You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataloader.py 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. import math
  11. import multiprocessing
  12. import queue
  13. import random
  14. import time
  15. import numpy as np
  16. import megengine as mge
  17. from .collator import Collator
  18. from .dataset import Dataset
  19. from .sampler import Sampler, SequentialSampler
  20. from .transform import PseudoTransform, Transform
  21. logger = mge.get_logger(__name__)
  22. MP_QUEUE_GET_TIMEOUT = 5
  23. class DataLoader:
  24. __initialized = False
  25. def __init__(
  26. self,
  27. dataset: Dataset,
  28. sampler: Sampler = None,
  29. transform: Transform = None,
  30. collator: Collator = None,
  31. num_workers: int = 0,
  32. timeout: int = 0,
  33. divide: bool = False,
  34. ):
  35. r"""Provides a convenient way to iterate on a given dataset.
  36. `DataLoader` combines a dataset with sampler, transform and collator,
  37. make it flexible to get minibatch continually from a dataset.
  38. :type dataset: Dataset
  39. :param dataset: dataset from which to load the minibatch.
  40. :type sampler: Sampler
  41. :param sampler: defines the strategy to sample data from the dataset.
  42. If specified, :attr:`shuffle` must be ``False``.
  43. :type transform: Transform
  44. :param transform: defined the transforming strategy for a sampled batch.
  45. (default: ``None``)
  46. :type collator: Collator
  47. :param collator: defined the merging strategy for a transformed batch.
  48. (default: ``None``)
  49. :type num_workers: int
  50. :param num_workers: the number of sub-process to load, transform and collate
  51. the batch. ``0`` means using single-process. (default: ``0``)
  52. :type timeout: int
  53. :param timeout: if positive, means the timeout value(second) for collecting a
  54. batch from workers. (default: 0)
  55. :type divide: bool
  56. :param divide: define the paralleling strategy in multi-processing mode.
  57. ``True`` means one batch is divided into :attr:`num_workers` pieces, and
  58. the workers will process these pieces parallelly. ``False`` means
  59. different sub-process will process different batch. (default: ``False``)
  60. """
  61. if num_workers < 0:
  62. raise ValueError("num_workers should not be negative")
  63. if timeout < 0:
  64. raise ValueError("timeout should not be negative")
  65. if divide and num_workers <= 1:
  66. raise ValueError("divide should not be set to True when num_workers <= 1")
  67. self.dataset = dataset
  68. self.num_workers = num_workers
  69. self.timeout = timeout
  70. self.divide = divide
  71. self.rng = np.random.RandomState()
  72. if sampler is None:
  73. self.sampler = SequentialSampler(dataset, batch_size=1, drop_last=False)
  74. else:
  75. self.sampler = sampler
  76. if divide:
  77. if self.sampler.batch_size <= self.num_workers:
  78. raise ValueError(
  79. "batch size must not smaller than num_workers in divide mode."
  80. )
  81. elif self.sampler.batch_size % self.num_workers:
  82. logger.warning(
  83. "batch size is not divisible by num_workers, may lose performance in divide mode."
  84. )
  85. if transform is None:
  86. self.transform = PseudoTransform()
  87. else:
  88. self.transform = transform
  89. if collator is None:
  90. self.collator = Collator()
  91. else:
  92. self.collator = collator
  93. self.__initialized = True
  94. def __iter__(self):
  95. if self.num_workers == 0:
  96. return _SerialDataLoaderIter(self)
  97. else:
  98. return _ParallelDataLoaderIter(self)
  99. def __len__(self):
  100. return len(self.sampler)
  101. class _BaseDataLoaderIter:
  102. def __init__(self, loader):
  103. self.dataset = loader.dataset
  104. self.sampler = loader.sampler
  105. self.seed = loader.rng.randint(1e9)
  106. self.transform = loader.transform
  107. self.collator = loader.collator
  108. self.num_workers = loader.num_workers
  109. self.timeout = loader.timeout
  110. self.divide = loader.divide
  111. self.num_processed = 0
  112. def _get_next_batch(self):
  113. raise NotImplementedError
  114. def __len__(self):
  115. return len(self.sampler)
  116. def __iter__(self):
  117. return self
  118. def __next__(self):
  119. if self.num_processed >= len(self):
  120. raise StopIteration
  121. minibatch = self._get_next_batch()
  122. self.num_processed += 1
  123. return minibatch
  124. class _SerialDataLoaderIter(_BaseDataLoaderIter):
  125. def __init__(self, loader):
  126. super(_SerialDataLoaderIter, self).__init__(loader)
  127. self.indices_iter = iter(self.sampler)
  128. def _get_next_batch(self):
  129. indices = next(self.indices_iter)
  130. items = [self.dataset[idx] for idx in indices]
  131. trans_items = self.transform.apply_batch(items)
  132. return self.collator.apply(trans_items)
  133. class _ParallelDataLoaderIter(_BaseDataLoaderIter):
  134. __initialzed = False
  135. def __init__(self, loader):
  136. super(_ParallelDataLoaderIter, self).__init__(loader)
  137. # if any worker died, all workers will be shutdown.
  138. self.strict = True
  139. # TODO: put `strict` into DataLoader args or not?
  140. self.task_queues = [
  141. multiprocessing.Queue(maxsize=2) for _ in range(self.num_workers)
  142. ]
  143. self.feed_batch_idx = multiprocessing.Value("i", 0)
  144. self.target_batch_idx = multiprocessing.Value("i", 0)
  145. self.shutdown_flag = multiprocessing.Value("i", 0)
  146. self.batch_part_queues = [
  147. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  148. ]
  149. # use shared-memory queue implemented by pyarrow plasma store.
  150. from ._queue import PlasmaShmQueue
  151. self.batch_queue = PlasmaShmQueue(maxsize=2)
  152. self.task_feeding_worker = multiprocessing.Process(
  153. target=self._task_feeding_loop,
  154. args=(iter(self.sampler), self.divide),
  155. daemon=True,
  156. )
  157. self.task_feeding_worker.start()
  158. self.workers = []
  159. for worker_id in range(self.num_workers):
  160. worker = multiprocessing.Process(
  161. target=self._worker_loop,
  162. args=(
  163. self.task_queues[worker_id],
  164. self.batch_part_queues[worker_id],
  165. self.transform,
  166. self.collator,
  167. self.seed + worker_id + 1,
  168. ),
  169. daemon=True,
  170. )
  171. worker.start()
  172. self.workers.append(worker)
  173. if self.divide:
  174. self.data_collecting_worker = multiprocessing.Process(
  175. target=self._data_gathering_loop,
  176. args=(self.batch_part_queues, self.batch_queue,),
  177. daemon=True,
  178. )
  179. else:
  180. self.data_collecting_worker = multiprocessing.Process(
  181. target=self._data_selecting_loop,
  182. args=(self.batch_part_queues, self.batch_queue,),
  183. daemon=True,
  184. )
  185. self.data_collecting_worker.start()
  186. self.__initialized = True
  187. def _task_feeding_loop(self, indices_iter, divide):
  188. while True:
  189. if self.shutdown_flag.value == 1:
  190. break
  191. batch_idx = self.feed_batch_idx.value
  192. try:
  193. indices = next(indices_iter)
  194. except StopIteration:
  195. break
  196. if divide:
  197. # make sure all task_queues is ready for put
  198. while any([q.full() for q in self.task_queues]):
  199. if self.shutdown_flag.value == 1:
  200. return
  201. # divide into small pieces, feed to different workers.
  202. sub_num = math.ceil(len(indices) / self.num_workers)
  203. for worker_id in range(self.num_workers):
  204. sub_indices = indices[
  205. worker_id * sub_num : (worker_id + 1) * sub_num
  206. ]
  207. self.task_queues[worker_id].put((batch_idx, sub_indices))
  208. else:
  209. # distribute tasks to different workers uniformly.
  210. target_id = batch_idx % self.num_workers
  211. while self.task_queues[target_id].full():
  212. if self.shutdown_flag.value == 1:
  213. return
  214. self.task_queues[target_id].put((batch_idx, indices))
  215. with self.feed_batch_idx.get_lock():
  216. self.feed_batch_idx.value += 1
  217. def _worker_loop(self, task_queue, data_queue, transform, collator, seed):
  218. random.seed(seed)
  219. np.random.seed(seed)
  220. while True:
  221. if self.shutdown_flag.value == 1:
  222. break
  223. try:
  224. batch_idx, indices = task_queue.get(timeout=MP_QUEUE_GET_TIMEOUT)
  225. except queue.Empty:
  226. continue
  227. if len(indices) > 0:
  228. items = [self.dataset[idx] for idx in indices]
  229. trans_items = transform.apply_batch(items)
  230. batch_data = collator.apply(trans_items)
  231. else:
  232. # in case of incomplete last batch
  233. batch_data = ()
  234. while True:
  235. try:
  236. data_queue.put((np.array([batch_idx]), batch_data), timeout=1)
  237. break
  238. except queue.Full:
  239. if self.shutdown_flag.value == 1:
  240. break
  241. logger.debug("batch part queue is full!")
  242. continue
  243. def _data_gathering_loop(self, batch_part_queues, batch_queue):
  244. r"""Gathering the small pieces of batch data into full batch data."""
  245. gathered_data = collections.defaultdict(dict)
  246. while True:
  247. if self.shutdown_flag.value == 1:
  248. break
  249. target_batch_idx = self.target_batch_idx.value
  250. if target_batch_idx >= len(self):
  251. break
  252. for worker_id in range(self.num_workers):
  253. if worker_id in gathered_data[target_batch_idx]:
  254. continue
  255. while True:
  256. try:
  257. (batch_idx,), batch_part = batch_part_queues[worker_id].get(
  258. timeout=MP_QUEUE_GET_TIMEOUT
  259. )
  260. break
  261. except queue.Empty:
  262. if self.shutdown_flag.value == 1:
  263. break
  264. logger.debug(
  265. "worker:{} data queue get timeout! target batch idx:{}".format(
  266. worker_id, target_batch_idx
  267. )
  268. )
  269. if batch_idx < target_batch_idx:
  270. raise RuntimeError(
  271. "Unexperted batch_idx in data gathering loop. worker_id:{}.".format(
  272. worker_id
  273. )
  274. )
  275. else:
  276. gathered_data[batch_idx][worker_id] = batch_part
  277. if len(gathered_data[target_batch_idx]) < self.num_workers:
  278. length = len(gathered_data[target_batch_idx])
  279. if self.strict:
  280. raise RuntimeError("Parts missing in data gathering loop.")
  281. logger.warning(
  282. "target_batch_idx:{}, {} part(s) missing.".format(
  283. target_batch_idx, self.num_workers - length
  284. )
  285. )
  286. del gathered_data[target_batch_idx]
  287. with self.target_batch_idx.get_lock():
  288. self.target_batch_idx.value += 1
  289. continue
  290. # Merge different parts.
  291. full_batch = [[] for _ in range(len(gathered_data[target_batch_idx][0]))]
  292. for idx in range(self.num_workers):
  293. for i, field in enumerate(gathered_data[target_batch_idx][idx]):
  294. full_batch[i].append(field)
  295. full_batch = tuple([np.concatenate(field, axis=0) for field in full_batch])
  296. while True:
  297. try:
  298. batch_queue.put(full_batch, timeout=1)
  299. break
  300. except queue.Full:
  301. if self.shutdown_flag.value == 1:
  302. break
  303. logger.debug("batch queue is full!")
  304. continue
  305. del gathered_data[target_batch_idx]
  306. with self.target_batch_idx.get_lock():
  307. self.target_batch_idx.value += 1
  308. batch_queue.disconnect_client()
  309. def _data_selecting_loop(self, batch_part_queues, batch_queue):
  310. r"""Make sure that batch is generated exactly with the same order as generated indices."""
  311. buffer_batches = {}
  312. while True:
  313. if self.shutdown_flag.value == 1:
  314. break
  315. target_batch_idx = self.target_batch_idx.value
  316. if target_batch_idx >= len(self):
  317. break
  318. if target_batch_idx in buffer_batches:
  319. while True:
  320. try:
  321. batch_queue.put(
  322. buffer_batches[target_batch_idx], timeout=1,
  323. )
  324. break
  325. except queue.Full:
  326. if self.shutdown_flag.value == 1:
  327. break
  328. logger.debug("batch queue is full!")
  329. with self.target_batch_idx.get_lock():
  330. self.target_batch_idx.value += 1
  331. del buffer_batches[target_batch_idx]
  332. continue
  333. target_worker_id = target_batch_idx % self.num_workers
  334. while True:
  335. try:
  336. (batch_idx,), batch_data = batch_part_queues[target_worker_id].get(
  337. timeout=MP_QUEUE_GET_TIMEOUT
  338. )
  339. break
  340. except queue.Empty:
  341. if self.shutdown_flag.value == 1:
  342. break
  343. logger.debug(
  344. "worker:{} data queue get timeout! target batch idx:{}".format(
  345. target_worker_id, target_batch_idx
  346. )
  347. )
  348. if batch_idx < target_batch_idx:
  349. raise RuntimeError("batch_idx smaller than target_batch_idx")
  350. elif batch_idx > target_batch_idx:
  351. if self.strict:
  352. raise RuntimeError("batch_idx larger than target_batch_idx")
  353. logger.warning(
  354. "missing target batch idx:{}, batch idx:{}".format(
  355. target_batch_idx, batch_idx
  356. )
  357. )
  358. buffer_batches[batch_idx] = batch_data
  359. else:
  360. try:
  361. batch_queue.put(batch_data, timeout=1)
  362. except queue.Full:
  363. buffer_batches[batch_idx] = batch_data
  364. continue
  365. with self.target_batch_idx.get_lock():
  366. self.target_batch_idx.value += 1
  367. batch_queue.disconnect_client()
  368. def _check_workers(self):
  369. """Check the status of each worker and restart if necessary."""
  370. if not self.data_collecting_worker.is_alive():
  371. exitcode = self.task_feeding_worker.exitcode
  372. if exitcode != 0:
  373. raise RuntimeError("data collecting worker died. {}".format(exitcode))
  374. if self.strict:
  375. if not self.task_feeding_worker.is_alive():
  376. exitcode = self.task_feeding_worker.exitcode
  377. if exitcode != 0:
  378. raise RuntimeError("task feeding worker died. {}".format(exitcode))
  379. for worker_id, worker in enumerate(self.workers):
  380. if not worker.is_alive():
  381. exitcode = worker.exitcode
  382. if exitcode != 0:
  383. raise RuntimeError(
  384. "worker:{} died. {}".format(worker_id, exitcode)
  385. )
  386. else:
  387. if not self.task_feeding_worker.is_alive():
  388. exitcode = self.task_feeding_worker.exitcode
  389. if exitcode != 0:
  390. logger.error(
  391. "task feeding worker died {}. Restarting".format(exitcode)
  392. )
  393. self.task_feeding_worker.join()
  394. self.task_feeding_worker = multiprocessing.Process(
  395. target=self._task_feeding_loop,
  396. args=(iter(self.sampler), self.divide),
  397. daemon=True,
  398. )
  399. self.task_feeding_worker.start()
  400. failed_num = 0
  401. for worker_id in range(self.num_workers):
  402. if self.workers[worker_id].is_alive():
  403. continue
  404. exitcode = worker.exitcode
  405. if exitcode == 0:
  406. continue
  407. logger.error("worker {} died. Restarting".format(worker_id))
  408. failed_num += 1
  409. self.workers[worker_id].join()
  410. worker = multiprocessing.Process(
  411. target=self._worker_loop,
  412. args=(
  413. self.task_queues[worker_id],
  414. self.batch_part_queues[worker_id],
  415. self.transform,
  416. self.collator,
  417. self.seed + worker_id + 1,
  418. ),
  419. daemon=True,
  420. )
  421. worker.start()
  422. self.workers[worker_id] = worker
  423. if failed_num > 0:
  424. logger.error("{} worker had exited".format(failed_num))
  425. else:
  426. logger.debug("all workers are alive.")
  427. def _try_get_next_batch(self):
  428. start_time = time.time()
  429. while True:
  430. self._check_workers()
  431. try:
  432. return self.batch_queue.get(timeout=1)
  433. except queue.Empty:
  434. logger.debug("batch queue empty!")
  435. waited_time = time.time() - start_time
  436. if self.timeout > 0:
  437. if waited_time > self.timeout:
  438. raise RuntimeError("get_next_batch timeout!")
  439. def _get_next_batch(self):
  440. batch_data = self._try_get_next_batch()
  441. return batch_data
  442. def _shutdown(self):
  443. with self.shutdown_flag.get_lock():
  444. self.shutdown_flag.value = 1
  445. if self.task_feeding_worker.is_alive():
  446. self.task_feeding_worker.terminate()
  447. self.task_feeding_worker.join()
  448. if self.data_collecting_worker.is_alive():
  449. self.data_collecting_worker.terminate()
  450. self.data_collecting_worker.join()
  451. for worker in self.workers:
  452. if worker.is_alive():
  453. worker.terminate()
  454. worker.join()
  455. for q in self.batch_part_queues:
  456. q.cancel_join_thread()
  457. q.close()
  458. for q in self.task_queues:
  459. q.cancel_join_thread()
  460. q.close()
  461. self.batch_queue.cancel_join_thread()
  462. self.batch_queue.close()
  463. def __del__(self):
  464. if self.__initialized:
  465. self._shutdown()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台

Contributors (1)