  167. [](LogicalTensorDesc& desc, TensorShape shape) {})
  168. .def_property(
  169. "dtype",
  170. [](const LogicalTensorDesc& desc) { return desc.layout.dtype; },
  171. [](LogicalTensorDesc& desc, DType dtype) {
  172. desc.layout.dtype = dtype;
  173. })
  174. .def_readwrite("comp_node", &LogicalTensorDesc::comp_node);
  175. py::enum_<CompNode::DeviceType>(m, "DeviceType")
  176. .value("UNSPEC", CompNode::DeviceType::UNSPEC)
  177. .value("CUDA", CompNode::DeviceType::CUDA)
  178. .value("ROCM", CompNode::DeviceType::ROCM)
  179. .value("CPU", CompNode::DeviceType::CPU)
  180. .value("CAMBRICON", CompNode::DeviceType::CAMBRICON)
  181. .value("ATLAS", CompNode::DeviceType::ATLAS)
  182. .value("MULTITHREAD", CompNode::DeviceType::MULTITHREAD)
  183. .value("MAX_DEVICE_ID", CompNode::DeviceType::MAX_DEVICE_ID);
  184. m.def("set_prealloc_config", &CompNode::set_prealloc_config,
  185. "specifies how to pre-allocate from raw dev allocator");
  186. m.def("get_cuda_compute_capability", &CompNode::get_compute_capability);
  187. m.def("what_is_xpu",
  188. [] { return CompNode::Locator::parse("xpux").to_physical().type; });
  189. init_npy_num_bfloat16(m);
  190. init_npy_num_intbx(m);
  191. init_dtypes(m);
  192. }

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台