You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

tensor.py 4.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. from typing import Union
  10. import numpy as np
  11. from .core._imperative_rt import CompNode
  12. from .core._imperative_rt.core2 import Tensor as _Tensor
  13. from .core._imperative_rt.core2 import apply
  14. from .core._trace_option import use_symbolic_shape
  15. from .core._wrap import device as as_device
  16. from .core.ops.builtin import Copy, GetVarShape
  17. from .core.tensor.array_method import ArrayMethodMixin
  18. from .device import _valid_device, get_default_device
  19. from .logger import get_logger
  20. from .utils.deprecation import deprecated
  21. class Tensor(_Tensor, ArrayMethodMixin):
  22. grad = None
  23. dmap_callback = None
  24. q_dict = {"mode": None, "scale": None, "zero_point": None}
  25. def __new__(cls, data, dtype=None, device=None, is_const=False, no_cache=False):
  26. if device is None:
  27. cn = get_default_device()
  28. elif isinstance(device, str):
  29. if cls.dmap_callback is not None:
  30. cn = CompNode(cls.dmap_callback(device))
  31. else:
  32. cn = CompNode(device)
  33. else:
  34. if isinstance(device, CompNode):
  35. cn = device
  36. else:
  37. cn = device._cn
  38. if isinstance(data, _Tensor):
  39. if dtype is not None:
  40. get_logger().warning(
  41. "dtype does not work when creating a new Tensor with another Tensor"
  42. )
  43. obj = _Tensor.__new__(cls, data)
  44. else:
  45. if isinstance(data, np.ndarray):
  46. if 0 in data.strides:
  47. data = data.squeeze().reshape(data.shape)
  48. obj = _Tensor.__new__(cls, data, dtype, cn, is_const, no_cache)
  49. return obj
  50. @property
  51. def shape(self) -> Union[tuple, "Tensor"]:
  52. shape = super().shape
  53. if shape == () or not use_symbolic_shape():
  54. return shape
  55. return apply(GetVarShape(), self)[0]
  56. @property
  57. def _tuple_shape(self):
  58. return super().shape
  59. @property
  60. def dtype(self) -> np.dtype:
  61. return super().dtype
  62. def numpy(self) -> np.ndarray:
  63. return super().numpy()
  64. def _reset(self, other):
  65. super()._reset(other)
  66. def __repr__(self):
  67. piece = "Tensor("
  68. with np.printoptions(precision=4, suppress=True):
  69. piece += "{}".format(str(self.numpy()))
  70. if self.dtype != np.float32:
  71. piece += ", dtype={}".format(np.dtype(self.dtype).name)
  72. piece += ", device={}".format(self.device) + ")"
  73. return piece
  74. @deprecated(version="1.0", reason="no need to reuse an existing tensor since 1.0")
  75. def set_value(self, value):
  76. if not isinstance(value, _Tensor):
  77. value = Tensor(value, dtype=self.dtype, device=self.device)
  78. self._reset(value)
  79. @deprecated(version="1.0", reason="use *= 0 instead")
  80. def reset_zero(self):
  81. self *= 0
  82. def to(self, device):
  83. if isinstance(device, str) and not _valid_device(device):
  84. raise ValueError(
  85. "invalid device name {}. For the correct format of the device name, please refer to the instruction of megengine.device.set_default_device()".format(
  86. device
  87. )
  88. )
  89. cn = as_device(device).to_c()
  90. return apply(Copy(comp_node=cn), self)[0]
  91. @property
  92. def requires_grad(self):
  93. raise AttributeError("requires_grad is reserved for future use")
  94. @requires_grad.setter
  95. def requires_grad(self, value):
  96. raise AttributeError("requires_grad is reserved for future use")
  97. @requires_grad.deleter
  98. def requires_grad(self):
  99. raise AttributeError("requires_grad is reserved for future use")
  100. def __hash__(self):
  101. return id(self)
  102. def __getnewargs__(self):
  103. r""" __getnewargs__ will be called for pickle serialization or deep copy
  104. """
  105. return (self.numpy(), self.dtype, self.device.logical_name)
  106. def __getstate__(self):
  107. r""" __getstate__ will be called for pickle serialization or deep copy
  108. """
  109. state = {
  110. "qdict": self.q_dict,
  111. }
  112. return state
  113. def __setstate__(self, state):
  114. self.q_dict = state.pop("qdict")
  115. tensor = Tensor
  116. class Parameter(Tensor):
  117. r"""
  118. A kind of Tensor that is to be considered a module parameter.
  119. """

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台